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Introduction
Toward deep neural networks

Classic NN use only fully connected layers (FCL), whose neurons
are connected to every neuron of their adjacent layers

Figure: A classic NN [6]

For complex classification tasks, this kind of network is no more
efficient, and adding more FCL does not improve the classification for
many reasons
The “unstable” gradient problem [6]: if a FCL-only NN is deep, the
gradient components of the weights related the first layers will be very
small or very big w.r.t. the other weights and will not adjust properly
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Introduction
Convolutional neural networks

A new kind of neural network was proposed: the convolutional
neural network [6], which introduces two new layers: the
convolutional layer (CL) and the pooling layer (PL)

CL and PL are a set of equal-sized squares of neurons, called
feature maps, suitable to be used with image inputs. With
coloured images, each feature map is instead composed of a triple
of squares of neurons, each one called channel, representing the
RGB channels
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Convolutional Neural Networks
General structure

Start: input layer and some optional FCL

Middle: pairs of CL-PL, rigorously placed next each other

End: some other optional FCL and the output layer, i.e. an
FCL with a number of neurons corresponding to the classes of
our problem

Figure: The general structure of a CNN [7]
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Basic terminology I

Feedforward and backpropagation in CNN can be very complex, so
we define some terminology used in subsequent explanations:

Current layer: the layer which is performing the
feedforward/backpropagation

Previous/successive layer: the previous/successive layer of
the network w.r.t. the current layer

z defines the neuron’s output, a defines the activation
values (a = σ(z), where σ is the activation function)

w , b define the weights and biases

l defines the index of the current layer

F. Cagnin, A. Torcinovich How CNNs work? 5 / 34



Basic terminology II

i , j define the neuron indices of the current layer (I , J
define the size of the layer), m, n the neuron indices of the
previous layer

h, v define the indices of the weights of a 2D kernel, while
k defines the size of a 2D kernel

r defines a feature map of the current layer, while t defines
a feature map of the previous layer (R and T define the
respective depths)

µ defines the index of the current observation processed by
the network (M defines the total number of observations)

s defines the stride length
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Convolutional Layers
Correlation and convolution I

Convolution is a generic term to define (ambiguosly) two methods
- correlation and convolution - to filter an image (or feature map)

Figure: Convolution process
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Convolutional Layers
Base case

Consider a pair of feature maps from a CL and its previous layer:

In CL each neuron is connected only to a small region of the
previous layer, called local receptive field

The weights connecting the two layers are called kernel/filter,
shared between the local receptive fields of the previous layer

The kernel is convolved with the input obtaining a value for
each neuron of the current feature map, detecting in this way
a particular feature in previous layer’s feature maps

The shifting length of the kernel is referred as stride length
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Convolutional Layers
General case

Consider now a CL with R feature maps, and a previous layer with
T feature maps:

In this case we deal with R 3D kernels, each formed by a set
of T 2D kernels
Each current feature map is connected through a 2D kernel to
each previous feature map
The convolution step is performed for each of the R current
feature maps, summing the T partial results of the 2D
convolutional steps for each previous feature map
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Pooling Layers
Base case

Consider a pair of feature maps from a PL and a previous layer:

In PL a down-sampling function (mean, max, Lp-norm, ...)
is applied on a squared region (window) of the previous
feature map
The window is then moved and the process is repeated for the
next (non-overlapping) region
The purpose of this down-sampling is to summarize the
information of the previous layer
Note that no weight is used in PL
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Pooling Layers
General case

The general case is simply the iteration of the base case for
each current feature map

This is due to one-to-one correspondence between CL and PL
feature maps
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Backpropagation in CNN
CL weights updates

Consider that a distinct 2D kernel is associated to each pair of
current/previous feature maps, thus each 2D kernel depends only
on this pair, so:

∂C

∂w l
rthv

=
M∑
µ=1

∑
i ,j

∂z lrij

∂w l
rthv

∂Cµ

∂z lrij
=

M∑
µ=1

∑
i ,j

aµ,l−1
t,i ·s+h,j ·s+vδ

µ,l
rij

The complex indexing in the activations related to the previous
layer is needed to select the subset of activations which have been
multiplied by wrthv
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Backpropagation in CNN
CL delta updates: mathematical approach

