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Summer School on Graphs in Computer Graphics, Image and Signal Analysis 
Bornholm, Denmark, August 2011 

Outline 

Lecture 1: Monday (10:15 – 11:00) 

 Introduction to the basic concepts of game theory 

Lecture 2: Tuesday (11:15 – 12:00) 

 Evolutionary games and graph-based data clustering 

Exercises: Tuesday (13:00 – 14:30) 
 Reading groups and mini-presentations 

Lecture 3: Thursday (09:15 – 10:00) 
 Graph labeling problems and graph transduction 
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What is Game Theory? 

“The central problem of game theory was posed by von 
Neumann as early as 1926 in Göttingen. It is the following: 
If n players, P1,…, Pn, play a given game Γ, how must the ith 

player, Pi, play to achieve the most favorable result for himself?” 

Harold W. Kuhn 
Lectures on the Theory of Games (1953) 

A few cornerstones in game theory 

1921−1928: Emile Borel and John von Neumann give the first modern formulation of a mixed 
strategy along with the idea of finding minimax solutions of normal-form games. 

1944, 1947: John von Neumann and Oskar Morgenstern publish Theory of Games and 
Economic Behavior. 

1950−1953: In four papers John Nash made seminal contributions to both non-cooperative 
game theory and to bargaining theory. 

1972−1982: John Maynard Smith applies game theory to biological problems thereby 
founding “evolutionary game theory.” 

late 1990’s −: Development of algorithmic game theory… 
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Normal-form Games 

We shall focus on finite, non-cooperative, simultaneous-move games in normal 
form, which are characterized by: 

  A set of players: I = {1, 2, …, n} (n ≥ 2)  

  A set of pure strategy profiles: S = S1 × S2 × … × Sn where each Si = {1, 2, 
…, mi} is the (finite) set of “pure” strategies (actions) available to the player i 

  A payoff function: π : S → ℜn, π(s) = (π1(s),…,πn(s)), where πi(s) (i=1…n) 
represents the “payoff” (or utility) that player i receives when strategy profile 
s is played 

Each player is to choose one element from his strategy space in the absence of 
knowledge of the choices of the other players, and “payments” will be made to 
them according to the function πi(s). 

Players’ goal is to maximize their own returns. 

Two Players 

In the case of two players, payoffs can be represented as two m1 x m2 
matrices (say, A for player 1 and B for player 2): 

€ 

A = (ahk )

€ 

B = (bhk )€ 

ahk = π1(h,k)

€ 

bhk = π 2(h,k)

Special cases: 

   Zero-sum games: A + B = 0 (ahk = −bhk for all h and k) 

   Symmetric games: BT = A 

   Doubly-symmetric games: A = AT = BT 
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Prisoner 2 

Confess 
(defect) 

Deny 
(cooperate) 

Prisoner 1 

Confess 
(defect) 

-10 , -10 -1 , -25 

Deny 
(cooperate) 

-25 , -1 -3 , -3 

Example 1:�
Prisoner’s Dilemma 

Prisoner 2 

Confess 
(defect) 

Deny 
(cooperate) 

Prisoner 1 

Confess 
(defect) 

-10 , -10 -1 , -25 

Deny 
(cooperate) 

-25 , -1 -3 , -3 

D
om

in
at

ed
 st

ra
te

gy
 ! 

Dominated strategy ! 

How to “Solve” the Game? 
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Example 2:�
Battle of the Sexes 

Wife 

Soccer Ballet 

Husband 

Soccer 2 , 1 0 , 0 

Ballet 0 , 0 1 , 2 

Example 3:�
Rock-Scissors-Paper 

You 

Rock Scissors Paper 

Me 

Rock 0 , 0 1 , -1 -1 , 1 

Scissors -1 , 1 0 , 0 1 , -1 

Paper 1 , -1 -1 , 1 0 , 0 
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Mixed Strategies 

  

€ 

Δ i = xi ∈ Rmi :  ∀h =1…mi : xih ≥ 0, and xih =1
h=1

mi

∑
 
 
 

 
 
 

A mixed strategy for player i is a probability distribution over his set Si of 
pure strategies, which is a point in the (mi-1)-dimensional standard 
simplex: 

The set of pure strategies that is assigned positive probability by mixed 
strategy xi∈Δi is called the support of xi: 

€ 

σ(xi) = h ∈ Si : xih > 0{ }

A mixed strategy profile is a vector x = (x1,…,xn) where each component 
xi∈∆i is a mixed strategy for player i∈I. 

