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Abstract

In this paper we present DCI, a new data mining algorithm for frequent set counting. We also discuss

in depth the parallelization strategies used in the design of ParDCI, the distributed and multi-threaded

algorithm derived from DCI. Multiple heuristics strategies are adopted within DCI, so that the algorithm

is able to adapt its behavior not only to the features of the specific computing platform, but also to

the features of the dataset being processed. Our approach turned out to be highly scalable and very

efficient for mining both short and long patterns present in real and synthetically generated datasets. The

experimental results showed that DCI outperforms others previously proposed algorithms under a variety

of conditions. ParDCI, the parallel version of DCI, is explicitly devised for targeting clusters of SMP nodes:

shared memory and message passing paradigms were used at intra- and inter-node level, respectively. Due

to the broad similarity between DCI and Apriori , we were able to adapt effective parallelization strategies

previously proposed for Apriori .
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1 Introduction

Association Rule Mining (ARM), one of the most popular topic in the KDD field [3, 10, 11, 18], regards the

extractions of association rules from a database of transactions D, where each rule has the form X ⇒ Y ,

where X and Y are sets of items (itemsets) such that (X ∩ Y ) = ∅. A rule X ⇒ Y holds in D with a

minimum confidence c and a minimum support s, if at least the c% of all the transactions containing X also

contain Y , and X ∪ Y is present in at least the s% of all the transactions of the database. In this paper we

are interested in the most computationally expensive phase of ARM, i.e the Frequent Set Counting (FSC)

one. During this phase, the set F =
⋃

Fk, including all the frequent k-itemsets, is built, where an itemset

of k items (k-itemset) is frequent if its support is greater than a fixed threshold s, i.e. the itemset occurs in

at least minsup transactions (minsup = s/100 · n, where n, is the number of transaction in D).

We introduce DCI (Direct Count & Intersect), a new algorithm to solve the FSC problem. We also discuss

a parallel version of DCI, called ParDCI, which is explicitly targeted for clusters of SMPs. As Apriori, DCI

builds at each iteration the set Fk of the frequent k-itemsets on the basis of a set of candidate itemsets Ck.

However, DCI adopts a hybrid approach to determine the support of the candidate itemsets. In particular:

• during the first iterations DCI, exploits a novel counting–based technique, accompanied by a carefully

pruning of the dataset, stored on disk in horizontal form. During this phase DCI counts how many

times candidate k-itemsets occur in transactions of dataset D;

• during the following iterations, DCI adopts a very efficient intersection–based technique. Hence, in this

phase DCI determines the support of each itemset c ∈ Ck by intersecting the tidlists associated with

the k items of c. DCI starts using this technique as soon as the pruned dataset, whose layout has to

be transformed from horizontal into vertical, fits into the main memory of the specific host machine.

Tidlists are represented as bit-vectors.

DCI is able to adapt its behavior not only to the features of the specific computing platform, but also

to the features of datasets processed. This ability of DCI is very important, since in the past many novel

algorithms were devised, but often they outperformed others only for specific datasets. To adapt its behavior

to the dataset peculiarities, DCI dynamically choose between different heuristic strategies. For example, when

a dataset is dense, the sections of tidlists which turn out to be identical are aggregated and clustered in

order to reduce the number of intersections actually performed. Conversely, when a dataset is sparse, the

runs of zero bits in the intersected tidlists are promptly identified and skipped.

We will show how the sequential implementation of DCI outperforms previously proposed algorithms.

In particular, under a number of different tests and independently of the dataset peculiarities, DCI results

much better that FP–Growth [14], which is currently considered as one of the fastest algorithm for FSC. In

particular, DCI performs very well with both synthetic and real datasets characterized by different density
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features, e.g. datasets from which, due to the different correlations among items, either short or long frequent

patterns can be mined.

ParDCI, which has been explicitly designed to target clusters of SMPs, adopts different parallelization

strategies during the two phases of DCI, i.e. the counting-based and the intersection-based ones. Moreover,

these strategies are slightly differentiated with respect to the two type of parallelism exploited: inter-

node level within each SMP to exploit shared-memory cooperation, and intra-node levels among distinct

SMPs, where message-passing cooperation is used. In particular, the MPI library is employed for inter-node

parallelism, while the pthread library is used for intra-node parallelism.

Basically, at the inter-node level (coarse grain, message-passing) we use a Count Distribution technique

during the counting-based phase, and a Candidate Distribution one during the intersection-based one [5].

The former technique requires the partitioning of dataset (D), and the replication of candidates (Ck) and

associated counters. The final values of the counters are derived by all-reducing the various local counters.

The latter technique is used during the intersection-based phase. It requires an intelligent partitioning of

Ck based on the prefixes of itemsets, but a partial/complete replication of the dataset D.

At inter-node level, dataset and candidate distributions are decided once, and holds for the following

iterations of the algorithm phase. During the counting-based phase of ParDCI we adopt a static distribution

of D, decided at loading time on the basis of the relative power on computational nodes. This decision

holds until the algorithm switches to the next phase. This usually occurs after a few iterations. During the

intersection-based phase, the intelligent distribution of Ck can also be decided on dynamic knowledge about

the features of nodes involved, e.g., on the basis of dynamically collected information regarding workloads

of nodes.

As regards intra-node level (fine grain, shared memory), we continue to use the same parallelization

techniques adopted at the inter-node level. The main difference regards the dynamic load-balancing policy

through which the various pieces of work are scheduled to threads. At this level, in fact, we have a logical

shared queue from which the various thread picks and self-schedules pieces of work. When the Count Dis-

tribution technique is adopted, a piece of work corresponds to a block of transactions belonging the dataset

partition assigned to the corresponding node. When the Candidate Distribution technique is adopted, a

piece of work corresponds to a block of candidates, belonging to the specific candidate partition.

