

R	Example 3: Rock-Scissors-Paper			
Well, this is kind of awkward		You		
	the dinan	Rock	Scissors	Paper
	Rock	0,0	1,-1	-1,1
Ме	Scissors	-1,1	0,0	1,-1
	Paper	1,-1	-1,1	0,0

Mixed Strategies

A **mixed strategy** for player *i* is a probability distribution over his set S_i of pure strategies, which is a point in the $(m_i$ -1)-dimensional **standard simplex**:

$$\Delta_{i} = \left\{ x_{i} \in \mathbb{R}^{m_{i}} : \forall h = 1...m_{i} : x_{ih} \ge 0, \text{ and } \sum_{h=1}^{m_{i}} x_{ih} = 1 \right\}$$

The set of pure strategies that is assigned positive probability by mixed strategy $x_i \in \Delta_i$ is called the **support** of x_i :

$$\sigma(x_i) = \left\{ h \in S_i : x_{ih} > 0 \right\}$$

A **mixed strategy profile** is a vector $x = (x_1, ..., x_n)$ where each component $x_i \in \Delta_i$ is a mixed strategy for player $i \in I$.

The **mixed strategy space** is the multi-simplex $\Theta = \Delta_1 \times \Delta_2 \times \ldots \times \Delta_n$

Mixed-Strategy Payoff Functions

In the standard approach, all players' randomizations are assumed to be independent.

Hence, the probability that a pure strategy profile $s = (s_1, ..., s_n)$ will be used when a mixed-strategy profile x is played is:

$$x(s) = \prod_{i=1}^{n} x_{is_i}$$

and the expected value of the payoff to player *i* is:

$$u_i(x) = \sum_{s \in S} x_i(s) \pi_i(s)$$

In the special case of two-players games, one gets:

$$u_1(x) = \sum_{h=1}^{m_1} \sum_{k=1}^{m_2} x_{1h} a_{hk} x_{2k} = x_1^T A x_2 \qquad u_2(x) = \sum_{h=1}^{m_1} \sum_{k=1}^{m_2} x_{1h} b_{hk} x_{2k} = x_1^T B x_2$$

where *A* and *B* are the payoff matrices of players 1 and 2, respectively.

Replicator Dynamics

Let $x_i(t)$ the population share playing pure strategy *i* at *time t*. The **state** of the population at time *t* is: $x(t) = (x_1(t), \dots, x_n(t)) \in \Delta$.

Replicator dynamics (Taylor and Jonker, 1978) are motivated by Darwin's principle of natural selection:

 $\frac{\dot{x}_i}{x_i} \propto$ payoff of pure strategy i – average population payoff

which yields:

$$\dot{x}_i = x_i \left[u(e^i, x) - u(x, x) \right]$$
$$= x_i \left[(Ax)_i - x^T Ax \right]$$

Notes.

- Invariant under positive affine transformations of payoffs (i.e., $u \leftarrow \alpha u + \beta$, with $\alpha > 0$)
- Standard simplex Δ is invariant under replicator dynamics, namely, $x(0) \in \Delta \Rightarrow x(t) \in \Delta$, for all t > 0 (so is its interior and boundary)

Doubly Symmetric Games

In a doubly symmetric (or partnership) game, the payoff matrix A is symmetric $(A = A^{T})$.

Fundamental Theorem of Natural Selection (Losert and Akin, 1983).

For any doubly symmetric game, the average population payoff $f(x) = x^T A x$ is strictly increasing along any non-constant trajectory of replicator dynamics, namely, $d/dtf(x(t)) \ge 0$ for all $t \ge 0$, with equality if and only if x(t) is a stationary point.

Characterization of ESS's (Hofbauer and Sigmund, 1988)

For any doubly simmetric game with payoff matrix *A*, the following statements are equivalent:

```
a) x \in \Delta^{ESS}
```

- b) $x \in \Delta$ is a strict local maximizer of $f(x) = x^T A x$ over the standard simplex Δ
- c) $x \in \Delta$ is asymptotically stable in the replicator dynamics

References

Texts on (classical) game theory

- J. von Neumann and O. Morgerstern. *Theory of Games and Economic Behavior*. Princeton University Press (1944, 1953).
- D. Fudenberg and J. Tirole. Game Theory. MIT Press (1991).
- M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press (1994).

Texts on evolutionary game theory

- J. Weibull. Evolutionary Game Theory. MIT Press (1995).
- J. Hofbauer and K. Sigmund. *Evolutionary Games and Population Dynamics*. Cambridge University Press (1998).

Computationally-oriented texts

- N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (Eds.) *Algorithmic Game Theory*. Cambridge University Press (2007).
- Y. Shoham and K. Leyton-Brown. *Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press (2009).

On-line resources

- http://gambit.sourceforge.net/
- a suite of game generators for testing game algorithms

a library of game-theoretic algorithms

http://gamut.stanford.edu/ a su

