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The Age of “Deep Learning”

News & Analysis

Microsoft, Google Beat Humans at
Image Recognition

Deep learning algorithms compete at ImageNet

challenge
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14 comments
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PORTLAND, Ore. -- First computers beat the best of us at chess,
then poker, and finally Jeopardy. The next hurdle is image
recognition — surely a computer can't do that as well as a human.
Check that one off the list, too. Now Microsoft has programmed the
first computer to beat the humans at image recognition.

The competition is fierce, with the ImageNet Large Scale Visual
Recognition Challenge doing the judging for the 2015
championship on December 17. Between now and then expect to
see a stream of papers claiming they have one-upped humans too.
For instance, only 5 days after Microsoft announced it had beat the
human benchmark of 5.1% errors with a 4.94% error grabbing
neural network, Google announced it had one-upped Microsoft by
0.04%.

The top row is a representative of the categories that Microsoft's algorithm
found in the database and the image columns below are examples that fit.
(Source: Microsoft)




The Deep Learning “Philosophy”

* Learn a feature hierarchy all the way from pixels to classifier
e Each layer extracts features from the output of previous layer

* Train all layers jointly
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rage Simple
Video :
Piale Classifier



Shallow vs Deep Networks

Shallow architectures are inefficient at representing deep functions

single layer neural network shallow networks can be
implements: r = fg (Z) computationally inefficient
output

inputs

layer
networks we met last lecture however, if the function is 'deep’
with large enough single hidden layer  a very large hidden layer may
can implement any function be required

'universal approximator’

From. R. E. Turner



Performance Improves with More Data
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Old Idea... Why Now?

. We have more data - from Lena to ImageNet.

. We have more computing power, GPUs are
really good at this.
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Last but not least, we have new ideas
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Big Data: ImageNet Deep Convolutional Neural Network Backprop on GPU Learned Weights



Image Classification
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- What the computer sees

- 82% cat
15% dog
2% hat

1% mug

image classification

Predict a single label (or a distribution over labels as shown here to indicate our confidence)
for a given image. Images are 3-dimensional arrays of integers from 0 to 255, of size Width x
Height x 3. The 3 represents the three color channels Red, Green, Blue.

From: A. Karpathy



Challenges

Viewpoint variation Occlusion

From: A. Karpathy



The Data-Driven Approach
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An example training set for four visual categories.

In practice we may have thousands of categories and

hundreds of thousands of images for each category. From: A. Karpathy



Inspiration from Biology

Biological vision is hierachically organized

object trees Inferotemporal
T T cortex
object parts bark, leaves, etc. V4. different
T T textures
primitive features oriented edges V1: simple and
T T complex cells
input image forest image photo-receptors
retina

From. R. E. Turner



Hierarchy of Visual Areas

Hierarchy of Cortical Visual Areas
Felleman and Van Essen 1991
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The Retina

retina
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Figure 2. Diagram of a human eye shows its various structures (leff). A thin piece of retina is
enlarged in a photomicrograph (right), revealing its layers. The photoreceptors lie against a
dark row of cells called the pigment epithelium. (Drawing by the author. Except where noted,
photographs by Nicolas Cuenca and the author.)



The Retina
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Figure 3. Cells in the retina are arrayed in discrete layers. The photoreceptors are at the top of
this rendering, close to the pigment epithelium. The bodies of horizontal cells and bipolar cells
compose the inner nuclear layer. Amacrine cells lie close to ganglion cells near the surface of
the retina. Axon-to-dendrite neural connections make up the plexiform layers separating rows
of cell bodies.



Receptive Fields

“The region of the visual field in which light stimuli evoke responses of
a given neuron.”

On-center, Off-surround Off-center, On-surround



Kuffler, Hubel, Wiesel, ...

1953: Discharge patterns
and functional
organization of
mammalian retina

1959: Receptive fields of
single neurones in the
cat's striate cortex

1962: Receptive fields,
binocular interaction and
functional architecture in
the cat's visual cortex

1968 ..

