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DARPA Neural Network Study (1989)

“Over the history of computing science, two advances have matured: High
speed numerical processing and knowledge processing (Artificial Intelligence).
Neural networks seem to offer the next necessary ingredient for intelligent
machines — namely, knowledge formation and organization.”
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DARPA Neural Network Study (1989)

Two key features which, it is widely believed, distinguish neural
networks from any other sort of computing developed thus far:

Neural networks are adaptive, or trainable. Neural networks are
not so much programmed as they are trained with data - thus
many believe that the use of neural networks can relieve today’s
computer programmers of a significant portion of their present
programming load. Moreover, neural networks are said to
improve with experience — the more data they are fed, the more
accurate or complete their response.

Neural networks are naturally massively parallel. This suggests
they should be able to make decisions at high-speed and be fault
tolerant.



Early work (1940-1960)
* McCulloch & Pitts
* Rosenblatt
* Hebb

Transition (1960-1980)
*  Widrow — Hoff
* Anderson
*  Amari

Resurgence (1980-1990’s)
* Hopfield
* Rumelhart et al.
* Kohonen
* Hinton, Sejnowski

New resurgence (2012 -)

History

(Boolean logic)
(Learning)
(Learning)

(LMS rule)
(Associative memories)

(Ass. mem. / Optimization)
(Back-prop)
(Self-organizing maps)
(Boltzmann machine)

* CNNs, Deep learning, GAN’s ....



A Few Figures

The human cerebral cortex is composed of about
100 billion (101) neurons

of many different types.

Each neuron is connected to other 1000 / 10000 neurons, wich yields

1014/10%> connections

CEREBRAL
CORTEX

The cortex covers about 0.15 m?
and is 2-5 mm thick



The Neuron

Cell Body (Soma): 5-10 microns in diameter

Axon: Output mechanism for a neuron; one axon/cell, but thousands of
branches and cells possible for a single axon

Dendrites: Receive incoming signals from other nerve axons via synapse

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

\/

Synapses

Cell body or Soma



Neural Dynamics

The transmission of signal in the cerebral cortex is a complex process:
electrical —y chemical —» electrical

Simplifying :
1) The cellular body performs a “weighted sum” of the incoming signals

2) If the result exceeds a certain threshold value, then it produces an
“action potential” which is sent down the axon (cell has “fired”),

otherwise it remains in a rest state

3) When the electrical signal reaches the synapse, it allows the
“neuro-transmitter” to be released and these combine with the
“receptors” in the post-synaptic membrane

4) The post-synaptic receptors provoke the diffusion of an electrical
signal in the post-synaptic neuron



.
electrical
signal

dendrites



Synapses
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SYNAPSE is the relay point where information is conveyed by chemical transmitters from neuron

to neuron. A synapse consists of two parts: the knowblike t

ip of an axon terminal and the receptor

region on the surface of another neuron. The membranes are separated by a synaptic cleft some

200 nanometers across. Molecules of chemical transmitter,

stored in vesicles in the axon terminal,

are released into the cleft by arriving nerve impulses. Transmitter changes electrical state of the
receiving neuron, making it either more likely or less likely to fire an impulse.



Synaptic Efficacy

It’s the amount of current that enters into the post-synaptic neuron,
compared to the action potential of the pre-synaptic neuron.

Learning takes place by modifying the synaptic efficacy.

Two types of synapses:

. Excitatory : favor the generation of action potential
in the post-synaptic neuron

. Inhibitory : hinder the generation of action potential



The McCulloch and Pitts Model (1943)

The McCulloch-Pitts (MP) Neuron is modeled as a binary threshold unit

Inputs  Weights

Threshold T

I

The unit “fires” if the net input é_wj]j reaches (or exceeds) the unit’s threshold T:
J

o

If neuron is firing, then its output y is 1, otherwise it is O.

0.51

0 if x<0

is the unit step function: x)= s 0 05
; P g) { 1 if x>0

Weights w; represent the strength of the synapse between neuron jand neuron i



Properties of McCulloch-Pitts Networks

By properly combining MP neurons one can simulate the behavior of any
Boolean circuit.