The mixed strategy space is the multi-simplex Θ = ∆1 × ∆2 × … × ∆n 

mi = 2 mi = 3 

Note: Corners of standard simplex correspond to pure strategies. 

Standard Simplices 
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Mixed-Strategy Payoff Functions 

€ 

x(s) = xisi
i=1

n

∏

€ 

ui(x) = xi(s)π i(s)
s∈S
∑

In the standard approach, all players’ randomizations are assumed to be 
independent. 

Hence, the probability that a pure strategy profile s = (s1,…,sn) will be 
used when a mixed-strategy profile x is played is: 

and the expected value of the payoff to player i is: 

€ 

u1(x) = x1hahk x2k = x1
T Ax2

k=1

m2

∑
h=1

m1

∑

€ 

u2(x) = x1hbhk x2k = x1
TBx2

k=1

m2

∑
h=1

m1

∑

In the special case of two-players games, one gets: 

where A and B are the payoff matrices of players 1 and 2, respectively. 

Best Replies 

Player i‘s best reply to the strategy profile x−i is a mixed strategy xi
*∈∆i such 

that  

ui(xi
*,x−i) ≥ ui(xi,x−i) 

for all strategies xi ∈∆i. 

Notational shortcut. Here, and in the sequel, if z∈Θ and xi∈∆i, the notation 
(xi,z−i) stands for the strategy profile in which player i∈I plays strategy xi, 
while all other players play according to z. 

The best reply is not necessarily unique. Indeed, except in the extreme case 
in which there is a unique best reply that is a pure strategy, the number of 
best replies is always infinite.  

Indeed: 
  When the support of a best reply includes two or more pure strategies, 

any mixture of these strategies must also be a best reply 
  Similarly, if there are two pure strategies that are individually best replies, 

any mixture of the two is necessarily also a best reply 
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Nash Equilibria 

The Nash equilibrium concept is motivated by the idea that a theory of 
rational decision-making should not be a self-destroying prophecy that 
creates an incentive to deviate for those who believe it. 

A strategy profile x∈Θ is a Nash equilibrium if it is a best reply to itself, 
namely, if: 

ui(xi,x−i) ≥ ui(zi,x−i) 

for all i = 1…n and all strategies zi ∈∆i. 

If strict inequalities hold for all zi ≠ xi then x is said to be a strict Nash 
equilibrium. 

Theorem. A strategy profile x∈Θ is a Nash equilibrium if and only if for 
every player i∈I, every pure strategy in the support of xi is a best reply to x−i. 

It follows that every pure strategy in the support of any player’s equilibrium 
mixed strategy yields that player the same payoff. 

Finding Pure-strategy Nash Equilibria 

Player 2 

Left Middle Right 

Player 1 

Top 3 , 1 2 , 3 10 , 2 

High 4 , 5 3 , 0 6 , 4 

Low 2 , 2 5 , 4 12 , 3 

Bottom 5 , 6 4 , 5 9 , 7 

Nash equilibrium! 
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Wife 

Soccer Ballet 

Husband 

Soccer 2 , 1 0 , 0 

Ballet 0 , 0 1 , 2 

Multiple Equilibria in Pure Strategies 

Nash equilibrium! 

Nash equilibrium! 