Cellular Recordings

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Stimulus




Retinal Ganglion Cell Response

on-center RGC off-center RGC
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stimulus: on off stimulus: on off




Beyond the Retina

Pulvinar nucleus

Lateral geniculate
nucleus

Superior colliculus

Optic radiation

Primary visual cortex



Simple Cells

B

Stimulus: on off

Orientation selectivity: Most V1 neurons are orientation selective meaning that they
respond strongly to lines, bars, or edges of a particular orientation (e.g., vertical) but
not to the orthogonal orientation (e.g., horizontal).



Complex Cells
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Hypercomplex Cells (end-stopping
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Take-Home Message:
Visual System as a Hierarchy of Feature Detectors

Hubel & Weisel featural hierarchy
topographical mapping .
hyﬁ:er-complex @ high level
cells .
complex cells A <D mid level

simple cells A‘

/ low level



Convolution
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Mean Filters

hli,j]




Gaussian Filters




Gaussian Filters
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Figure 4.15: A 3-D plot of the 7 x 7 Gaussian mask.

7 x 7 Gaussian mask
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The Effect of Gaussian Filters




The Effect of Gaussian Filters




Kernel Width Affects Scale

Width=7

Width=13 Width=19
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Edge detection




Using Convolution for Edge Detection

Roberts Operator

' 1 0 o =1}
(l., ~ (1l ~
0 -1 Y11 0]
Sobel Operator
-1 0 1] EE -1
G.~|-2 0 2 G.= 0 0 0
10 1 el =B =]
Prewitt Operaton
-1 0 1 I B
G, =[-1 0 1 G.o=| 0 0 0




A Variety of Image Filters

Laplacian of Gaussians (LoG) (Marr 1982)

x*
Difference of Gaussians
i Operator in One Dimension
&= Sigma =0.3 25
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A Variety of Image Filters

Gabor filters (directional) (Daugman 1985)




A Variety of Image Filters
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Traditional vs Deep Learning Approach

Traditional approach

Manually crafted Trainable
i | — e
features classifier
- Trainable Trainable
- feature extractor classifier

From: M. Sebag



Convolutional Neural Networks (CNNs)

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28 ,

32x32 S2: f. maps

6@14x14

I
‘ Full conAection ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

(LeCun 1998)
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Fully- vs Locally-Connected Networks

Fully-connected: 400,000 hidden units = 16 billion parameters
Locally-connected: 400,000 hidden units 10 x 10 fields = 40 million parameters

Local connections capture local dependencies

From. M. A. Ranzato



Weight Sharing

We can dramatically reduce the number of parameters by making one reasonable
assumption: That if one feature is useful to compute at some spatial position (x1,y1), then
it should also be useful to compute at a different position (x2,y2).
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weight
sharing

N
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\
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X

locally-connected units
with 3x3 receptive field

l ! convolutional units

with 3x3 receptive field



Convolutional Neural Networks
(CNN, ConvNet, DCN)

* CNN = a multi-layer neural network with
— Local connectivity
— Share weight parameters across spatial positions

* One activation map (a depth slice), computed

with one set of weights

=
14

Image credit: A. Karpathy




Using Several Trainable Filters

Normally, several filters are packed together and learnt automatically

during training

— 32x32x3 image

/ 3'2/ ~__ 5x5x3 first filter
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Pooling

Max pooling is a way to simplify the network architecture, by
downsampling the number of neurons resulting from filtering operations.

maXx 6 8




Combining Feature Extraction and Classification

C; Sl C; S: m u;
mput feature maps  feature maps feature maps feature maps output
32x32 28 x 28 14 x 14 10x 10 3x35
N

\ =

Sheh
EDS
NG

5x5
convolution

feature extraction classification



AlexNet (2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

* 8 layers total

* Trained on Imagenet Dataset (1000
categories, 1.2M training images, 150k
test images)

Softmax Output

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool

‘I‘|‘I‘I

Layer 4: Conv

Layer 3: Conv

Layer 2: Conv + Pool

I‘I.I‘

Layer 1: Conv + Pool
= »

Input Image
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1st layer: 96 kernels (11 x 11 x 3)

AlexNet Architecture

Normalized, pooled
2nd layer: 256 kernels (5 x 5 x 48)
Normalized, pooled
3rd layer: 384 kernels (3 x 3 x 256)
4th layer: 384 kernels (3 x 3 x 192)
5th layer: 256 kernels (3 x 3 x 192)
Followed by 2 fully connected layers, 4096 neurons each
Followed by a 1000-way SoftMax layer
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GPU #1

Training on Multiple GPU’s

intra-GPU connections

GPU #2
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inter-GPU connections



Output Layer:
Softmax

probabilities

]




Rectified Linear Units (ReLU’s)

Problem: Sigmoid activation takes on values in (0,1). Propagating the
gradient back to the initial layers, it tends to become 0 (vanishing

gradient problem).