This paper is organized as follow. Section 2 shows some related results obtained in previous works on

sequential and parallel FSC algorithms. In Section 3 we discuss the DCI algorithm while Section 4 sketches

the solutions adopted to design ParDCI. In Section 5 we present a performance analysis based on theoretical

results, and report our experimental results. Finally in Section 6 we present our conclusions and future

works.
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2 Related Works

The computational complexity of the FSC problem derives from the size of its search space P(M), i.e. the

power set of M , where M is the set of items contained in the various transactions of D. A way to prune

P(M) is to restrict the search to itemsets whose subsets are all frequent. The Apriori algorithm [6] exactly

exploits this pruning technique, and thus adopts a breadth-first visit of P(M) for counting itemset supports.

Other algorithms [8, 2] adopt instead a depth-first visit of P(M). The goal in this case is to discover long

frequent itemsets first, thus saving the work needed for discovering frequent itemsets included in long ones.

Several variations to the original Apriori algorithm, as well as many parallel implementations, have been

proposed in the last years. We can recognize two main methods for determining the supports of the various

itemsets present in P(M): a counting-based [4, 6, 12, 17, 8, 1] and an intersection-based [19, 9, 23] one.

The former one, also adopted by Apriori , exploits a horizontal dataset and counts how many times each

candidate k-itemset occurs in every transaction. The latter method, on the other hand, exploits a vertical

dataset, where a tidlist (list of transaction ids) is associated with each item.

The counting-based approach is quite efficient from the point of view of memory occupation, since only

requires to maintain in main memory Ck along with data structures used to quickly access candidates

(e.g. hash-trees or prefix-trees). On the other hand, the intersection-based method may be much more

computational effective than its counting-based counterpart [19]. Unfortunately, to exploit efficient 2-way

intersections, memory requirement increases since we need to buffer tidlists associated with previously

computed frequent (k − 1)-itemsets.

Other FSC algorithms that only mine the maximal frequent itemsets (e.g. MaxEclat, MaxClique, Max-

Miner) [8, 23] have been proposed. In particular, the Max-Miner [8] algorithm, which has been explicitly

devised to work well for problems characterized by long patterns, aims to find maximal frequent sets by

looking ahead throughout the search space. It uses clever lower bound techniques to determine whether

an itemset is frequent, without accessing the database and actually counting its support. Unfortunately

while it is simple to derive all the frequent itemsets from the maximal ones, the same does not hold for

their supports, which require a further counting step. Remember that the exact supports of all the frequent

itemsets are needed to easily compute association rule confidences and other measures of rule interest.

The FP-growth algorithm [15] is an innovative and very fast algorithm that is able to efficiently find

frequent itemsets without generating candidate sets. It builds in memory a compact representation of

the dataset, where repeated patterns are represented once along with the associated repetition counters.

The data structure used to store the dataset is called frequent pattern tree, or FP-tree for short. The

algorithm recursively identifying tree paths which share a common prefix. These paths are intersected by

considering the associated counters. The algorithm can exactly compute the support of all the frequent

patterns discovered. A problem that has been recognized for FP-growth is the need to maintain the tree
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in memory. Solutions based on a partition of the database, in order to permit problem scalability, are also

illustrated. FP-growth is currently considered one of the fastest algorithms for solving the FSC problem.

From our tests, FP-growth resulted particularly effective in mining dense datasets, which can efficiently be

compacted in memory, and datasets for which Apriori -like algorithms cannot prune enough candidates from

Ck, so that Fk turn out to be much smaller that Ck.

Another important topic of research in association mining regards the exploitation of constraints [21, 20]

over rules to be generated. Using these constraints an algorithm becomes faster, since it avoid generating

all the frequent itemsets characterized by a given uniform minimum support. In this paper we have only

shown how our algorithm is able to generate efficiently the frequent itemsets using the classic constraint over

minimum support, but we are confident about the possibility of introducing into DCI further constraints,

for example in the candidate generation phase.

A number of parallel algorithms for solving the FSC have been proposed in the last years. Most of them

can be considered parallelizations of the well-known Apriori algorithm [5, 13, 13]. Zaki authored a good

survey on ARM algorithms and relative parallelization schemas [22]. In [5] Agrawal et al. proposed a broad

taxonomy of the parallelization strategies that can be adopted for Apriori. The described approaches consti-

tute a wide spectrum of trade–offs between computation, communication, memory usage, synchronization,

and the use of problem–specific information:

• The Count Distribution approach follows a data-parallel according to which the only transaction

database is statically partitioned among the processing nodes, while the candidate set Ck and associ-

ated counters are replicated. At the end of each counting phase, the replicated counters are aggregated,

and every node builds the same set of frequent itemsets Fk. On the basis of the global knowledge of

Fk, candidate set Ck+1 for the next iteration is then built.

• The Data Distribution approach attempts to utilize the aggregate main memory of the whole parallel

system. Not only the transaction database, but also the candidate set Ck are partitioned in order to

permit both kinds of partitions to fit into the main memory of each node. While this approach clearly

maximizes the use of node aggregate memory, it requires large communications to transmit dataset

partitions among nodes for subset counting purpose.

• The last approach, Candidate Distribution, incorporates problem–domain knowledge to partition both

the data and the candidate set in a way that allows each processor to proceed independently. The

rationale of the approach is to identify, as execution progresses, subset of candidates supported by

(possibly overlapping) subsets of different transactions. Candidates and relative frequent itemsets are

subdivided on the basis of common prefixes shared by the itemsets within each partition. This trick

is possible because candidates, frequent itemsets, and transactions, all contain lexicographically or-

dered item identifiers. From candidate partitioning also a dataset partitioning with limited replication
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is derived. Even if the approach may suffer from poor load balancing, it is however very interest-

ing. Once the partition schema for both Ck and Fk is decided, it in fact does not require further

communications/synchronizations among the nodes.

