Network Topologies / Architectures

Feedforward only vs. Feedback loop (Recurrent networks)
Fully connected vs. sparsely connected
Single layer vs. multilayer

Multilayer perceptrons, Hopfield network,
Boltzman machines, Kohonen network
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Classification Problems

Given :
1) some “features” (f,/,,..... [, )

2) some “classes” (¢,,....,C, )

Problem :

To classify an “object” according to its features



Example #1

To classify an “object” as :

¢, = “watermelon”
6‘2 — apple ”
l; = “orange”

According to the following features :

f7 = “weight”
/> = “color”
I3 = “size?
Example : ~
weight = 80g
color = green >~ 3] —
size = 10cm?

13 apple 7



Example # 2

Problem : Establish whether a patient got the flu

e Classes : {“flu”, “non-flu”}

* (Potential) Features :

f7 . Body temperature
f, : Headache ? (yes / no)
f, :  Throatis red ? (yes / no / medium)

f4:



Classes

Features

ldea :

Example #3
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Neural Networks for Classification
A neural network can be used as a classification device .

features values

Input =
Output = class labels
Example : 3 features , 2 classes
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Thresholds

We can get rid of the thresholds associated to neurons by adding an
extra unit permanently clamped at -1 .

In so doing, thresholds become weights and can be adaptively adjusted
during learning.

y1 y2 y3



Simple Perceptrons

A network consisting of one layer of M&P neurons connected in a

feedforward way (i.e. no lateral or feedback connections).
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. Capable of “learning” from examples (Rosenblatt)

- They suffer from serious computational limitations (Minsky and Papert, 1969)



Decision Regions

It's an area wherein all examples of one class fall .

Examples :




Linear Separability

A classification problem is said to be linearly separable if the

decision regions can be separated by a hyperplane .

Example: AND
X AND Y
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Limitations of Perceptrons

It has been shown that perceptrons can only solve linearly separable

problems (Minsky and Papert , 1969) .

Example: XOR (exclusive OR)

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0
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A View of the Role of Units
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Convergence of Learning Algorithms

If the problem is linearly separable, then the learning rule converges to an
appropriate set of weights in a finite number of steps (Nilsson 1965)

In practice, one does not know whether the problem is linearly separable or not.
So decrease 7 with the number of iterations, letting # 0.

The convergence so obtained is artificial and does not necessarily yield a valid
weight vector that will classify all patterns correctly

Some variations of the learning algorithm, e.g. Pocket algorithm, (Gallant, 1986)



Multi-Layer Feedforward Networks

Limitation of simple perceptron: can implement only linearly separable functions

Add “ hidden ” layers between the input and output layer. A network with just one
hidden layer can represent any Boolean functions including XOR

Power of multilayer networks was known long ago, but algorithms for training
or learning, e.g. back-propagation method, became available only recently

(invented several times, popularized in 1986)

Universal approximation power: Two-layer network can approximate any smooth
function (Cybenko, 1989; Funahashi, 1989; Hornik, et al.., 1989)

Static (no feedback)