Time=> ¢ t+1 L t+1 t t+1
1 (1)
O‘__l‘) O\
| “ =3 O/ =1
Threshold T"'i (1) T—5 m T 3
(a) (b) (c)

Three elementary logical operations (a) negation, (b) and, (c) or. In each diagram
the states of the neurons on the left are at time t and those on the right at time t +1.

t+3

: XOR (A, B)

(AND)




Network Topologies and Architectures

e Feedforward only vs. Feedback loop (Recurrent networks)
® Fully connected vs. sparsely connected
e Single layer vs. multilayer

Multilayer perceptrons, Hopfield networks,
Boltzman machines, Kohonen networks, ...

Output Layer

Inputs

Hidden Layer

Input Layer

(a) (b)



Classification Problems

Given :
1) some “features”: fi,fQ,_,,,,f”

2) some “classes”: ¢ A

71° m

Problem :

To classify an “object” according to its features



Example #1

To classify an “object” as :

6‘7 = “watermelon”
6‘2 - o apple 124
[, = “orange”

According to the following features :

f7 = “weight”
_ ”
fg = “color

7 ”
][3 = Slze

Example:
\
- weight = 80 g
é color = green >
size = 10cm?

[ E—

“apple”



Example #2

Problem: Establish whether a patient got the flu

® (Classes: {“flu”, “non-flu” }

®* (Potential) Features:

f7 . Body temperature
f, Headache ? (yes / no)
f, + Throatisred? (yes / no / medium)

Ja



Example #3
Hand-written digit recognition

O

/
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&
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lo

5
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Images are 28 x 28 pixels

Represent input image as a vector x € R784

Learn a classifier f(x) such that,

fix—{0,1,2,3,4,5,6, 7,8, 9}




Example #4:
Face Detection

N A AN
LTS A 1




Example #5:
Spam Detection

06 US $ 119.95 Viagra 50mg x 60 pills — Junk (=)
i) SRR RS ) (D
Delete Not Junk Reply Reply All Forward Print
"!( !? Mail thinks this message is Junk Mail. @ Load Images ) ( Notjunk )

From: Fannie Fritz <guadalajarae1 @aspenrealtors.com>

Subject: US $ 119.95 Viagra 50mg x 60 pills
Date: March 31, 2008 7:24:53 AM PDT (CA)

buy now Viagra (Sildenafil) 50mg x 30 pills
http://fullgray.com




Geometric Interpretation

Example:
Classes = {0,1}

Features = x,y: bothtakingvaluein[O0, +oo |

Idea: Objects are represented as “point” in a geometric space

¥

= class 1

° = class O



Neural Networks for Classification

A neural network can be used as a classification device .

Input = features values
Output = class labels
Example :

3 features, 2 classes

(S Cc2

Output units

Input units

f1 f2 f3



Thresholds

We can get rid of the thresholds associated to neurons by adding an

extra unit permanently clamped at -1.

In so doing, thresholds become weights and can be adaptively adjusted

during learning.




The Perceptron

A network consisting of one layer of M&P neurons connected in a
feedforward way (i.e. no lateral or feedback connections).

— out (t)

in(t) <

e Discrete output (+1/-1)
® Capable of “learning” from examples (Rosenblatt)

®  They suffer from serious computational limitations



The Perceptron Learning Algorithm

Variables and Parameters:

x(n) = (m + 1)-by-1 input vector
= [+1,x,(n), x2(n). ..., x,,(n)]"
w(n) = (m + 1)-by-1 weight vector
= [b, w,(n), wy(n), ..., w,(n)]"
b = bias
y(n) = actual response (quantized)
d(n) = desired response
1 = learning-rate parameter, a positive constant less than unity

1. Initialization. Set w(0) = 0. Then perform the following computations for time-stepn = 1,2, ....

2. Activation. At time-step n, activate the perceptron by applying continuous-valued input vector x(2) and desired
response d(n).
3. Computation of Actual Response. Compute the actual response of the perceptron as

y(n) = sgn[w' (n)x(n)]
where sgn(-) is the signum function.
4. Adaptation of Weight Vector. Update the weight vector of the perceptron to obtain

w(n + 1) = w(a) + m[d(n) — y(n)]x(n)
where

d(n) = {—l-l if x(n) belongs to class €6,
" —1 if x(n) belongs to class €,

S. Continuation. Increment time step n by one and go back to step 2.
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The Perceptron Learning Algorithm
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Decision Regions

It’s an area wherein all examples of one class fall.

Examples:




Linear Separability

A classification problem is said to be linearly separable if the decision regions
can be separated by a hyperplane.