From a practical perspective, this slows down the training procedure of
the initial layers of the network.

sigmoid(z) = 1+t—z ReLU(z) = max(0, z)
sigmoid (z2) | ' ReLU (2)

b A A
05 o| 0s -0.5 ; 7




Training error rate

0.75

0.25 1

Rectified Linear Units (ReLU’s)

Epochs

A 4 layer CNN with
Rel.Us (solid line)
converges six times
faster than an
equivalent network
with tanh neurons
(dashed line) on
CIFAR-10 dataset



Mini-batch Stochastic Gradient Descent

Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient



Data Augmentation

The easiest and most common method to reduce overfitting on
image data is to artificially enlarge the dataset using label-preserving
transformations

AlexNet uses two forms of this data augmentation.

 The first form consists of generating image translations and
horizontal reflections.

« The second form consists of altering the intensities of the RGB
channels in training images.



Dropout

Set to zero the output of each hidden neuron with probability 0.5.

The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

Reduces complex co-
adaptations of neurons,
since a neuron cannot
rely on the presence of
particular other neurons.

Standard Neural Net After applying dropout.



ImageNet

« ~14 million labeled images, 20k
classes

* Images gathered from Internet
 Human labels via Amazon Turk

« Challenge: 1.2 million training images,
1000 classes




ImageNet Challenges

Tragtionad CV ¥ Deep Leaming

|
A. Krizhevsky uses first CNN in 2012.
Trained on Gaming Graphic Cards



ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) — 26.2% error




Revolution of Depth

ICCV D

friverrs. Sowssr m C e fooe

Research

28.2

: 152 layers

25.8

\ 16.4

\ 11.7
[ 22 layers \ I 19 Iayers |

\67

3 57 I_ g l 8 layers 8 layers ‘ shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.




A Hierarchy of Features
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Conv 5: objects

The deep network gradually learns more complex and abstract notions

From: B. Biggio
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the top 9 patches for

one filter
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Feature Analysis

A well-trained ConvNet is an excellent feature extractor.

* Chop the network at desired layer and use the output as a feature
representation to train an SVM on some other dataset (Zeiler-Fergus 2013):

Cal-101 Cal-256

(30/class) | (60/class)
SVM (1) 448+ 0.7 {24604
SVM (2) 66.2 £ 0.5 [39.6 +£0.3
SVM (3) 72.3 04 [46.0+0.3
SVM (4) .6+04 |pL3X0.1
SVM (5) 86.2 +0.8(65.6+0.3
SVM (7) 85.51+04|71.7+0.2
Softmax (5) {82.94+ 0.4 [65.7+0.5
Softmax (7) {85.4+0.4|72.6 + 0.1

Improve further by taking a pre-trained ConvNet and re-training it on a
different dataset (Fine tuning).




Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation  + Localization Detection Segmentation

DOG, DOG, CAT

GRASS,CAT, caT |
. TREE,SKY K .
e g

i
No objects, just pixels Single Object Multiple Object




Semantic Segmentation

Label each pixel in the
image with a category
label

Don't differentiate
instances, only care about
pixels




FCN for Semantic Segmentation

e Fully connected layers at the end
are replaced by convolutional
layers with very large receptive
fields.

e They capture the global context of
the scene.

e End-to-end training forward /inference

<

backward/learning

Long, Shelhamer, Darrell - Fully Convolutional Networks for Semantic Segmentation, CVPR 2015, PAMI 2016




Deconvolution network /
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image pooll pool2 pool3

: One black bar represents one convolution
followed by Relu operation (Convolution+Relu)

: Red bar only denotes deconvolution
operation without Relu operation

I

pool4

pool5 conv?7

2% conv?

~ i

4x conv?