The results of the experiments described in [5] demonstrate that algorithms based on Count Distribution

exhibits optimal scale-up and excellent speedup, thus outperforming the other strategies. Data Distribution

resulted the worst approach, while the algorithm based on Candidate Distribution obtained good perfor-

mances but paid a high overhead due to the need of redistributing the dataset.

3 The DCI algorithm

During its initial counting-based phase, DCI exploits a horizontal layout database with variable length

records. DCI also trims the transaction database as execution progresses. In particular, a pruned dataset

Dk+1 is written to the disk at each iteration k, and employed at the next iteration. Some of the dataset

pruning techniques were inspired by DHP [17]. Pruning the dataset may entail a reduction in I/O activity

as the algorithm progresses, but the main benefits come from the reduced computation required for subset

counting at each iteration k, due to the reduced number and size of transactions. As soon as the pruned

dataset becomes small enough to fit into the main memory, DCI adaptively changes its behavior, builds a

vertical layout database in-core, and starts adopting an intersection-based approach to determine frequent

sets. Note, however, that DCI continues to have a Apriori -like level-wise behavior.

DCI uses an Apriori -like technique to generate the candidate set Ck from Fk−1, by exploiting the lexico-

graphic order of Fk−1 to find pairs of (k − 1)-itemsets sharing a common (k − 2)-prefix. Due to this order,

in fact, the various pairs occur in close positions within Fk−1, which can thus be read with high spatial

and temporal locality. Only during the DCI counting-phase, Ck is further pruned by checking whether all

the other subsets of a candidate are also included in Fk−1. Conversely, during the intersection-based phase,

since our intersection method is able to quickly determine the support of a candidate itemsets, we found

more profitable to avoid this further pruning step over Ck, thus also preserving locality in accessing Fk−1.

While during its counting-based phase DCI has to maintain Ck in main memory to search candidates

and increment associated counters, this is no longer needed during the intersection-based phase. As soon

a candidate k-itemset is generated, DCI determines on-the-fly its support by intersecting the corresponding

tidlists. This is an important improvement over other Apriori -like algorithms, which suffer from the possible

huge memory requirements due to the explosion of the Ck size.

DCI makes use of a large body of out-of-core techniques, so that DCI is able to adapt its behavior also

to machines with limited main memory. Datasets are read/written in blocks, to take advantage of I/O

prefetching and system pipelining [7]. The outputs of the algorithms, e.g. the various frequent sets Fk, are

written to files. These same files are then mmap-ped into memory in order to access them during the next
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iteration for candidate generation. Note also ParDCI is able to adopts similar out-of-core techniques, since

SMP nodes are all equipped with local disks.

3.1 Counting-based phase

The techniques used in this phase of DCI has already described in detail in [16], where the same authors

proposed DCP (Direct Count & Pruning), an algorithm especially effective for miming short patterns. It is

worth considering that DCI adopts this technique only for the first iterations, when very short patterns are

mined: in all our experiments, DCI can start its intersection-based phase at the third or fourth iteration. In

the following we only sketch the main features of the counting method adopted.

DCI exploits for its counting-based phase a simple, directly accessible data structure, which is an alter-

native to other more complex ones, like hash-trees or prefix-trees. In particular, for k ≥ 2 DCI uses a Direct

Count technique, which is based on a generalization of the technique adopted for k = 1. For k = 1, in fact,

all Apriori -like algorithms simply exploits a vector of counters, which are ”directly addressable” through

item identifiers.

The novel counting technique of DCI is accompanied by an effective and simple pruning technique of D.

This pruning technique trims and removes transactions, and also reduces the cardinality of Mk (mk = |Mk|),
i.e. the set of items that still appear in some transactions of Dk.

The Direct Count technique employed by DCI uses a prefix table, PREFIXk[ ], of size
(
mk
2

)
, which is re-

initialized at each iteration. In particular, each location of PREFIXk[ ] is associated with a distinct ordered

prefix of two items belonging to Mk, and contains the pointer to the ”first” candidate in Ck (and associated

counters) characterized by this prefix. Note that itemsets in Ck are stored in lexicographically order, so that

itemsets characterized by the same prefix appear in consecutive positions within Ck. Of course, for k = 2,

PREFIX2[ ] directly contains the counters associated to the various candidate 2-itemsets. To permit the

various locations of PREFIXk[ ] to be directly accessed, we devised an order preserving, minimal perfect

hash function. This prefix table is thus used to count the support of candidates in Ck as follows:

• for each transaction t = {t1, . . . , t|t|}, select all the possible 2-prefixes of all k-subsets included in t;

• through PREFIXk[ ], select the contiguous sections of Ck to be visited in order to check set-inclusion

of candidates in transaction t. For k = 2, use PREFIX2[ ] to directly access associated counters.

3.2 Intersection-based phase

Since the counting-based approach is not efficient for long patterns, DCI starts its intersection-based phase

as soon as possible. Unfortunately, the intersection-based method needs to maintain in memory the vertical

representation of the pruned dataset. So, at iteration k, k ≥ 2, DCI checks whether the pruned dataset Dk

may fit into main memory. When the dataset becomes small enough, its vertical in-core representation is
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built on the fly, while the transactions are read and counted against Ck. The intersection-based method

thus starts at the next iteration.