Example: AND

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

L ] L]
]
o -




Limitations of Perceptrons

It has been shown that perceptrons can only solve linearly separable

problems.

Example: XOR (exclusive OR)

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

]
o =




The Perceptron Convergence Theorem

Theorem (Rosenblatt, 1960)

If the training set is linearly separable, the perceptron learning algorithm

always converges to a consistent hypothesis after a finite number of
epochs, for any n > 0.

If the training set is not linearly separable, after a certain number of
epochs the weights start oscillating.



A View of the Role of Units

Structure Type of Exclusive-OR Classes with Most General
Decision Regions Problem Meshed Regions | Region Shapes
Single-layer Y, /'/'//////
Half plane ‘g// /
bounded v,'/
by ',;
hyperplane //
Two-layers
b Convex
open
or
closed
regions
Three-layers
Arbitrary
(Complexity
limited by
number of nodes)




Multi-Layer Feedforward Networks

Limitation of simple perceptron: can implement only linearly separable
functions

Add “ hidden” layers between the input and output layer. A network

with just one hidden layer can represent any Boolean functions including
XOR

Power of multilayer networks was known long ago, but algorithms for
training or learning, e.g. back-propagation method, became available
only recently (invented several times, popularized in 1986)

Universal approximation power: Two-layer network can approximate
any smooth function (Cybenko, 1989; Funahashi, 1989; Hornik, et al..,
1989)

Static (no feedback)



Continuous-Valued Units

Sigmoid (or logistic)

o(x)

o(x) =

1
14 e~ /&) : /

€ (0,1) /‘

05

f(x)



Continuous-Valued Units

Hyperbolic tangent

o(x)

ef(x) — e_f(x)
o) = @ T o T®

€ (-1,1)

L f(x)




Back-propagation Learning Algorithm

® Analgorithm for learning the weights in a feed-forward network,
given a training set of input-output pairs
® The algorithm is based on gradient descent method.

) 1) @ @ @® @
*q Wa Vi Wy Y Wi

1 —.O\’O—’O/O—’ 1
2— 0O O—0O O— 2

input layer hidden layers output layer



Supervised Learning

Supervised learning algorithms require the presence of a “teacher” who
provides the right answers to the input questions.

Technically, this means that we need a training set of the form

where :
X" ( m=1] p) is the network input vector

y” ( m=1 p) is the desired network output
vector



Supervised Learning

The learning (or training) phase consists of determining a configuration of
weights in such a way that the network output be as close as possible to the
desired output, for all the examples in the training set.

Formally, this amounts to minimizing an error function such as (not only
possible one):

E=%§% (»0-0r)

where O# is the output provided by the output unit kK when the network is
given example u as input.



Back-Propagation

To minimize the error function E we can use the classic gradient-
descent algorithm:

n = “learning rate”

To compute the partial derivates we use the error back propagation
algorithm.

It consists of two stages:

Forward pass: the input to the network is propagated
layer after layer in forward direction

Backward pass : the “error” made by the network is
propagated backward, and weights
are updated properly



Notations

xk



Back-Prop:
Updating Hidden-to-Output Weights

DW, =~ a;;
o |1 0 o
:_han[E%;(” O")Z}
20"
= m m A
;;()’k k)8WU
=n3 (s-0r) 5
m 7

=h>. a"v" where : 5i”=(y{‘—0i”)9'(hiﬂ)



Back-Prop:
Updating Input-to-Hidden Weights (1)




Back-Prop:
Updating Input-to-Hidden Weights (2)

oht’
= = 0 Z ij XrAnl

Hence, we get:
AW =17 Z (ylﬂ _Oiﬂ)g'(hiy)wij g'(hjﬂ)xlﬁl
78
= 772_ o/ Wij g'(hju)xlf
78

=1, o X
7



1A

X2

x3

L4

Lk

Error Back-Propagation

Input layer

Hidden layer

N

Output layer




Locality of Back-Prop

Aw, =1y 55 Vq“ off - line
T

Ao, =7755qu' on - line



The Back-Propagation Algorithm

* |Incremental update
*  Consider a network with M layers and denote (m =0....M)

<
=
Il

otput of i-th unit of layer m

2
=
I

weight on the connection between j-th neuron
of layer m-1 and i-th neuron in layer m



