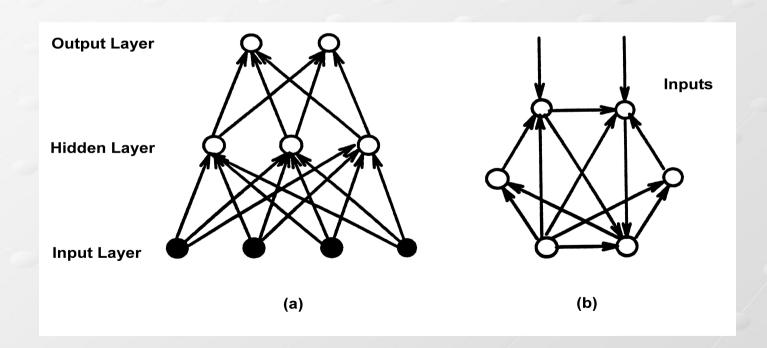
Network Topologies / Architectures

- Feedforward only vs. Feedback loop (Recurrent networks)
- Fully connected vs. sparsely connected
- Single layer vs. multilayer

Multilayer perceptrons, Hopfield network, Boltzman machines, Kohonen network



Classification Problems

Given:

- 1) some "features" $(f_1, f_2,, f_n)$
- 2) some "classes" (c_1, \ldots, c_m)

Problem:

To classify an "object" according to its features

Example #1

To classify an "object" as:

$$C_1$$
 = "watermelon"

$$\ell_2$$
 = "apple"

$$\ell_3$$
 = "orange"

According to the following features:

$$f_1$$
 = "weight"

$$f_2$$
 = "color"

$$f_3$$
 = "size"

Example:

size =
$$10 \text{ cm}^3$$

"apple

Example #2

Problem: Establish whether a patient got the flu

- Classes: { " flu ", " non-flu " }
- (Potential) Features :

 f_1 : Body temperature

 f_2 : Headache? (yes / no)

 f_3 : Throat is red? (yes / no / medium)

 f_4 :

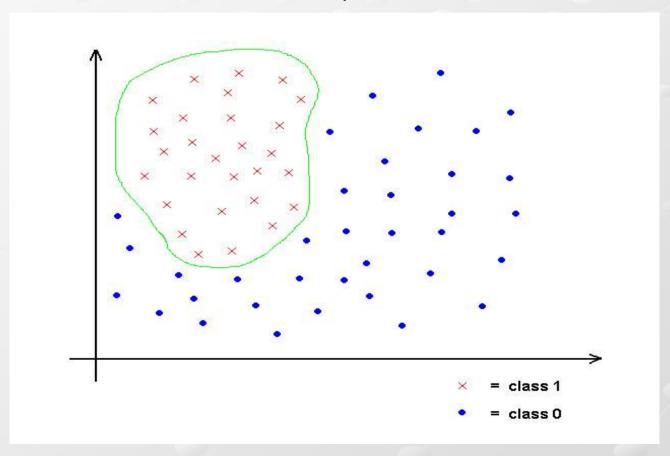
Example #3

Classes $= \{0, 1\}$

Features = x, y: both taking value in $[0, +\infty]$

Idea:

Geometric Representation



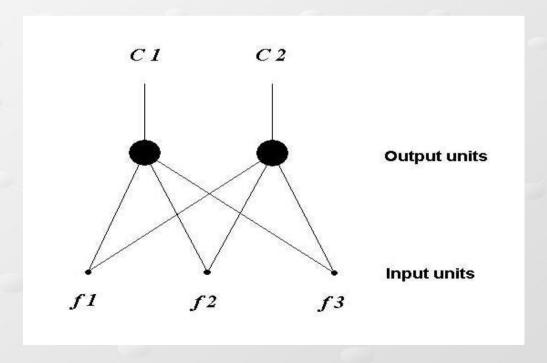
Neural Networks for Classification

A neural network can be used as a classification device.

