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Pattern recognition:
The standard paradigm
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Limitations

There are cases where it's not easy to find satisfactory feature-vector
representations.

Some examples

when experts cannot define features in a straightforward way
when data are high dimensional

when features consist of both numerical and categorical variables,
in the presence of missing or inhomogeneous data

when objects are described in terms of structural properties
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Tacit assumptions

1. Objects possess “intrinsic” (or essential) properties

2. Obijects live in a vacuum

In both cases:
Relations are neglected!




Taking it to the extreme ...

«There is no property ABSOLUTELY essential to any one
thing. The same property which figures as the essence of a
thing on one occasion becomes a very inessential feature
upon another.»

William James
The Principles of Psychology (1890)

«There are, so to speak, relations all the way down, all
the way up, and all the way out in every direction:
you never reach something which is not just one more
nexus of relations.»

Richard Rorty
A World without Substances or Essences (1994)




The many types of relations

Similarity relations between objects

Similarity relations between categories

Contextual relations

Application domains: Natural language processing, computer vision,
computational biology, adversarial contexts, social signal processing,
medical image analysis, social network analysis, network medicine, ...




Context helps ...
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... but can also deceive!

Edward H. Adelson

Edward H. Adelson



Context and the brain
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Figure 3 | Cortical areas involved in processing context. a | A functional magnetic resonance
imaging (MRI) statistical activation map representing the difference between perceiving objects
that are strongly associated with a specific context and perceiving objects that are not associated
with a unique context. This is a medial view of the left hemisphere, shown using a precise
computer reconstruction where the sulci have been exposed by ‘inflation’. The parahippocampal
cortex (PHC) is circled in blue; the retrosplenial cortex (RSC) is circled in red; the superior orbital
sulcus (SOS) is circled in yellow. Note that in all experimental conditions, subjects viewed similar
looking colour photographs of meaningful, everyday common objects that were equally
recognizable. Consequently, activation due to low-level processes was presumably subtracted out,
and the differential activation map shown here represents only processes that are related to the
level of contextual association. b | The cortical network for contextual associations among visual
objects, suggested on the basis of existing evidence. Other types of context might involve
additional regions (for example, hippocampus for navigation125 and Broca’s area for language-
related context). Modified, with permission, from REF. 12 © (2003) Elsevier Science.

From: M. Bar, “Visual objects in context”, Nature Reviews Neuroscience, August 2004.




The consistent labeling problem

A labeling problem involves:

v A set of n objects B = {b,,...,b,}

v Asetof mlabels A = {1,....m}

The goal is to label each object of B with a label of A.
To this end, two sources of information are exploited:

v" Local measurements, which capture the salient features of each
object viewed in isolation

v" Contextual information, expressed in terms of a real-valued n? x m?
matrix of compatibility coefficients R = {r,./.( A, Uk

The coefficient r;( A, t) measures the strenght of compatibility between
the two hypotheses: “b;, is labeled A" and “b; is labeled u “.



Relaxation labeling processes

In a now classic 1976 paper, Rosenfeld, Hummel, and Zucker
introduced the following update rule (assuming a non-negative
compatibility matrix):
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quantifies the support that context gives at time t to the hypothesis
“b. is labeled with label A”.

See (Pelillo, 1997) for a rigorous derivation of this rule in the
context of a formal theory of consistency.



Applications

Since their introduction in the mid-1970’s relaxation labeling
algorithms have found applications in virtually all problems in
computer vision and pattern recognition:

Edge and curve detection and enhancement
Region-based segmentation

Stereo matching

Shape and object recognition

Grouping and perceptual organization
Graph matching

Handwriting interpretation
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Further, intriguing similarities exist between relaxation labeling
processes and certain mechanisms in the early stages of biological
visual systems (see Zucker, Dobbins and Iverson, 1989)



Hummel and Zucker’s consistency

In 1983, Hummel and Zucker developed an elegant theory of
consistency in labeling problem.