The Back-Propagation Algorithm

Initialize the weight to (small) random values
Choose a pattern x and apply it to the input layer (m=0)

v, = x! V k
Propagate the signal forward:
m m m—1
Vi =g(hi )=g(;wijVj )
Compute the &’s for the output layer:
5 = g'(n )Y -v)
Compute the &’s for all preceding layers:
m-—1 ' m-=1 m m
d; = (h,. )2 W o
Update connection weights:

NEW OLD -1
W, = W + Aw;; where sz‘j =1 51-"' ij

g J J

Go back to step 2 until convergence



The Role of the Learning Rate

Gradient descent on a simple quadratic surface (the left and right parts are copies of the same
surface). Four trajectories are shown, each for 20 steps from the open circle. The minimum is
at the + and the ellipse shows a constant error contour. The only significant difference between
the trajectories is the value of n, which was 0.02, 0.0476, 0.049, and 0.0505 from left to right.



The Momentum Term

Gradient descent may:

* Converge too slowly if n is too small
* Oscillate if nis too large

Simple remedy:

or

Aw,, <t + 1) =1 ow,_ i \O(Avtpq(ty
momentum

The momentum term allows us to use large values of n thereby avoiding
oscillatory phenomena

Typical choice:a=0.9,n=0.5



The Momentum Term

*' [

Gradient descent on the simple quadratic surface. Both trajectories are
for 12 steps with n = 0.0476 , the best value in the absence of momentum.
On the left there is no momentum (a = 0), while a = 0.5 on the right.



The Problem of Local Minima

f(x) = error function

Gradient Descent

Back-prop cannot avoid local minima.

Choice of initial weights is important.

Local Minima

If they are too large the nonlinearities
tend to saturate since the beginning of
the learning process.

Global Minima

Heuristic m——> Choose initial weights as Wij = 1 / 1/k,-

where k;is the number of units that feed
unit/ (the “fan-in” of /)



NETtalk

| © (1986)
Terrence J. Sejnowski and Charles R. Rosenberg

NETtalk: a parallel network that learns to read aloud

The Johns Hopkins University Electrical Engineering and Computer Science Technical Report

JHU/EECS-86/01, 32 pp.

—Ezxzample 1

speech
synthesizer

1))

..

neural
networl

loudspeaker

elzt to METtalk

NETtalk neural network speech synthesizer. The NETtalk backpropagation network is trained

by a rule-based expert system element of the DECtalk commercial speech synthesis system.
NETtalk is then used to replace that element. The result is a new speech synthesis system

that has approximately the same overall performance as the original. In other words, the NETtalk

neural network becomes functionally equivalent to an expert system with hundreds of rules. The
question then becomes: how are these rules represented within the NETtalk neural network?

The answer is: nobody really knows.



NETtalk

Output units
{(phoneme code)

Hidden units

ol LY e

e 1input




NETtalk

A network to pronounce English text

7 x 29 (=203) input units

1 hidden layer with 80 units

26 output units encoding phonemes

Trained by 1024 words in context

Produce intelligible speech after 10 training epochs

Functionally equivalent to DEC-talk

Rule-based DEC-talk was the result of a decade effort by many linguists

NETtalk learns from examples and, require no linguistic knowledge



Theoretical / Practical Questions

How many layers are needed for a given task?
How many units per layer?

To what extent does representation matter?
What do we mean by generalization?

What can we expect a network to generalize?

® Generalization: performance of the network on data not
included in the training set

® Size of the training set: how large a training set should be for
“good” generalization?

® Size of the network: too many weights in a network result in
poor generalization



True vs Sample Error

Definition: The true error (denoted errorp(h)) of hypothesis h with respect to target

function f and distribution D, is the probability that # will misclassify an instance
drawn at random according to D.

errorp(h) = Pr TLf(x) # h(x)]

Definition: The sample error (denoted errors(h)) of hypothesis A w1th respect to
target function f and data sample § is

\ errors(h) = " Z:«S(f(x), h(x))

x€S

Where n is the number of examples in S, and the quantity 8(f(x), h(x)) is 1 if
f(x) # h(x), and O otherwise.

The true error is unknown (and will remain so forever...).
On which sample should | compute the sample error?