You 

Rock Scissors Paper 

Me 

Rock 0 , 0 1 , -1 -1 , 1 

Scissors -1 , 1 0 , 0 1 , -1 

Paper 1 , -1 -1 , 1 0 , 0 

No Nash equilibrium! 

Nash equilibrium! 
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Theorem (Nash, 1951). Every finite normal-form game admits a mixed-
strategy Nash equilibrium. 

Idea of proof.  

1.  Define a continuous map T on Δ such that the fixed points of T 
are in one-to-one correspondence with Nash equilibria. 

2.  Use Brouwer’s theorem to prove existence of a fixed point. 

“Together with factoring, the complexity of finding a Nash 
equilibrium is in my opinion the most important concrete 

open question on the boundary of P today.” 

Christos Papadimitriou  
Algorithms, games, and the internet (2001) 

Evolution and the Theory of Games 

“We repeat most emphatically that our theory is thoroughly static. 
A dynamic theory would unquestionably be more complete and 
therefore preferable.  
But there is ample evidence from other branches of science that it 
is futile to try to build one as long as the static side is not 
thoroughly understood.” 

John von Neumann and Oskar Morgenstern  
Theory of Games and Economic Behavior (1944) 

“Paradoxically, it has turned out that game theory is more readily 
applied to biology than to the field of economic behaviour for 

which it was originally designed.”  

John Maynard Smith 
Evolution and the Theory of Games (1982) 
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Evolutionary Games 

Introduced by John Maynard Smith (1973, 1974, 1982) to model the evolution 
of behavior in animal conflicts. 

Assumptions: 

  A large population of individuals belonging to the same species which 
compete for a particular limited resource 

  This kind of conflict is modeled as a symmetric two-player game, the 
players being pairs of randomly selected population members 

  Players do not behave “rationally” but act according to a pre-programmed 
behavioral pattern 

  Reproduction is assumed to be asexual 

  Utility is measured in terms of Darwinian fitness, or reproductive success 

Interpreting Mixed Strategies 

There are two ways to interpret the notion of a mixed strategy into the 
evolutionary framework: 

1.  Each individual is hard-wired to play a pure strategy, but some portion of 
the population plays one strategy while the rest of the population plays 
another. 

2.  Each individual is hard-wired to play a particular mixed strategy − that is, 
they are genetically configured to choose randomly from among certain 
options with certain probabilities. 

It turns out that the two interpretations are mathematically equivalent. 

In defining the “static” notions of evolutionary game theory, it is customary to 
focus on the second idea; the “dynamical” aspects are instead more 
conveniently dealt with using the first. 
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Evolutionary Stability 

A strategy is evolutionary stable if it is resistant to invasion by new strategies. 

Formally, assume: 

  A small group of “invaders” appears in a large populations of individuals, 
all of whom are pre-programmed to play strategy x∈∆ 

  Let y∈∆ be the strategy played by the invaders 

  Let ε be the share of invaders in the (post-entry) population (0 < ε < 1) 

The payoff in a match in this bimorphic population is the same as in a match 
with an individual playing mixed strategy: 

w = εy + (1 – ε)x ∈ ∆  

hence, the (post-entry) payoffs got by the incumbent and the mutant strategies 
are u(x,w) and u(y,w), respectively. 

Evolutionary Stable Strategies 

Definition. A strategy x∈∆ is said to be an evolutionary stable strategy (ESS) 
if for all y∈∆–{x} there exists δ∈(0,1), such that for all ε∈(0, δ) we have: 

u[x, εy + (1 – ε)x] > u[y, εy + (1 – ε)x] 

Theorem. A strategy x∈Δ is an ESS if and only if it meets the following 
first- and second-order best-reply conditions: 

1.  u(y,x) ≤ u(x,x)    for all y∈∆ 

2.  u(y,x) = u(x,x) ⇒ u(y,y) < u(x,y)    for all y∈∆–{x} 

Note. From the conditions above, we have:  

  ∆ESS ⊆ ∆NE 

  If x∈∆ is a strict Nash equilibrium, then x is an ESS 

incumbent mutant 



13 

Existence of ESS’s 

Unlike Nash equilibria existence of ESS’s is not guaranteed. 