By analogy with the unambiguous case, which is easily understood,
they define a weighted labeling assignment p consistent if:

Y P Vg (W = 3v (Mg A i=l..n
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for all labeling assignments v. o

Geometrical interpretation. q
The support vector g points away /#
from all tangent vectors at p. y -

Generalization of classical (Boolean) constraint satisfaction problems!



Relaxation labeling as a game of strategy

As observed by Miller and Zucker (1991) the consistent labeling problem
is equivalent to a non-cooperative game.

Indeed, in such formulation we have:

v Objects = players

v' Labels = pure strategies

v Weighted labeling assignments = mixed strategies
v Compatibility coefficients = payoffs

and:

v" Consistent labeling = Nash equilibrium

Further, the Rosenfeld-Hummel-Zucker update rule corresponds to
discrete-time multi-population replicator dynamics.
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Adapted from: O. Duchene, J.-Y. Audibert, R. Keriven, ]J. Ponce, and F. Ségonne. Segmentation by
transduction. CVPR 2008.




Graph transduction

Given a set of data points grouped into:

v labeled data:  {(x1,41),...,%¢,y¢)}
v" unlabeled data: {x¢41,...,%X,} {<Kn

Express data as a graph G=(V,E)
v" V: nodes representing labeled and unlabeled points

v' E: pairwise edges between nodes weighted by the similarity between
the corresponding pairs of points

Goal: Propagate the information available at the labeled nodes to unlabeled
ones in a “consistent” way.

Cluster assumption:
v The data form distinct clusters
v Two points in the same cluster are expected to be in the same class



A special case

A simple case of graph transduction in which the graph G is an unweighted
undirected graph:

v An edge denotes perfect similarity between points
v" The adjacency matrix of G is a 0/1 matrix

The cluster assumption: Each node in a connected component of the graph
should have the same class label. A constraint satisfaction problem!




The graph transduction game

Given a weighted graph G = (V, E, w), the graph trasduction game is as
follow:

v Nodes = players

v' Labels = pure strategies

v Weighted labeling assignments = mixed strategies
v Compatibility coefficients = payoffs

The transduction game is in fact played among the unlabeled players to
choose their memberships.

v" Consistent labeling = Nash equilibrium

Can be solved used standard relaxation labeling / replicator dynamics.

Applications: NLP (see next part), interactive image segmentation, content-
based image retrieval, people tracking and re-identification, etc.



In short ...

Graph transduction can be formulated as a consistent labeling
problem.

The proposed framework can cope with symmetric, negative and
asymmetric similarities (none of the existing techniques is able to deal
with all three types of similarities).

Experimental results on standard datasets show that our approach is
not only more general but also competitive with standard approaches.

A. Erdem and M. Pelillo. Graph transduction as a noncooperative game.
Neural Computation 24(3) (March 2012).




Transductive Label Augmentation for
Improved Deep Learning

A major impediment in the application of deep learning to real-world
problems is the scarcity of labeled data.

Typical augmentation techniques (eg AlexNet) work well in applications
such as image classification, where it is simple to design suitable
transformation operators.

Not obvious how to apply it in more structured scenarios.

However, in virtually all application domains it is easy to obtain
unlabeled data. We propose a label augmentation approach.

| Elezi, A. Torcinovich, S. Vascon, and M. Pelillo. Transductive label
augmentation for improved deep network learning. In: ICPR 2018.
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A toy example

Similarity Graph Label association (t = 0)

W A B C X(©0) 1 2 3 4
A 0 0 0.9 A 0 1 0 0
B 0 0 02 B 1 o0 0 o0
CcC 09 02 0 © 0.25 0.25 0.25 0.25
1% iteration 2" jteration 3" jteration