Training vs Test Set

‘ A
&
L
Ll
L]
"

L]
"
-+

Test set

Derive Estimate
« model accuracy



Cross-validation

Training set

Training falds Test fold
I -
f 1
1* iteration — EJT
2™ iteration - = E'? i

10
3 iteration - — E3 =l

10" ireration - | = Em

Leave-one-out: using as many test folds as there are examples (size of test fold = 1)



Overfitting

(@) (b)

(a) A good fit to noisy data.(b) Overfitting of the same data: the fit is perfect on the

“training set” (x’ s), but is likely to be poor on “test set” represented by the circle.



ERRORE

Early Stopping

¢ VALIDATION SET

¢ TRAINING SET

B

: n° EPOCHE
+ OVERFITTING



Size Matters

The size (i.e. the number of hidden units) of an artificial
neural network affects both its functional capabilities and

its generalization performance

Small networks could not be able to realize the desired

input / output mapping

Large networks lead to poor generalization performance



The Pruning Approach

Train an over-dimensioned net and then remove redundant nodes

and / or connections:

Adavantages:

Sietsma & Dow (1988, 1991)
Mozer & Smolensky (1989)
Burkitt (1991)

arbitrarily complex decision regions
faster training

independence of the training algorithm



An Iterative Pruning Algorithm

Consider (for simplicity) a net with one hidden layer:

Output ne
Hidden Ny
Input Iy

Suppose that unit his to be removed:

N
~ -
Q IDEA: Remove unit h (and its in/out connections) and adjust the

remaining weights so that the 1/O behavior is the same

G. Castellano, A. M. Fanelli, and M. Pelillo, An iterative pruning algorithm for feedforward neural networks, IEEE
Transactions on Neural Networks 8(3):519-531, 1997.



An Iterative Pruning Algorithm

This is equivalent to solving the system:

d d
_ (m)
aw, W =a(w,+d,) " izn o, m=1 P
j=1 ]il
| ] | Jth J
| |

before after

which is equivalent to the following linear system (in the unknown &’s):

(u) _ (1)
Z5ij yi' =Wy i=10 n,, m=10 P
j=h



An Iterative Pruning Algorithm

In @ more compact notation:
Ax=b

where 4 T A oY)

But solution does not always exists.

Least-square solution :

min || Ax-b |



Detecting Excessive Units

Residual-reducing methods for LLSPs start with an initial solution

X, and produces a sequences of points {x,} so that the residuals
| Ax b=,
decrease: I <1,

Starting point: X, =0 (:> Iy = H bH )

Excessive units can be detected so that HbH IS minimum



1)

2)

3)

The Pruning Algorithm

Start with an over-sized trained network

Repeat
2.1) find the hidden unit h for which HbH is minimum
2.2) solve the corresponding system
2.3) remove unit h

Until Perf(pruned) — Perf(original) < epsilon

Reject the last reduced network



Example: 4-bit parity

Ten initial 4-10-1 networks

Pruned nets

recognition rate (%)

100

90

80

70

60

50

40

30

20

10

\

p

nine 4-5-1
5 hidden nodes (average)

one 4-4-1

0,25

0,2

—B—recognition rate
—e—MSE 0,15

0,1

0,05

9 8 7 6 5 4 3 2 1
number of hidden units

MSE



Example: 4-bit simmetry

Ten initial 4-10-1 networks

Pruned nets ||~ 4.6 hidden nodes (average)

100 0,25
90
80 0,2
= 70
s —m— recognition rate
% 60 —@—MSE 0,15
159
§ 50
:'é
2 40 0,1
]
= 30
20 0,05
10
0 0
10 9 8 7 6 5 4 3 2 1

number of hidden units

MSE



Deep Neural Networks



The Age of “Deep Learning”

News & Analysis

Microsoft, Google Beat Humans at
Image Recognition

Deep learning algorithms compete at ImageNet

challenge

R. Colin Johnson :«IO RATINGS
saves

2/18/2015 08:15 AM EST LOGIN TO RATE

14 comments

IMAGENET

PORTLAND, Ore. -- First computers beat the best of us at chess,
then poker, and finally Jeopardy. The next hurdle is image
recognition — surely a computer can't do that as well as a human.
Check that one off the list, too. Now Microsoft has programmed the
first computer to beat the humans at image recognition.

The competition is fierce, with the ImageNet Large Scale Visual
Recognition Challenge doing the judging for the 2015
championship on December 17. Between now and then expect to
see a stream of papers claiming they have one-upped humans too.
For instance, only 5 days after Microsoft announced it had beat the
human benchmark of 5.1% errors with a 4.94% error grabbing
neural network, Google announced it had one-upped Microsoft by
0.04%.