The vertical layout of the dataset is based on fixed length records (tidlists), stored as bit-vectors. The

whole vertical dataset can thus be seen as a bidimensional bit-array VD[ ][ ], whose rows correspond to the

bit-vectors associated with a not pruned item in Mk. In particular, given Mk (mk = |Mk|), the set of the not

pruned items, and Tk (nk = |Tk|), the set of not pruned transactions, then the amount of memory required

to store VD[ ][ ] is mk × nk bits. Starting from the iteration following the vertical database construction,

DCI uses VD[ ][ ] to determine the support of candidate itemsets.

First, we give a simplified description of the intersection-based phase of DCI. At each iteration, DCI

produces Fk as follows:

1. for each c ∈ Ck, and-intersect the k bit-vectors associated with the items included in c. Consider

that a bit-vector intersection can be carried out very efficiently and with high spatial locality by using

primitive Boolean and instructions with word operands. As previously stated, this method does not

require Ck to be kept in memory: we can compute the support of each candidate c on-the-fly, as soon

as it is generated;

2. compute the support of c by counting the 1’s present in the resulting bit-vector. If this number is

≥ minsup, write c to Fk.

3 5 11 17 24 31
3 5 11 17 24 47
3 5 11 17 31 47

i0 i1 i2 i3 i4 i5

C6

tidlist3 & tidlist5
tidlist3 & tidlist5 & tidlist11

tidlist3 & tidlist5 & tidlist11 & tidlist17

tidlist3 & tidlist5 & tidlist11 & tidlist17 & tidlist24 

Cache of  (k-2) vectors of nk bits

Figure 1: Example of DCI intersection caching for k = 6.

The simplified strategy above is highly inefficient, because it always needs a k-way intersection to de-

termine a the support of each candidate c. Conversely, if we had enough memory to maintain the tidlists

(bit-vectors) associated with all the frequent (k − 1)-itemsets in Fk−1, we could carry out the same com-

putation through 2-way intersection. Unfortunately, a pure 2-way intersection approach does not scale,

due to the huge amount of memory required. Nevertheless, an effective caching policy could be exploited
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in order to save work and speed up our k-way intersection method. DCI uses a small “cache” buffer to

store all the intermediate intersections that have been computed to determine the support c ∈ Ck, where

c is the last candidate that has been evaluated. The cache buffer used is a simple bidimensional bit-array

Cache[ ][ ] of size (k − 2) · nk, where the bit vector cache[j][1 : nk], 2 ≤ j ≤ (k − 1) is used to store the

results of the intermediate intersections relative to the first j items of c. Since itemsets in Ck are generated

in lexicographic order, with high probability two consecutive candidates, e.g. c and c′, share a common

prefix. Suppose that c and c′ share a prefix of length h ≥ 2. When we consider c′, we can save intersection

work by reusing the intermediate result stored in cache[h][1 : nk]. Figure 1 shows an example of use of

the cache for k = 6. C6 contains candidate itemsets c = {3, 5, 11, 17, 24, 31}, c′ = {3, 5, 11, 17, 24, 47}, and

c′′ = {3, 5, 11, 17, 31, 47}. Thus, since c′ shares a prefix of length 5 with c, in order to compute c′ support,

DCI only intersects cache[5][1 : nk] with the tidlist associated with item 47. Analogously, when itemset c′′

is processed, the intersections of the tidlists of its first 4 items are found in cache[4][1 : nk].

To evaluate the effectiveness of our caching policy, we counted the actual number of intersections carried

out by DCI on the synthetic dataset 400k t10 p8 m1k, whose description is reported in Section 5. We

compared this number with the best and the worst case. The former corresponds to the adoption of a 2-way

intersection approach, which is only possible if we can fully cache the tidlists associated with all the frequent

(k − 1)-itemsets in Fk−1. The latter case regards the adoption of a pure k-way intersection method, i.e.

a method that does not exploit caching at all. Figure 2.(a) plots the results of this analysis for support

threshold s = 0.25%. The caching policy of DCI turns out to be very effective, since the actual number of

intersections performed results to be very close to the best case. Moreover, memory requirements for the

three approaches are plotted in Figure 2.(b). As expected, DCI requires orders of magnitude less memory

than a pure 2-way intersection approach, thus better exploiting memory hierarchies.
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Figure 2: Per iteration number of tidlist intersections performed (a), and memory requirements (b), for DCI,

and the pure 2-way and k-way intersection-based approaches.
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Others heuristics techniques are used within DCI to further reduce intersection costs. More specifically,

two different optimization technique are exploited for sparse and dense datasets. Consider that dense

datasets give rise to very long patterns even for large minimum support constraints.

In order to apply the right optimization, the vertical dataset is tested for checking its density as soon as

it is built. To this end we simply compare the bit vectors associated with the most frequent items by using

simple and inexpensive logical operation (xor, not, and). Note that we only consider the most frequent items

since they occur in a large body of candidates, so that the corresponding bit-vectors need to be intersected

multiple times. If a large part of these bit-vectors turns out to be identical, we deduce that the dataset

is dense and adopt a specific heuristics which exploits similarities between these vectors. Otherwise the

technique for sparse datasets is adopted.

• Sparse datasets. Sparse or moderately dense datasets originate bit-vectors with long runs of 0’s.

To speedup computation, while we compute the intersection of the bit vectors relative to the first

two items c1 and c2 of a generic candidate itemset c = {c1, c2, . . . , ck} ∈ Ck, we also identify and

maintain information about the the runs of 0’s appearing in the resulting bit vector stored in the

entry Cache[2][1 : nk]1. Further intersections that are needed to complete the processing of c (as well

as intersections needed to compute other itemsets characterized by the same 2-item prefix) will skip

these runs of 0’s, so that only vector segments which may contain 1’s are actually intersected. Since

information about the runs of 0’s are computed only once, and the same information is reused many

times, this optimization results to be very effective.