Input ≡ features values

Output ≡ class labels

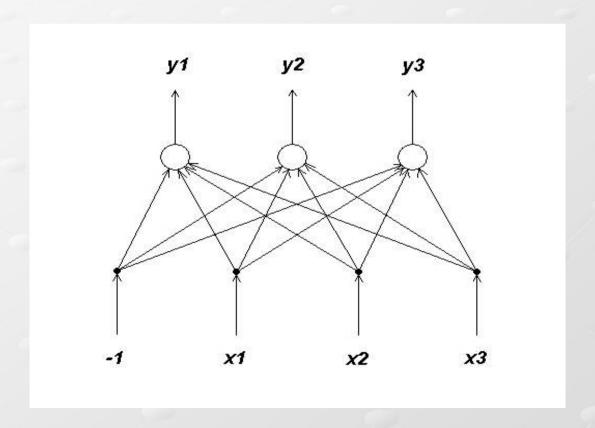
Example: 3 features, 2 classes



Thresholds

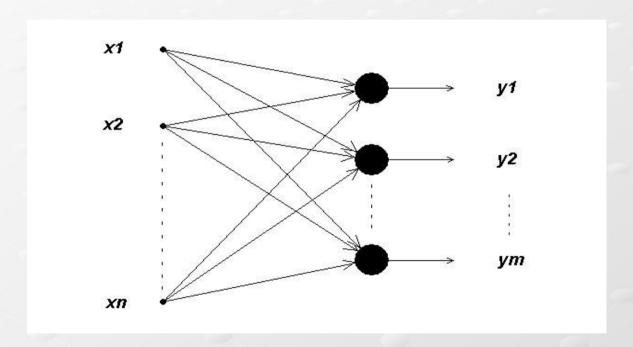
We can get rid of the thresholds associated to neurons by adding an extra unit permanently clamped at -1.

In so doing, thresholds become weights and can be adaptively adjusted during learning.



Simple Perceptrons

A network consisting of one layer of M&P neurons connected in a feedforward way (i.e. no lateral or feedback connections).



- Capable of "learning" from examples (Rosenblatt)
- They suffer from serious computational limitations (Minsky and Papert, 1969)

Decision Regions

It's an area wherein all examples of one class fall.

Examples:

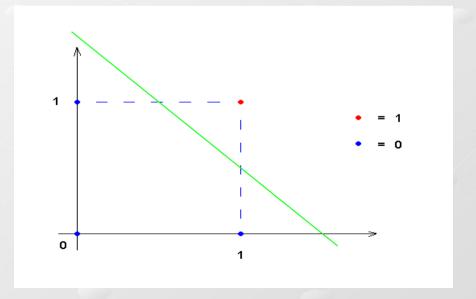


Linear Separability

A classification problem is said to be *linearly separable* if the decision regions can be separated by a hyperplane .

Example: AND

X	Y	X AND Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

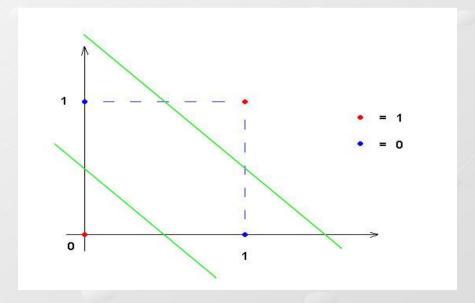


Limitations of Perceptrons

It has been shown that perceptrons can only solve linearly separable problems (Minsky and Papert, 1969).

Example: XOR (exclusive OR)

X	Y	X XOR Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	



A View of the Role of Units

Structure	Type of Decision Regions	Exclusive-OR Problem	Classes with Meshed Regions	Most General Region Shapes
Single-layer	Half plane bounded by hyperplane	B A	B A	
Two-layers	Convex open or closed regions	B	B	
Three-layers	Arbitrary (Complexity limited by number of nodes)	B (A)	B	

Convergence of Learning Algorithms

- If the problem is linearly separable, then the learning rule converges to an appropriate set of weights in a finite number of steps (Nilsson 1965)
- In practice, one does not know whether the problem is linearly separable or not.
 So decrease η with the number of iterations, letting η 0.
 The convergence so obtained is artificial and does not necessarily yield a valid weight vector that will classify all patterns correctly
- Some variations of the learning algorithm, e.g. Pocket algorithm, (Gallant, 1986)

Multi-Layer Feedforward Networks

- Limitation of simple perceptron: can implement only linearly separable functions
- Add "hidden "layers between the input and output layer. A network with just one hidden layer can represent any Boolean functions including XOR
- Power of multilayer networks was known long ago, but algorithms for training or learning, e.g. back-propagation method, became available only recently (invented several times, popularized in 1986)
- Universal approximation power: Two-layer network can approximate any smooth function (Cybenko, 1989; Funahashi, 1989; Hornik, et al.., 1989)
- Static (no feedback)