32x upsampled
prediction (FCN-32s)

(A)

16 upsampled
prediction (FCN-16s)

(B)

8x upsampled
prediction (FCN-8s)

(C)




FCN-32s FCN-16s FCN-8s  Ground truth







2D Object Detection

2D Object
Detection

| | ./. =
DOG, DOG, CAT

Object categories +
2D bounding boxes



Classification + Localization

Class Scores
Fully Cat: 0.9
Connected: Dog: 0.05

4096 to 1000 Car: 0.01

,;E\\\
Vector: Connected:

4096 4006104  Box
Coordinates
(X, ¥, w, h)
Treat localization as a

regression problem!



Classification + Localization Comet lbo

Class Scores l
Fully Cat: 0.9 ,. Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

Vector: Connected:

4096 4006104  Box
Coordinates —» L2 Loss

(x,y, w, h) |

Treat localization as a

i [ Correct box:
regression problem! %V W)



Classification + Localization Correct label:

Cat

Class Scores l
Fully Cat:09 ___ Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

Multitask LOSS o —»Loss

: FM‘
Vector: Connected: ‘

4096 4096 to 4 Box
Coordinates —» L2 Loss

(x,y, w, h) ;

=

,-.
- ——_—

roin | e
3

===l

Treat localization as a

- m! Correct box:
regression proble oy W)



Classification + Localization Correct label:

Cat
Class Scores l
Fully Cat:09 __ Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

| B R + —>Loss
— Full
Vector: \ ‘
Often pretrained on ImageNet 4590 Connected: B
(Transfer learning) 40%to4  BOX
Coordinates —» L2 Loss
o (x, y, w, h)
Treat localization as a ?

: lem! Correct box:
regression proble oy W)



Object Detection as Regression?

CAT: (x,y,w, h)

DOG: (x, y,w, h)
DOG: (x,y, w, h)
CAT: (x, Yy, w, h)

ERE ."--‘3;?: °--.:x;"i" DUCK: (x, y, w, h)
] DUCK: (x, ¥, , h)




Each image needs a
different number of outputs!

Object Detection as Regression?

CAT: (X, ¥, W, h) 4 numbers

DOG: (x,y, w, h)

DOG: (x,y,w, h) 16 numbers
CAT: (x,y, w, h)

DUCK: (x, y, w, h) Many
DUCK: (x, y, W, h) numbers!

s | G




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

|




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge
number of locations, scales, and aspect
ratios, very computationally expensive!



Region Proposals / Selective Search

o Find “blobby” image regions that are likely to contain objects
o Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU




R-CNN

Girshick, Donahue, Darrell, Malik -
Rich feature hierarchies for
accurate object detection and
semantic segmentation, CVPR 2014

Input image



R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.

Input image Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN

V- 4 Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, *Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.

lnpUt Image Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN

ConvN
et

ConvN
et

Input image

Forward each
region through
ConvNet

4?7 Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN

SVMs

SVMs

SVMs

ConvN
et

ConvN
et

Input image

Classify regions with

- SVMs

Forward each
region through
ConvNet

ﬁ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN

Bbox reg || SVMs
Bbox reg || SVMs
Bbox reg || SVMs
ConvN
ConvN et
et

Input image

Linear Regression for bounding box offsets

Classify regions with
SVMs

Forward each
region through
ConvNet

ﬁ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation’, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemission.



R-CNN: Problems

* Ad hoc training objectives Ronet o
» Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hinge loss)
» Train post-hoc bounding-box regressions (least squares)

* Training is slow (84h), takes a lot of disk space

* Inference (detection) is slow
* 47s [ image with VGG16 [Simonyan & Zisserman. ICLR15]
» Fixed by SPP-net [He et al. ECCV14]

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation’, CVPR 2014.
Slide copyright Ross Girshick, 2015, source. Reproduced with permission.



Fast R-CNN

Softmax
classifier

Interest (Rols)
from a proposal
method

Regions of ﬁ@

Linear +
softmax

FCs

|

LT (7 (7 "RolPooling” layer

ConvNet

Fully-connected layers

&M’con\é" feature map of image

Forward whole image through ConvNet

Input image

Girshick, “Fast R-CNN", ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemmission.