Moreover, sparse and moderately dense datasets offer the possibility of further pruning vertical datasets

as computation progresses. The benefits of pruning regard the reduction in the length of the bit vectors

and thus in the cost of intersections. Note that a transaction, i.e. a column of VD, can be removed

from the vertical dataset when it does not contain any of the itemsets included in Fk. This check can

simply be done by or-ing the intersection bit-vectors computed by DCI for all the k-itemsets added

to Fk. However, we observed that dataset pruning is expensive, since vectors must be compacted at

the level of single bits. Hence DCI prunes the dataset only if turns out to be profitable, i.e. if we can

obtain a large reduction in the vector length, and the number of vectors to be compacted is small with

respect to the cardinality of Ck. Note that a relatively large cardinality of Ck entails an expensive

iteration step, due to the repeated intersections of bit-vectors associated with the various items.

• Dense datasets. If the dataset turns out to be dense, we expect to deal with a dataset characterized

by strong correlation among the most frequent items. This means not only that the bit-vectors

associated with the most frequent items are characterized by long runs of 1’s intermixed by few 0’s,

but also that they turn out to be very similar. Note that the presence of long runs of 1’s discourages
1We maintain information about sections composed of zeroed memory words.
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strategies that try to further prune the dataset, as the one adopted for sparse datasets.

Experimentally we verified that the DCI heuristic technique for dense dataset is advantageous only if

the correlation among frequent items is very strong, i.e. when these items are at least the 30% of all

the items in Mk, and they are associated with bit-vectors that are identical at the 80%.

The heuristic technique adopted by DCI for dense dataset cases works as follows:

– reorder the columns of the vertical dataset, in order to move identical segments of the bit vectors

associated with the most frequent items to the first consecutive positions;

– since each candidate likely includes several of these most frequent items, avoid repeatedly inter-

secting the identical segments of the corresponding vectors. This technique may save a lot of work

because (1) the intersection of an identical vector segment is done only once, (2) the identical

segments are usually very large (80% or more), and (3) long candidate itemset likely contains

several of these most frequent items.

4 ParDCI

In the following we describe the different parallelization techniques used in the counting- and intersection-

based phases of ParDCI, the parallel version of the DCI algorithm discussed above. Since we exploited a

cluster of SMP nodes, in both phases we will distinguish between an intra-node and an inter-node level of

parallelism. At the inter-node level we used the message–passing paradigm through the MPI communication

library, while at the intra-node level we exploited multi-threading through the Posix Thread library. A Count

Distribution approach is adopted to parallelize the counting-based phase, while the intersection-based phase

exploits a very effective Candidate Distribution approach [5].

4.1 The counting-based phase

At the inter-node level, the dataset is statically split in a number of partitions equal to the number of

SMP nodes available. The sizes of partitions depend on the relative powers of nodes. At each iteration

k, a copy of the whole candidate set Ck is generated independently by each nodes. Then each node p

reads blocks of transactions its own dataset partition Dp,k stored on local disk, performs subset counting,

prunes transactions read and appends them to Dp,k+1. At the end of an iteration, an all-reduce (MPI-based)

operation has to take place to update candidate counters. Finally, all nodes produce Fk, on the basis of

which they will generate Ck+1 at the next iteration. The replicated activities are relatively inexpensive, and

their duplication does not jeopardize performances.

As depicted in Figure 3, at the intra-node level each node uses a pool of threads. They have the task

of checking in parallel each of the candidate itemset against chunks of transactions read from Dp,k. The
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Figure 3: ParDCI: threads and processes interaction schema.

task of subdividing the local dataset into disjoint chunks is assigned to a particular thread, the Master

Thread). It loops reading blocks of transactions and forwarding them to the Worker Threads executing

the counting task. To overlap computation with I/O, minimize synchronization, and avoid data copying

overheads, we used an optimized producer/consumer schema for the cooperation among the Master and

Worker threads. A prod/cons buffer, which is logically divided into Npos sections, is shared between the

Master (producer) and the Workers (consumers). We also have two queues of pointers to the various buffer

positions: a Queue of Empty positions (QE ), which contains pointers to free buffer positions, and a Queue

of Filled positions (QF ), which contains pointers to buffer positions that have been filled by the Master with

blocks of transactions read from Dp,k. The operations to modify the two queues (to be performed in critical

sections) are very fast, and regard the attachment/detachment of pointers to the various buffer positions.

The Master thread detaches a reference to a free section of the buffer from the QE, and uses that section

to read a block of transactions from disk. When the reading is completed, the Master inserts the reference

to the buffer section into the (initially empty) QF. Symmetrically, each Worker thread self–schedules its

work by extracting a reference to a chunk of transactions from the QF, and counting the occurrences of

candidate itemsets within such transactions. While the transactions are processed, the Worker also performs

transaction pruning, and uses the same buffer section to store pruned transactions to be written to Dp,k+1.

Once all transactions have been processed, the Worker writes to disk the block of pruned transactions, and

reinserts the reference to the buffer section into the QE.

In order to avoid contention problems in updating counters associated with candidates, each Worker

thread accesses and increment a logically private copy of the counters. When all transactions in Dp,k have

been processed by a node p, the corresponding Master thread performs a local reduction operation over

the various copies of counters (reduction at the intra-node level), before performing via MPI the global
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counter reduction operation with all the other Master threads running on the other nodes (reduction at

the inter-node level). Finally, to complete the iteration of the algorithm, each Master thread generates Fk,

writes this set to the local disk, and generates Ck+1.

4.2 The intersection-based phase

During the intersection-based phase, an effective Candidate Distribution approach is adopted at both the

inter- and intra-node levels. This parallelization schema makes the parallel nodes completely independent:

inter-node communications are no longer needed for all the following iterations of ParDCI.