Consider a previous feature map t, which is related to all the
current feature maps and to the corresponding 2D kernels at
position t. Each neuron of t is related only to the weights which
has been convolved with, so:

δµ,l−1
tmn =

∑
r

∑
i ,j

σ′(zµ,l−1
tmn )w l

r ,t,m−s·i ,n−s·jδ
µ,l
rij

Adopting the convention that if the indexing of the weights goes
outside the borders of the kernel, then wm−s·i ,n−s·j is simply set to
zero
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Backpropagation in CNN
CL delta updates: algorithmic approach

The previous formula performs mostly unnecessary iterations (at most k × k
are not 0). In practice the best thing is to retrace the convolutional steps
updating the related set of neurons exploited in each of them. Since
convolutional steps can overlap, some neuron can receive more than one
update. The pseudo code is:

δµ,l−1 = 3D array with t ×m × n zeroes

for each feature map t in previous layer

for i = 1 to I

for j = 1 to J

m = i * s

n = j * s

δµ,l−1
t,m:m+k,n:n+k +=

∑
r

wrtδ
µ,l
r ,i ,j

δµ,l−1
tmn *= σ′(zµ,l−1

tmn )

where wrt represents the 2D kernel related to feature maps t, r
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Backpropagation in CNN
PL delta updates: algorithmic approach

PL backpropagation is easier, since it does not involve weights
updates. As for the delta we introduce an operator called
Kronecker’s product. Given two matrices:

A =

[
a b
c d

]
B =

[
e f
g h

]

The Kronecker’s product between A and B is:

A⊗ B =


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh
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Backpropagation in CNN
PL delta updates: algorithmic approach

Consider a pair of feature map r , r (current feature maps are in one-to-one
correspondence with previous ones):

Compute the Kronecker product between δµ,lr and a matrix of ones
with the same size of the pooling window, obtaining Dr

Similarly as with CL backpropagation, retrace the down-sampling
steps on Dr , updating individually each of the related sets of neurons

for each feature map r in current layer

Dr = δµ,lr ⊗ ones(k,k)

for each neuron i , j in current feature map

m = i · k n = j · k

δµ,l−1
r ,m:m+k,n:n+k = Dr ,m:m+k,n:n+k ◦

[
∇fdown(al−1

r ,m:m+k,n:n+k)
]
k×k

where the gradient has been accurately reshaped to have the same shape
of Dr ,m:m+k,n:n+k and ◦ denotes the Hadamard (element-wise) product
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CNN Best Practices
Softmax + cross-entropy [6]

When using sigmoid + quadratic cost function,
backpropagation can require many steps to converge,
especially when the error between the predicted and the
expected output values is high, because of the partial
derivatives of the sigmoid

A solution is to use another output activation function, i.e.

the softmax: aLj = ez
L
j /
∑

k e
zLk

Alternatively we can change the cost function, for example
employing the cross-entropy:

− 1
n

∑M
µ

∑
j

[
yj ln(aLj ) + (1− yj)ln(1− aLj )

]
Both solutions can be (and usually are) used together
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CNN Best Practices
Stochastic gradient descent [6]

A single update of weights configuration would require the
calculation of the gradient for all the observations

Considering that a single update step would be unfeasible in
terms of time taken, we resort to the Stochastic Gradient
Descent (SGD):
1) For each epoch:
2) Divide the training set in randomly chosen mini-batches
3) For each batch:
4) Update the weights, with backpropagation

SGD is an approximation of the the classic GD method that
performs more weights updates in each epoch. It remains
reliable adding very small inaccuracies in the minimization
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CNN Best Practices
Dropout method [2]

Dropout is a practice meant to lower the overfitting due to
the structure of the network

Each time an observation is fed to the network, some weight
of the layer is set to 0 with a probability p, in order to change
the overall structure.