You 

Rock Scissors Paper 

Me 

Rock 0 , 0 1 , -1 -1 , 1 

Scissors -1 , 1 0 , 0 1 , -1 

Paper 1 , -1 -1 , 1 0 , 0 

  Unique Nash equilibrium is x=(1/3,1/3,1/3)T 

  Hence, all y∈∆ are best replies to x 

  Let the “mutant” be y=(1,0,0)T 

  But u(y,y) = u(x,y), hence ∆ESS = Ø 

Complexity Issues 

Two questions of computational complexity naturally present themselves: 

  What is the complexity of determining whether a given game has an ESS 
(and of finding one)?  

  What is the complexity of recognizing whether a given x is an ESS for a 
given game? 

Theorem (Etessami and Lochbihler, 2004). Determining whether a given 
two-player symmetric game has an ESS is both NP-hard and coNP-hard. 

Theorem (Nisan, 2006). Determining whether a (mixed) strategy x is an ESS 
of a given two-player symmetric game is coNP-hard. 
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Replicator Dynamics 

Let xi(t) the population share playing pure strategy i at time t. The state of the 
population at time t is: x(t)= (x1(t),…,xn(t))∈∆. 

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin’s 
principle of natural selection: 

€ 

˙ x i
xi

∝  payoff of pure strategy i −  average population payoff

€ 

˙ x i = xi u(ei,x) − u(x, x)[ ]
= xi (Ax)i − xT Ax[ ]

Notes. 
  Invariant under positive affine transformations of payoffs (i.e., u ← αu+β, 

withα>0) 

  Standard simplex ∆ is invariant under replicator dynamics, namely, x(0)∈∆ 
⇒ x(t)∈∆, for all t > 0 (so is its interior and boundary) 

which yields: 

Theorem (Nachbar, 1990; Taylor and Jonker, 1978). A point x∈∆ is a Nash 
equilibrium if and only if x is the limit point of a replicator dynamics 
trajectory starting from the interior of ∆. 
Furthermore, if x∈∆ is an ESS, then it is an asymptotically stable equilibrium 
point for the replicator dynamics. 

The opposite need not be true. 

€ 

A =

0 6 −4
−3 0 5
−1 3 0

 

 

 
 
 

 

 

 
 
 

  The point m=(1/3,1/3,1/3)T is asymptotically 
stable (its eigenvalues have negative parts). 

  But e1=(1,0,0)T is an ESS. 
  Hence m cannot be an ESS (being in the 

interior, it would have to be the unique ESS). 

Replicator Dynamics and ESS’s 
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Doubly Symmetric Games 

In a doubly symmetric (or partnership) game, the payoff matrix A is symmetric 
(A = AT). 

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).  
For any doubly symmetric game, the average population payoff ƒ(x) = xTAx is 
strictly increasing along any non-constant trajectory of replicator dynamics, 
namely, d/dtƒ(x(t)) ≥ 0 for all t ≥ 0, with equality if and only if x(t) is a 
stationary point. 

Characterization of  ESS’s (Hofbauer and Sigmund, 1988) 

For any doubly simmetric game with payoff matrix A, the following statements 
are equivalent: 

a)  x ∈ ∆ESS 

b)  x ∈ ∆ is a strict local maximizer of ƒ(x) = xTAx over the standard simplex ∆ 

c)  x ∈ ∆ is asymptotically stable in the replicator dynamics 

Discrete-time Replicator Dynamics 

€ 

xi(t +1) = xi(t)
A x(t)( )i
x(t)T Ax(t)

MATLAB implementation 

A well-known discretization of replicator dynamics, which assumes non-
overlapping generations, is the following (assuming a non-negative A): 

which inherits most of the dynamical properties of its continuous-time 
counterpart (e.g., the fundamental theorem of natural selection). 
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