Let us first consider the inter-node level, and suppose that the intersection-based phase is started at

iteration k + 1. Therefore, at iteration k the various nodes build the bit-vectors representing their own

in-core portions of the vertical dataset. The construction of the vertical dataset is carried on-the-fly by each

node p, while transaction are read from Dp,k for subset counting. Before starting the intersection-base phase,

the partial vertical datasets are broadcast to obtain a complete replication of the whole vertical dataset on

each node.

The frequent set Fk (i.e., the set computed in the last counting-based iteration) is then statically par-

titioned by exploiting problem-domain knowledge. A disjoint partition Fp,k+1 of Fk+1 is thus assigned to

each node p, where
⋃

p Fp,k+1 = Fk+1. It is worth remarking that this partitioning entails a Candidate

Distribution schema for all the following iterations, according to which each node p will be able to generate

a unique Cp
k (k > k) independently of all the other nodes, where Cp

k ∩ Cp′

k = ∅, p 6= p′, and
⋃

p Cp
k = Ck.

Fk is partitioned as follows. First, it is split into l sections on the basis of the prefixes of the lexico-

graphically ordered frequent itemsets included. All the frequent k-itemsets that share the same k− 1 prefix

are assigned to the same section. Since ParDCI, as all other Apriori -like algorithms, builds each candidate

(k +1)-itemsets as the union of two k-itemsets sharing the first k− 1 items, we are sure that each candidate

k-itemset can independently be generated starting from one of the l disjoint sections of Fk. Then the various

partitions Fp,k+1 are created by assigning round-robin the l sections to the various processing nodes. From

our tests, this round-robin policy suffices for balancing the workload at the inter-node level. Once com-

pleted the partitioning of Fk, nodes independently generate the associated candidates and determine their

supports by intersecting the corresponding tidlists of the replicated vertical dataset. Nodes continue to work

according to the schema above also for the following iterations. Finally, note that, although at iteration

k the whole vertical dataset is replicated on all the nodes, as the execution progresses, the implemented

pruning technique may trim the vertical dataset in a different way on each node. The progressive reduction

of dataset size introduces obvious benefits on the exploitation of memory hierarchies.

At the intra-node level, a Candidate Distribution parallelization schema is still employed, but at a finer

level and by using dynamic scheduling to ensure load balancing. In particular, at each iteration k of the

intersection-based phase, the Master thread of a node p initially splits the local partition of Fp,k−1 into x

13



segments, x >> t, where t is the total number of active threads. Like the inter-node level, this subdivision

entails a partitioning of the candidates generated on the basis of these segments (Candidate Distribution).

It is worth remarking that, unlike the inter-node level, segments of Fp,k−1 are not created on the basis of

frequent itemset prefixes. We observed, in fact, that at this level the prefix method might produce only a

few segments with unbalanced features. Therefore segments are created to contain about |Fp,k−1|
x frequent

itemsets. The information to identify the x segments are then inserted in a shared queue. Once the shared

queue is initialized, also the Master thread becomes a Worker. Thereinafter, each Worker thread loops and

self-schedules its work by performing the following steps:

1. access in mutual exclusion the queue and extract information to get Si, i.e. one segment of the local

partition of Fp,k−1. If the queue is empty, go to step 4.

2. generate a new candidate k-itemset c from Si. If it is not possible to generate further candidates,

go to step 1. Note that in order to generate candidates, the thread cannot limit its visit of Fp,k−1

to segment Si. Remember, in fact, that each candidates has to be generated from a pair of frequent

k − 1-itemsets sharing a common (k − 2) prefix, and that Fp,k−1 itemset are stored in lexicographic

order. Thus, while the first element of is chosen from Si, the second element of the pair has to be

searched in the following position of Fp,k−1, even outside Si. Therefore, the selection of segment Si

only forces the choice of the possible first element of the various itemset pairs.

3. compute on-the-fly the support of c by intersecting the vectors associated to the k items of c. Each

thread exploits a private intersection cache to reuse previous work. If c turns out to be frequent, put

c into Fp,k. Go to step 2.

4. write Fp,k to disk and start new iteration.

5 Experimental Results

The sequential algorithm, DCI, is currently available in two versions, a MS-Windows one, for which we used

the Visual Studio compiler suite, and a Linux one, for which we used the GNU compiler. ParDCI, which

exploits the MPICH MPI and the pthread libraries, is currently available only for the Linux platform.

We used the MS-Windows version of DCI to compare its performance with other FSC algorithms. For

test comparisons we used the FP-growth algorithm, currently considered on of the fastest algorithm for

FSC2, and the Christian Borgelt’s implementation of Apriori 3.
2We acknowledge Prof. Jiawei Han for kindly providing us the latest binary version of FP-growth. This version of FP-growth

was sensible optimized with respect to the one used for the tests reported in [14].
3http://fuzzy.cs.uni-magdeburg.de/∼borgelt
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For the DCI tests we used a Windows-NT workstation equipped with a Pentium II 350 MHz processor,

256 MB of RAM memory and a SCSI-2 disk. For testing ParDCI performance, we employed a small cluster

of three Pentium II 233MHz two-way SMPs, for a total of six processors. Each SMP is equipped with 256

MBytes of main memory and a 3 GBytes SCSI disk.

We used both synthetic and real datasets by varying the minimum support threshold s. The synthetic

datasets were created with one of the most commonly adopted synthetic dataset generator4. Other datasets,

including real-world and dense ones, were instead downloaded from the Web. The characteristics of the

datasets used are reported in Table 1.