At test time the weights are multiplied by p in order to obtain
an expected output

Dropout works well with p ≈ 0.5 (except for input layer where
p ≈ 1)
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From Theory to Practice
You know how it starts but not how it ends

Initial aim: write from scratch some code for offline
classification of hanzi (Chinese characters) with convolutional
neural networks

⇒ An unrealistic quest, thousands of hanzi very similar to
each other

Fallback plan:

1 MNIST-cnn [11]: “academic” implementation of a
convolutional neural network

2 CASIA-HWDB1.1-cnn [12]: hanzi classification using
state-of-the-art tools
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MNIST-cnn
The data

The MNIST database [13] of handwritten digits
One of the most used data sets in machine learning

Digits size-normalized and centered in a 28x28 image (no
preprocessing needed)

Training set of 60,000 examples, test set of 10,000 examples

Current record is 99.79% [3] of test accuracy (only 21
misclassified images on 10,000)

Figure: Some really bad digits [6]
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MNIST-cnn
The tools

Python

NumPy [15] the fundamental package for scientific
computing

Based on the ndarray object: an n-dimensional array of
homogeneous data type

Provides operations on arrays in compiled code at near-C
speeds

Expanded by SciPy [16]: a collection of numerical algorithms
on signal processing, optimization, statistics, ...
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MNIST-cnn
The network

Activations: sigmoid and softmax

Weights initialization: Glorot uniform [4],

i.e. U(−s, s) with s =
√

6
n in+n out

Biases initialization: zero

Loss function: cross-entropy

Optimizer: stochastic gradient descent
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MNIST-cnn
The results

Learning rate: 0.1, number of epochs: 2, batch size: 8
⇒ Test accuracy: 84.58%

There exist intrinsic upper bounds for improvements, due to
numerical errors (overflow, truncation, ...)

Error increases with the number of parameters

Evaluating the correctness of the code is difficult: the
network can perform reasonably well without being flawless
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CASIA-HWDB1.1-cnn
The data

The CASIA-HWDB1.1 database [18] of handwritten hanzi
Offline (no stroke trajectory)

3,755 Chinese characters from 300 writers

Training set of 897,758 examples, test set of 223,991 examples

Current records reach 99% [19] of test accuracy

Figure: Three hanzi from different writers [5]
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CASIA-HWDB1.1-cnn
The tools

Python

Theano [21] for computations on multi-dimensional arrays

Transparent use of a GPU (up to 140x faster than CPUs)

Symbolic differentiation and stability optimizations

Keras [22] for fast experimentation

Supports convolutional networks

Plenty of layers, activations, optimizers and objectives to
build complex networks in no time
Can be used together with Theano to run on GPUs
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CASIA-HWDB1.1-cnn
The process [5]

1 Data set normalization

From .gnt to .hdf5 for portability/ease of use

Padding and rescaling to obtain 64x64 centered images

2 Subset extraction and bitmap processing

From 3755 classes to 200

From approximately 240 training samples per class to 200
(the remaining 40 samples used as validation set)

Contrast stretching

3 Network training

Large number of parameters

4 Network evaluation
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CASIA-HWDB1.1-cnn
The network

Activations: rectifier (ReLU) and softmax

Weights initialization: N (µ=0, σ2=0.1) and Glorot uniform

Biases initialization: zero

Loss function: cross-entropy

Optimizer: AdaDelta [23] (adaptive learning rate)

F. Cagnin, A. Torcinovich How CNNs work? 28 / 34



CASIA-HWDB1.1-cnn
The results

Number of epochs: 15, batch size: 100
⇒ Test accuracy: 94.58%

Image preprocessing can significantly influence results

Lots of tries + lots of errors = resource and time consuming

Infeasible on CPUs

Given enough computational resources similar and better
results can be achieved also on the entire data set
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Conclusions

We developed two projects with different aims, obtaining on
both satisfactory results

MNIST-cnn could be improved by:

Using existing libraries for symbolic computations (to minimize
numerical errors)
Translating computationally-intensive tasks (e.g. convolution)
into Cython or GPU code

CASIA-HWDB1.1-cnn could be improved by:

Parameters tuning

In general, results can be easily improved given enough
resources to tune and test a lot of network models
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