X(1) 1 2 3 4 X2 1 2 3 4 X@B) 1 2 3 4
A 0 1 0 0 A 0 1 0 0 A 0 1 0 0
B 1 0 0 0 B 1 0 0 0 B 1 0 0 0

C 0.21 0.47 0.16 0.16 Cc 0.15 0.85 0 0 C 0 1 0 0




Results

accuracy caltech indoors scenenet
2% labeled RN18 | DNI21 | RN18 | DN121 | RNI8 | DNI21
GTG + CNN | 0.532 0.620 0.486 0.538 0.430 0.495
SVM + CNN | 0473 0.539 0.434 0.468 0.370 0.417
CNN 0.266 0.235 0.341 0.323 0.205 0.178

F score caltech indoors scenenet
2% labeled RNI8 | DNI21 | RNI8 | DNI2I | RNI8 | DNI21
GTG + CNN | 0.468 0.559 0.357 0.396 0.399 0.457
SVM + CNN | 0.388 0.455 0.319 0.327 0.352 0.377
CNN 0.181 0.151 0.187 0.172 0.191 0.167

accuracy caltech indoors scenenet
5% labeled RNI18 | DNI21 | RNI8 | DNI21 | RNI8 | DNI21
GTG + CNN | 0.625 0.698 0.568 0.613 0.563 0.621
SVM + CNN | 0.605 0.675 0.516 0.580 0.511 0.601
CNN 0.457 0.444 0.456 0.466 0.408 0.438

F score caltech indoors scenenet
5% labeled RNI8 | DNI21 | RNI8 | DNI21 | RNI8 | DNI21
GTG + CNN | 0.571 0.653 0.454 0.508 0.536 0.608
SVM + CNN | 0.542 0.626 0.426 0.505 0.501 0.590
CNN 0.372 0.358 0.345 0.306 0.394 0.419

accuracy caltech indoors scenenet

10% labeled | RN18 | DNI21 | RNI8 | DNI21 | RNI8 | DNI21

GTG + CNN | 0.667 0.727 0.598 0.645 0.624 0.686
SVM + CNN | 0.658 0.724 0.576 0.635 0.622 0.660
CNN 0.577 0.598 0.553 0.567 0.571 0.584

F score caltech indoors scenenet

10% labeled | RN18 | DN121 | RNI18 | DNI21 | RNI8 | DNI21]

GTG + CNN | 0.622 0.694 0.509 0.574 0.609 0.700
SVM + CNN | 0.612 0.686 0.515 0.579 0.612 0.650
CNN 0.519 0.533 0.478 0.471 0.565 0.570




Relative improvement

Relative improvement

Results

scenenet resnet18
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Application to ancient coin classification
(Aslan, Vascon and Pelillo, 2018)



Word sense disambiguation

WSD is the task to identify the intended meaning of a word based on the
context in which it appears.

One of the stars in the star cluster Pleiades [...]
*  One of the stars in the last David Lynch film [...]

Google  str o Y ::
Tutti Immagini Video Notizie Map Alt Strumen ti di ricerca SafeSearch ~ Q
Star Space Star Icon St Cinema

It has been studied since the beginning of NLP and also today is a
central topic of this discipline.

Used in applications like text understanding, machine translation,
opinion mining, sentiment analysis and information extraction.




WSD games

The WSD problem can be formulated in game-theoretic terms modeling:

* the players of the games as the words to be disambiguated.

* the strategies of the games as the senses of each word.

* the payoff matrices of each game as a sense similarity function.
* the interactions among the players as a weighted graph.

Nash equilibria correspond to consistent word-sense assignments!

*  Word-level similarities: proportional to strength of co-occurrence
between words

* Sense-level similarities: computed using WordNet / BabelNet ontologies

R. Tripodi and M. Pelillo. A game-theoretic approach to word sense
disambiguation. Computational Linguistics 43(1) (January 2017).