The top row is a representative of the categories that Microsoft's algorithm
found in the database and the image columns below are examples that fit.
(Source: Microsoft)




The Deep Learning “Philosophy”

* Learn a feature hierarchy all the way from pixels to classifier
* Each layer extracts features from the output of previous layer
* Train all layers jointly

Image/
Video
Pixels

Simple
Classifier




Shallow vs Deep Networks

Shallow architectures are inefficient at representing deep functions

shallow networks can be

single layer neural network
implements: r = fg (Z) computationally inefficient
output

©
.

e
£\
$

000000

21 29 - ZK

—:) W
L X

W/,
AN
/‘ iy

(=)
7Y,
o
L)

\/

inputs 21 2o 2k
layer “1 Z2 <D
networks we met last lecture however, if the function is 'deep’
a very large hidden layer may

with large enough single hidden layer
can implement any function
'universal approximator

From.R. E. Turner

be required



Performance Improves with More Data
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Amount of data



Old Idea... Why Now?

. We have more data - from Lena to ImageNet.

. We have more computing power, GPUs are
really good at this.

IVERAS

Last but not least, we have new ideas

() e oy 3 o

==;.||‘?¢I“ A +]—A - ! ) A

lad-T- 14 fot My ) A e [l g V) B

-llulnl,‘l}n 1 ti {J\ D .
+ M |

I
S TR LT W
HalsesmErEy ja l % ———

Rushen vimy
--*':-I w3

Big Data: ImageNet Deep Convolutional Neural Network Backprop on GPU Learned Weights




Image Classification

€7 26 20 68 02 62 12 20 95 63 94 39 €3 08 40 91 66 49 4 21
24 35 30 05 66 7Y 99 26 97 17 78 78 96 83 14 00 M 09 63 72
23 36 23 09 TS 00 76 44 30 435 33 14 00 €2 NN MM
8 17 S3 28 32 75 31 67 15 94 03 80 04 €2 26 24 09 53 56 M2
16 39 05 42 96 35 31 47 55 58 88 24 00 17 S4 24 36 29 85 57
86 56 00 42 35 71 89 07 05 44 44 37 44 €0 21 S8 51 54 17 58
P 00 81 60 05 94 47 69 20 73 92 13 86 32 17 7T 04 89 55 40
4 B 83 97 35 99 16 07 97 57 33 16 36 26 79 33 37 9 &
230 72 03 4€ 33 67T 46 S5 2 N2 6335

1 24 94 72 18 08 46 29 32 40 62 76 36
0 23 88 2. .69 82 €7 59 85 74 04 36 16

20 73 35 29 78 31 90 01 74 31 49 7. IO adk® 43 57 05 54
O 34 71 83 51 54 69 16 92 3 4% 42 3 5201 F

= What the computer sees

- 82% cat
15% dog
2% hat

1% mug

image classification

Predict a single label (or a distribution over labels as shown here to indicate our confidence)
for a given image. Images are 3-dimensional arrays of integers from 0 to 255, of size Width x
Height x 3. The 3 represents the three color channels Red, Green, Blue.

From: A. Karpathy



Challenges

Viewpoint variation Scale variation Deformation Occlusion

From: A. Karpathy



The Data-Driven Approach

i B

ol [ ﬁ’élﬂ
& AR
Yy

An example training set for four visual categories.

In practice we may have thousands of categories and

hundreds of thousands of images for each category. From: A. Karpathy



Inspiration from Biology

Biological vision is hierachically organized

object trees Inferotemporal
T T cortex
object parts bark, leaves, etc. V4: different
T T textures
primitive features oriented edges V1: simple and
T T complex cells
input image forest image photo-receptors
retina

From. R. E. Turner



Hierarchy of Visual Areas

Hierarchy of Cortical Visual Areas
Felleman and Van Essen 1991

From. D. Zoccolan



The Retina

retina

cornea /\""" —
Z

.

\\\\ "|. : AL % A ’ s a
:“ “’ e . : A £ I' { /
P gt ’ 3 ; R iGN

pupil

ciliary
body

Figure 2. Diagram of a human eye shows its various structures (left). A thin piece of retina is
enlarged in a photomicrograph (right), revealing its layers. The photoreceptors lie against a
dark row of cells called the pigment epithelium. (Drawing by the author. Except where noted,
photographs by Nicolas Cuenca and the author.)