Table 1: Datasets used in the experiments.
Dataset Description

T25I10D10K

1K items and 10K transactions. The average transaction size is 25 and the aver-

age maximal potentially frequent itemset size is 10. Synthetic dataset available at

http://www.cs.sfu.ca/∼peijian/personal/publications/T25I10D10k.dat.gz

T25I20D100K

10K items and 100K transactions. The average transaction size is 25 and the av-

erage maximal potentially frequent itemset size is 20. Synthetic dataset available at

http://www.cs.sfu.ca/∼peijian/personal/publications/T25I20D100k.dat.gz

400k t10 p8 m10k

10K items and 400K transactions. The average transaction size is 10 and the average max-

imal potentially frequent itemset size is 8. Synthetic dataset created with the IBM dataset

generator [6].

400k t30 p16 m1k

1K items and 400K transactions. The average transaction size is 30 and average maximal

potentially frequent itemset size 16. Dataset size is about 50MB. Synthetic dataset created

with the IBM dataset generator [6].

t20 p8 m1k

With this notation we identify a series of synthetic datasets characterized by 1K items,

average transaction size 20 and average maximal potentially frequent itemset size 8. We vary

the number of transactions for scaling measurements, while all the other parameters are kept

constant.

t50 p32 m1k

A series of three datasets sharing the same number of items (1K), average transaction size

(50 items) and average maximal potentially frequent itemset size (32). We used three such

datasets with 1000K, 2000K and 3000K transactions.

connect-4

Dense dataset with 130 items and about 60K transactions. The maximal

transaction size is 45 items. The dataset size is about 12MB. Available at

http://www.cs.sfu.ca/∼wangk/ucidata/dataset/connect-4/connect-4.data

BMS-WebView-1

497 items and 59K transactions containing click-stream data from an e-commerce web site.

Each transaction is a web session consisting of all the product detail pages viewed in that

session. Available at http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.dat.gz

Computational cost of intersection-based phase. We analyzed the advantages of adopting the intersection-

based approach, which is used by DCI after a few iterations, over the exploitation of the counting-based

approach for all the iterations of the algorithm. The computational costs of each counting-based iteration
4http://www.almaden.ibm.com/cs/quest.
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Figure 4: Theoretical and measured computational costs of intersection-based and counting-based iterations

on dataset 400k t10 p8 m1k (s = 0.25%). Times Tintersect and Tcount are measured in seconds according to

the scale on the right hand y axis. Millions of operations are instead reported on the left hand y axis.

is dominated by subset counting. Due to our 2-item prefix table, which allows us to select a section of Ck

with a common prefix, at most k− 2 comparisons are necessary in order to check whether a given candidate

k-itemset appears in a transaction t or not. Hence, the number of operations performed at iteration k is

approximately:

Tcount = O(NCS · k) (1)

where NCS is the total number of candidates actually visited for counting the supports of all the transactions

in Dk. On the other hand, the computational cost of each intersection-based iteration is proportional to

the number of and operations needed to determine the supports of all candidate itemsets. The number of

and depends on both the average length of tidlists and the number of candidate itemsets. Therefore, the

number of operations actually performed by DCI at iteration k is approximatively:

Tintersect = O(NAND ·NV D) (2)

where NAND is the total number of tidlist pairs actually intersected, while NV D is the average number of

operations needed for and-ing a pair of tidlists. In principle we can say that NV D depends on the average

length of tidlists, but we have to consider that DCI exploits several optimizations aimed to reducing the

number of operations actually performed (see Section 3.2).

This simple analysis is confirmed by our experimental evaluation. In Figure 4 the measured per-iteration

execution times, i.e. Tcount and Tintersect, are plotted against their analytic estimates above, i.e. Equa-

tions (1) and (2), as a function of the iteration index k. The dataset considered was 400k t10 p8 m1k, a

sparse dataset, where the minimum support was fixed to s = 0.25%. The actual values of NCS , NAND and

NV D were determined by profiling execution. These results shows the effectiveness of our intersection-based

method and related optimization strategies versus its counting-based counterpart.
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Figure 5: Total execution times for DCI, Apriori , and FP-growth on various datasets as a function of the

support value.
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Figure 6: Relative execution times on datasets in the series t20 p8 m1k (s = 1%) when varying the number

of transactions (from 100K to 2M .

DCI performances and comparisons. Figure 5 reports the total execution times obtained running

Apriori , FP-growth, and DCI on the datasets described in Table 1 as a function of the support threshold

s. In all the tests conducted, DCI outperforms FP-growth with speedups up to 8. Of course, DCI also

remarkably outperforms Apriori , in some cases for one or more orders of magnitude. For connect-4, the

dense dataset, the curve of Apriori is not shown, due to the relatively too long execution times. Note the for

BMS, the real-world dataset, Apriori turns out to be better than FP-growth, accordingly to what discussed

in [24].

The encouraging results obtained with DCI are due to both the efficiency of the counting method exploited

during early iterations, and the effectiveness of the intersection-based approach used when the pruned vertical

dataset fits into the main memory. For only a dataset, namely T25I10D10K, FP-growth turns out to be

better than DCI for s = 0.1%. The cause of this behavior is the size of C3, which in this specific case results

much larger than the actual size of F3. Hence, DCI has to carry out a lot of useless work to determine

the support of many candidate itemsets, which will eventually result to be not frequent. In this case the

FP-growth should be better than DCI since it does not require candidates generation.

We tested the scale-up behavior of DCI when the size of the dataset is increased. The various dataset

samples have been obtained through the IBM generator, by keeping all the parameters constant except for

the number of transactions. The samples belong to the series t20 p8 m1k. Figure 6 plots the execution

times of FP-growth and DCI as a function of the number of transactions contained in the dataset processed,

by keeping constant s = 1%. The times reported are normalized with respect to the execution time of DCI

on the smallest dataset sample of 100k transactions. DCI scale much better than FP-growth: it execution

time curve corresponds to a quasi-liner function of the dataset size. For example, to process the dataset

with 2 millions of transactions, DCI requires about 22 times the execution time spent on 100k transactions,

while for FP-growth this ratio is about 65.
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Performance evaluation of ParDCI. For these tests we used the synthetic dataset series identified as

t50 p32 m1k in Table 1. We varied the total number of transactions from 1000K to 3000K. In the following

we will identify the various synthetic datasets on the basis of their number of transactions, i.e. 1000k, 2000k,

and 3000k.