An example

There is a financial institution near the river bank.

financial

institution bank
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WSD game dynamics (time = 1)
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WSD games dynamics (time = 2)

There is a financial institution near the river bank.
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WSD game dynamics (time = 3)

There is a financial institution near the river bank.
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WSD games dynamics (time = 12)
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Experimental setup

name task KB texts words
S7 SemEval 2007 fine grained WN 3 444
S7CG  SemEval 2007 coarse grained WN 5 2269
S3 Senseval 3 fine grained WN 3 2041
S2 Senseval 2 fine grained WN 3 2473
S13 SemEval 2013 wsd & entity disambiguation BN 13 1931
KORE KORE50 entity disambiguation BN 50 146

Evaluation measure:

precision - recall
F1=2-

precision + recall




Results

S7CG S7CG(N) S7  S3  S2

< Navio - - 43.1 529 -
2 PPRy,oy 80.1 83.6 417 579 59.7
® WSDgames 80.4*  85.5 43.3 59.1 61.2
IRST-DDD-00  — — - 58.3 -
. MFS 76.3 77.4 547 62.8 65.6%
2  MRF-LP - — 50.6* 58.6  60.5
€ Nav05 83.2 84.1 — 604 -
" PPRuow 81.4 82.1 486 630 62.6
WSDgames 82.8 85.4 56.5 64.7* 66.0
Best 82.5 82.3* 59.1 65.2 68.6

sup.

Zhongl0 82.6 — 58.3 67.6 68.2




The “protein function predition” game

Motivation: network-based methods for the automatic prediction of
protein functions can greatly benefit from exploiting both the similarity
between proteins and the similarity between functional classes.

Hume’s principle: similar proteins should have similar functionalities

We envisage a (non-cooperative) game where

* Players = proteins,

« Strategies = functional classes

* Payoff function = combination of protein- and function-level
similarities

Nash equilibria provide consistent functional labelings of proteins.

S. Vascon, M. Frasca, R. Tripodi, G. Valentini and M. Pelillo. Protein function
predition as a graph-transduction game. Pattern Recognition Letters (in press).




Protein similarity

The similarity between proteins has been calculated integrating different

data types.
Database Type of data
PRINTS Motif fingerprints
PROSITE Protein domains and families
Pfam Protein domain
SMART Simple Modular Architecture Research Tool (database annotations)
InterPro Integrated resource of protein families, domains and functional sites

Protein Superfamilies
EggNOG
Swissprot

Structural and functional annotations

Evolutionary genealogy of genes: Non-supervised Orthologous Groups
Manually curated keywords describing the function of the proteins

at different degrees of abstraction

The final similarity matrix for each organism is obtained integrating the
8 sources via an unweighted mean.




Funtion similarity

The similarities between the classes
functionalities have been computed using the
Gene Ontology (GO)

The similarity between the GO terms (classes) e I K
for each integrated network and each :
ontology are computed using:

e semantic similarities measures (Resnick or

ce olic col r metabolic
rocess rocess
I . ) f‘ a / ‘s “

GO:0051187 GO:0006732
cofactor catabolic coenzyme metabolic
process process

* aJaccard similarity measure between the
annotations of each GO term. r / I

GO:0009109 GO:0006084
coenzyme catabolic acetyl-CoA metabolic
process process

GO:0046356
acetyl-CoA catabolic
process




Preliminary results

||-GT-RANKS-MS-kNN| |GBA I RWR [ JRW| _|
H |\IDH7 ||IHHH HT ‘IlDHT ‘Ilﬂﬂm |

DanXen-CC Dros-CC SacPomDic-CC

DanXen-BP Dros-BP SacPomDic-BP

Networks: DanXen (includes zebrafish and frog proteins), Dros (fruit fly),
SacPomDic (includes the proteins of three unicellular eukaryotes).

CC = cellular component / BP = biological processs

Number of nodes (proteins): from 3195
(Dros) to 15836 (SacPomDic)

CC terms (classes): from 184 to 919
BP terms (classes): from 2281 to 5037

Competitors

Random Walk (RW)

Random Walk with Restart (RWR)
Funckenstein (GBA)

Multi Source-kNN method (MS-kNN)
RANKS

More extensive and up-to-date results in the PRL paper!
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