The Retina
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Figure 3. Cells in the retina are arrayed in discrete layers. The photoreceptors are at the top of
this rendering, close to the pigment epithelium. The bodies of horizontal cells and bipolar cells
compose the inner nuclear layer. Amacrine cells lie close to ganglion cells near the surface of
the retina. Axon-to-dendrite neural connections make up the plexiform layers separating rows
of cell bodies.



Receptive Fields

“The region of the visual field in which light stimuli evoke responses of
a given neuron.”

On-center, Off-surround Off-center, On-surround



Kuffler, Hubel, Wiesel, ...

1953: Discharge patterns
and functional
organization of
mammalian retina

1959: Receptive fields of
single neurones in the
cat's striate cortex

1962: Receptive fields,
binocular interaction and
functional architecture in
the cat's visual cortex

1968 ..

Cellular Recordings

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Stimulus




Retinal Ganglion Cell Response

on-center RGC off-center RGC
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stimulus: on off stimulus: on off



Beyond the Retina

Temporal -~

Pulvinar nucleus

Lateral geniculate
nucleus

Superior colliculus

Optic radiation

Primary visual cortex



Simple Cells

Stmulus: on off

Orientation selectivity: Most V1 neurons are orientation selective meaning that they
respond strongly to lines, bars, or edges of a particular orientation (e.g., vertical) but
not to the orthogonal orientation (e.g., horizontal).



Complex Cells




Hypercomplex Cells (end-stopping
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Take-Home Message:
Visual System as a Hierarchy of Feature Detectors

Hubel & Weisel featural hierarchy
topographical mapping

complex cells

simple cells




Convolution
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Mean Filters

hli,j]




Gaussian Filters




Gaussian Filters

Weight value
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Figure 4.15: A 3-D plot of the 7 x 7 Gaussian mask.
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The Effect of Gaussian Filters




The Effect of Gaussian Filters




Kernel Width Affects Scale

Width=3 Width=7

Width=13 Width=19




Edge detection




Edge detection




Roberts Operator

Sobel Operator

Using Convolution for Edge Detection
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Laplacian of Gaussians (LoG) (Marr 1982)
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Magnitude
o
(%]

A Variety of Image Filters

Difference of Gaussians
Operator in One Dimension

Figure 1

Position

& Sigma =0.3
= Sigma =1.0
== Difference




A Variety of Image Filters

Gabor filters (directional) (Daugman 1985)




A Variety of Image Filters
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Traditional vs Deep Learning Approach

Traditional approach

Manually crafted Trainable

- | —> T
features classifier
Trainable Trainable

- | — o
feature extractor classifier

From: M. Sebag



Convolutional Neural Networks (CNNs)

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
32y32 6@28x28

S2: f. maps
6@14x14

|
| Full conAection I Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

(LeCun 1998)
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(Krizhevsky et al. 2012)



Fully- vs Locally-Connected Networks

Fully-connected: 400,000 hidden units = 16 billion parameters
Locally-connected: 400,000 hidden units 10 x 10 fields = 40 million parameters

Local connections capture local dependencies

From. M. A. Ranzato



Using Several Trainable Filters

Normally, several filters are packed together and learnt automatically
during training

— 32x32x3 image __— 32x32x3 Image

/ 3; /, 5x5x3 first filter / / 32 5x5x3 second filter %
[E>O 28 @>O _ 28

7 y 4
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Pooling

Max pooling is a way to simplify the network architecture, by
downsampling the number of neurons resulting from filtering operations.

max_6 8




Combining Feature Extraction and Classification

C; S| C: S: n n
mput fearure maps  feature maps feature maps feature maps output
253 8x28 __ laxl4 | 10xl0 | Sx5 __
< e ey
= =
\.‘\ '.'.. ) .‘.