First we measured response time of ParDCI for the dataset 1000K. In this test we only used a single SMP

node, so that we compared the sequential version (DCI) with the multi-threaded parallel version of ParDCI.

Figure 7 plots the total execution times as a function of the support thresholds s (%). The reduction in the

total execution time is quasi optimal (nearly optimal speedup) for support thresholds that involve expensive

computations.
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Figure 8: Speedup for datasets 1000K, 2000K and 3000K with s = 1.5% (a) and s = 5%(b).

Figure 8 plots the speedups obtained on the three synthetic datasets for two fixed support thresholds

(s = 1.5% and s = 5%), as a function of number of processors used. Consider that, since our cluster

is composed of three 2-way SMPs, we mapped tasks on processors always using the minimum number of

nodes (e.g., when we used 4 processors, we actually employed 2 SMP nodes). This implies that experiments
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performed on either 1 or 2 processors actually have identical memory and disk resources available, whereas

the execution on 4 processors benefit from a double amount of such resources.

According to our experiments, ParDCI showed a quasi linear speedup. If you consider the results obtained

with one or two processors, you note that the slope of the speedup curve turns out to be relatively worse

than its theoretical limit, due to resource sharing and thread implementation overheads at the inter-node

level. Nevertheless, when additional nodes are employed, the slope of the curve improves. For all the

three datasets, when s = 5%, a very small number of frequent itemsets is obtained. As a consequence, the

CPU-time decreases, and becomes relatively smaller than I/O and also interprocess communication times.

Figure 9 plots the scaleup, i.e. the relative execution times measured by varying, at the same time,

the number of processors and the dataset size. We can observe that the scaling behavior remains constant,

although slightly above one.
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Figure 9: Scaling behavior obtained varying the dataset size along with the processor number for s = 1.5%

(a) and s = 5%(b).

The strategies adopted for partitioning dataset and candidates on our homogeneous cluster of SMPs

sufficed for balancing the workload. In out tests we observed very limited imbalance, below 0.5%. For

targeting heterogeneous or non-dedicated clusters we plan to introduce in ParDCI more dynamic approaches

to partitioning.

6 Conclusions and Future Works

DCI and ParDCI use a hybrid approach for extracting frequent patterns: a counting-based one during the

first iterations and a very fast intersection-based one for the following iterations of the algorithm. One of

the main innovative features of the two algorithms regards the ability to apply different heuristic strategies

during the intersection-based phase, on the basis of the characteristics of a specific dataset. Different
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techniques are thus used for dense and sparse datasets. These techniques are able to strongly reduce the

complexity of intersections. Unlike other algorithms, such as maximal frequent set ones, even for dense

datasets, from which very long patterns can be extracted, we are able to determine the exact support of

frequent itemsets. Another important feature of DCI and ParDCI is the ability to adapt their behaviors to

the features of the specific computing platform. For example, the intersection-based phase is started at

iteration k only if the vertical layout representation of the dataset can be stored into main memory. Since

our pruning technique strongly reduce dataset size as counting-based iterations progress, in our tests the

optimized intersection-based phase always started at the third or fourth iteration.

As regards scalability of the approach, we have to consider that the in-core vertical dataset is created

during the previous iteration k− 1, i.e. the last iteration of the counting-based phase. During this iteration

DCI needs enough memory space to store both the vertical ”pruned” dataset and the candidate set Ck−1.

Conversely, since ParDCI uses a Count Distribution approach for parallelization, the per-node memory

requirement at iterations k − 1 is reduced: each SMP node has only to build a vertical representation of

its own partition of the pruned dataset. ParDCI then creates a complete in-core vertical dataset at the

next iteration k, by joining the various partitions, so that nodes need enough memory to store a copy of

the whole pruned dataset. Fortunately, during the intersection-based phase, candidates do not need to be

kept in memory. DCI generates candidates by accessing with high locality the mmap-ped file containing

Fk−1, while their supports are computed on-the-fly. In ParDCI, since a Candidate Distribution technique

is adopted, each node need to produce and access (in the next iteration) a smaller partition Fp,k−1 of the

whole Fk−1.

As a result of its optimized design, DCI significantly outperformed Apriori and FP-growth. For many

datasets the performance improvement was impressive. The results were very good not only for syn-

thetic datasets, when very low support thresholds are considered, but also for real-world datasets with

medium/large support thresholds. The variety of datasets used and the large amount of tests conducted

permit us to state that the design of DCI is not much focused on specific datasets, and that our optimizations

are not over-fitted only to the features of these datasets [24].

ParDCI, the multi-threaded and distributed version of DCI, due to a number of optimizations and to

the resulting effective exploitation of the underlying architecture, exhibited excellent scaleup and speedup

under a variety of conditions. Our implementation of the Count and Candidate Distribution strategies for

parallelization, used at both inter and intra-node levels, resulted to be very effective with respect to main

issues such as load balancing and communication overheads. In the near future we plan to extend ParDCI

with adaptive work stealing policies aimed to efficiently exploit heterogeneous/grid environments. To share

our efforts with the data mining community, we made DCI and ParDCI binary codes available for research

purposes5.
5Interested readers can download the binary codes at address http://www.miles.cnuce.cnr.it/∼palmeri/datam/DCI
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