Fast R-CNN

Softmax
classifier

Linear +
softmax Linear | Bounding-box

regressors

Fully-connected layers

t N

LT 7 /7 “RolPooling” layer

Regions of %&M “conv5” feature map of image

Interest (Rols)
from a proposal
method

ConvNet

| Input image

Forward whole image through ConvNet

Girshick, “Fast R-CNN", ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Fast R-CNN

(Training)

o |

softmax

Linear

ConvNet

Input image

Log loss + Smooth L1 loss | Multi-task loss

Girshick, “Fast R-CNN’, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Fast R-CNN .
- Log loss + Smooth L1 loss | Multi-task loss
(Training) ! VY

sk Linear
' 4
FCs
Y

7 1

ConvNet

Input image

Girshick, “Fast R-CNN’, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN vs SPP vs Fast R-CNN

P Test time (seconds)
Tralnlﬂg tlme (HOurS) I ncluding Region propos... [l Excluding Region Propo...
R-CNN R-CNN
SPP-Net 4.3
SPP-Net 23

Fast R-CNN 8.75

2.3
Fast R-CNN l
0 25 50 75 100 0.32

Girshick et al, *Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN", ICCV 2015




R-CNN vs SPP vs Fast R-CNN

o Test time (seconds)
Tra"“ng tlme (Hours) B Including Region propos... [ Excluding Region Propo...
SPP-Net ;
SPP-Net 23
Fast R-CNN 8.75 I PrOblem:
2.3 : .
o w o g TSRO <—— Runtime dominated

i |
by region proposals!

0 15

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN", ICCV 2015



Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinates

3. Final classification score (object

classes)
4. Final box coordinates

proposal/ /

Region Proposal Network

CNN
] y 4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks®, NIPS 2015 7Y TR 4 4 :

Figure copyright 2015, Ross Girshick; reproduced with permission



Mask R-CNN

il

RolAlign

~
ik‘wx_-

N—

He, Gkioxari, Dollar and Girshick - Mask R-CNN, ICCV 2017 (Marr Prize).
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YOLO

Redmon, Divvala, Girshick, Farhadi -

You Only Look Once, Real Time
Object Detection, CVPR 2016.

N fm.‘q-:k’

H
B E YH=H | .
S x S grid on input il ‘j* ;,“j Final detections
-
e 1 A

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,

and (' class probabilities. These predictions are encoded as an
Sx 8 x(Bx5+ C) tensor.



SSD

Liu, Anguelov, Erhan, Szegedy,
Reed, Fu, Berg - SSD: Single
Shot Box Detector, ECCV 2016.
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i Vioc: Alex,cy,w,h)
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i 5 ) N
.

(a) Image with GT boxes (h) 8 x 8 feature map (c) 4 x 4 feature map

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 x 8 and 4 x 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, ¢z, ,¢p)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).



Other Success Stories of Deep Learning

Today deep learning, in its several manifestations, is being applied
in a variety of different domains besides computer vision, such as:

* Speech recognition

* Optical character recognition
* Natural language processing
 Autonomous driving

 Game playing (e.g., Google’s AlphaGo)



From Image to Text

A person riding a Two dogs Iay in the grass.
motorcycle on a dirt road.

A group of young people Two hockey players are fighting
playing a game of frisbee. over the puck.



From Image to Video

% NBC NEWS LIVE'

e +THE [Z134173.141.1§ DEBATE »

|hitp:/Avww.youtube.comAvatch?v=8DmQ0Vgdhns
&; = — — — —

7
E e B
-;. S'f./ b " =
a.. '. /

Source: https://www.youtube.com/watch?v=-5Yp-vTol2E



From Academy to the Market

ScNScTilfc
" A = M

AR

Face Detection

AR

Face Detection




Machines that Talk

3 - -
e Deepv\\“
U) US English Mandarin Chinese

4.55

4.21 4.21
4.08

3.86

3.79
3.67

3.47

1

Concatenative Parametric WaveNet Human Speech Concatenative Parametric WaveNet Human Speech

WaveNet can generate speech that reproduces any human voice and sounds more natural than the best text-to-
speech systems available, reducing the gap with human performance by more than 50%.



Machines that Listen
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Translation quality

Machines that Translate

perfect translation

neural (GNMT)

phrase-based (PBMT)

English
>

Spanish

English
>
French

English  Spanish

> >

Chinese  English

Translation model

French
>

English

Chinese
>

English
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