3 = -:_;:’ | - ; \\ \\ Oﬁ&-—%
N ~ AN\ G

. o N\
5x5 2 : | o)
convolution \ subsampling  convolution 2x2 \ N\ O fully \
N subsamphng \ N connected \

feature extraction classification



AlexNet (2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

e 8 layers total

* Trained on Imagenet Dataset (1000
categories, 1.2M training images, 150k
test images)

Softmax Output

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool
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Layer 4: Conv

»

er 3: Conv
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Layer 2: Conv + Pool
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Layer 1: Conv + Pool
= »

Input Image




224

2J§§

3

Stride

“of 4

_I55

48

Max
pooling

AlexNet Architecture

128

1st layer: 96 kernels (11 x 11 x 3)
Normalized, pooled
2nd layer: 256 kernels (5 x 5 x 48)
Normalized, pooled
3rd layer: 384 kernels (3 x 3 x 256)
4th layer: 384 kernels (3 x 3 x 192)
5th layer: 256 kernels (3 x 3 x 192)
Followed by 2 fully connected layers, 4096 neurons each
Followed by a 1000-way SoftMax layer
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Training on Multiple GPU’s

GPU #1

intra-GPU connections

Max 128

e
192 128
q 13 13
—_ .
13 dense den
192 192 128 Max
2048

pooling

s \dense

2048

G

inter-GPU connections



Rectified Linear Units (ReLU’s)

Problem: Sigmoid activation takes on values in (0,1). Propagating the
gradient back to the initial layers, it tends to become 0 (vanishing

gradient problem).

From a practical perspective, this slows down the training procedure of
the initial layers of the network.

sigmoid(z) = 1+1e_z ReLU(z) = max(0, z)
sigmoid (z) ) ReLU (z)

05 [+] 0s




Rectified Linear Units (ReLU’s)

0.75

A 4 layer CNN with
Rel.Us (solid line)
converges six times
faster than an

- - equivalent network
with tanh neurons
(dashed line) on
CIFAR-10 dataset

Training error rate

0.25 1

Epochs



Mini-batch Stochastic Gradient Descent

Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient



Data Augmentation

The easiest and most common method to reduce overfitting on
image data is to artificially enlarge the dataset using label-preserving
transformations

AlexNet uses two forms of this data augmentation.

* The first form consists of generating image translations and
horizontal reflections.

« The second form consists of altering the intensities of the RGB
channels in training images.



Dropout

Set to zero the output of each hidden neuron with probability 0.5.

The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

Reduces complex co-
adaptations of neurons,
since a neuron cannot
rely on the presence of
particular other neurons.

Standard Neural Net After applying dropout.



ImageNet

IMAGENET

* ~14 million labeled images, 20k
classes

* Images gathered from Internet

« Human labels via Amazon Turk

; | = » Challenge: 1.2 million training images,
[Deng et al. CVPR 2009 1000 classes



ImageNet Challenges

Tradtional CV ¥ Deep Leaming

i‘
A. Krizhevsky uses first CNN in 2012.
Trained on Gaming Graphic Cards



ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) — 26.2% error




Revolution of Depth

%ICCVID

Jerswene Covrmrar m (o doon

Research

28.2

152 layers

\ 16.4

b 11.7
[ 22 layers ’ [ 19 Iayers |

\67

3 57 I_ e = l L.s Iayers | 7 8 layers ] shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.




A Hierarchy of Features

55

27 ] ]

% 13 13 13
1 " 1
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Stride\| o pooling pooling
224\ || of 4
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Filters

Filters

Conv 1: Borders and Conv 3: Textures Conv 5: Object parts

Color traces

objects

The deep network gradually learns more complex and abstract notions

From: B. Biggio



Layer 1

Each 3x3 block shows

the top 9 patches for

one filter
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Feature Analysis

e A well-trained ConvNet is an excellent feature extractor.

* Chop the network at desired layer and use the output as a feature
representation to train an SVM on some other dataset (Zeiler-Fergus 2013):

Cal-101 Cal-256
(30/class) | (60/class)

SVM (1) |448L£0.7 |24.6L04
SVM (2) |662L05 |39.6L0.3
SVM (3) |723L04 [46.0L0.3
SVM (4) | 76.6£0.4 |[pL3E0.1
SVM (5) |86.2=L0.8(656x0.3
SVM (7) |855+04|71.7 £0.2

Softmax (5)82.9+ 0.4 |65.7£0.5
Softmax (7) [85.4+0.4[72.6 +0.1

* |Improve further by taking a pre-trained ConvNet and re-training it on a
different dataset (Fine tuning).



Other Success Stories of Deep Learning
Today deep learning, in its several manifestations, is being applied
in a variety of different domains besides computer vision, such as:
* Speech recognition
e Optical character recognition
* Natural language processing
 Autonomous driving

 Game playing (e.g., Google’s AlphaGo)
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Platforms:
e Theano
e Torch

e TensorFlow
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