
FROM BCMP QUEUEING NETWORKS TO GENERALIZED STOCHASTIC
PETRI NETS: AN ALGORITHM AND AN EQUIVALENCE DEFINITION

Simonetta Balsamo, Andrea Marin
Dipartimento di Informatica

Universita’ Ca’ Foscari di Venezia
via Torino, 155 Venice, Italy

{balsamo,marin}@dsi.unive.it

KEYWORDS
GSPN, BCMP theorem, Coxian random variable, mul-
ticlass system

ABSTRACT

In this paper we define an algorithm that converts a
BCMP queueing network (QN) with multiple classes
of customers into a generalized stochastic Petri net
(GSPN). Product-form property of BCMP networks is
preserved by the GSPN model. The algorithm can be
embedded in a hybrid formalisms modelling tool. In
fact a product-form model can be partially expressed
in terms of queueing network and partially in terms of
GSPN. Then the algorithm determines an equivalent
GSPN representation of the whole system, which can
be eventually analyzed using exact techniques (taking
advantages of the product-form property) or by GSPN
simulators. It is worthwhile pointing out that multiple
classes QNs are considered; hence their GSPN repre-
sentation is not trivial, as queueing disciplines must be
represented.

INTRODUCTION
In this paper we consider different formalisms to model
systems for performance evaluation purposes. We con-
sider the integration of different types of models into a
unique framework, in order to take advantage of the rel-
ative merit of each of the modelling formalism involved.
To this aim we consider the relation between the class of
queueing network models and the generalized stochas-
tic Petri nets. Specifically, we propose an algorithm to
transform a class of queueing networks into the corre-
sponding stochastic Petri net model.
Queueing networks (QNs) are useful stochastic models
for the performance evaluation of systems that consist of
a set of customers which compete for a set of resources.
The exact analysis of such kind of models, if possible,
is usually computationally unfeasible due to the high
cardinality of the set of all possible system states. Some
classes of QNs have been introduced which allow a closed
expression for the stationary probabilities, i.e., it can be
expressed as product of functions that depend on the
state and on the type of each node. The main result is

known as BCMP theorem (Baskett et al. 1975) and it
considers open, closed and mixed QNs that consist of
multiple class of customers, probabilistic routing, Pois-
son arrivals and four types of service centers.
Generalized Stochastic Petri Nets (GSPNs) are stochas-
tic models that represent systems with concurrency and
synchronization and they are usually defined as models
at a lower level of abstraction with respect to QNs. In
fact the GSPN semantic is strictly defined in terms of
transitions, places and rules of firing, that are the GSPN
components. We formally introduce the GSPN defini-
tion in the next section. In the general case, GSPNs are
hard to study because of the generation of their reacha-
bility sets which is an NP-hard problem. Product-form
GSPNs are studied in (Coleman et al. 1996, Balbo et al.
2002) and they define the stationary state probability as
the product of functions depending on the marking of
each place. However, these GSPNs still do not overcome
the problem of deciding whether a marking is reachable
from the model initial state or not. As a consequence
this limits the applicability of the algorithms defined for
product-form GSPNs (Sereno and Balbo 1997, Coleman
et al. 1996). Hence the solution of such models can be
derived by simulation in many practical complex cases.
In this paper we present an algorithm that transforms
a multiple class BCMP queueing network into a GSPN
model. The task is not obvious for at least two reasons:
1- Multiple class QNs cannot be simply associated to
state machines as for single class QNs. In fact theo-
retical results (Baskett et al. 1975, Chandy et al. 1977)
have shown that the queueing discipline influences the
performance measures in multiple class QNs. Hence the
GSPN that models a specific multiple class queueing sta-
tion depends on the correspondent queueing discipline,
and the equivalence between the QN and GSPN models
must be proved.
2- BCMP QNs allow some classes of stations to serve the
customers with Coxian distributed service time. More-
over the service time distribution can be class depen-
dent. Also in this case state machines cannot be used,
and a different GSPN model has to be defined.
The proposed algorithm is based on some equivalence
results presented in previous papers (Balbo et al. 2003,
Balsamo and Marin 4-6 June 2007; October 23-25, 2007)



that we briefly recall in the section on related works.
The proposed technique has the following properties:
- the modelling approach is modular and hierarchical.
Indeed we define some GSPN blocks corresponding to
queueing stations that can be combined into more com-
plex systems preserving the product-form property.
- the GSPN models correspondent to the BCMP service
stations can be combined with other no-BCMP product-
form models. We have proved in (Balsamo and Marin
4-6 June 2007; October 23-25, 2007) that any system
that holds M ⇒ M Muntz (1972) property can be com-
bined with our BCMP-equivalent models preserving the
product-form solution.
The algorithm is based on the following idea:
- For each BCMP queueing center type it defines a cor-
respondent equivalent GSPN model.
- The GSPN models obtained from the queueing center
translations are connected by arcs and immediate tran-
sitions according to the QN routing probability matrix.
Theoretical results proved in (Balbo et al. 2003, Bal-
samo and Marin 4-6 June 2007; October 23-25, 2007)
define the equivalence property between the GSPN and
QN models, in terms of stationary state probability and
average performance indices. Even if translating a QN
into a GSPN increases the model complexity and re-
duces its readability, there are also some relevant ad-
vantages. First, the class of GSPN models is very ex-
pressive and its semantic if formally defined at a very
low level. This means that given a model definition, the
state representation can be obtained automatically. In
general this does not happen when studying QNs where
the system state has to be derived from a high level de-
scription of the queueing discipline. Therefore the class
of GSPN models represents a suitable candidate for be-
ing the base model for a hybrid modelling tool. A second
reason to use GSPN is related to the former one. We
observe that product-form BCMP QNs exact analyzers
or simulators usually do not allow the modeler to define
new queuing centers with specific discipline. For exam-
ple, to the best of our knowledge, modelling tools based
on QNs do not allow the modeler to introduce in the
network an MSCCC service center type defined in (Le
Boudec 1986) that extends the BCMP theorem. Using
GSPNs, one can define a model representing MSCCC
discipline and then can embed it into the net. There-
fore the performance indices can be derived, possibly by
the product-form analysis.

MODELS IN PRODUCT FORM
In this section we introduce the formalisms that we use
in the following and we briefly review the main defini-
tions of the QNs and the GSPNs. We will limit our
description to BCMP queueing networks.

BCMP Queueing networks
A queueing network consists of a set C = {c1, . . . , cN}
of N service centers or stations. Each service center has

a scheduling discipline. BCMP QNs allow the follow-
ing service disciplines: First Come First Served (FCFS),
Last Come First Served with preemptive resume (LCF-
SPR), Processor Sharing (PS) and Infinite Servers (IS).
In a QN, the customer enters a service center, waits in
the queue for the service, gets the service, and finally it
either exits the network or enters another service center.
Customers moves among the service centers according to
routing probabilities. At a given time, every customer
belongs to a class, but there can be class switchings, i.e.,
a customer can change its class after being served at a
station. The class of the customer influences the routing
probabilities and the service time at the stations. We de-
note by R the number of classes. The classes are labeled
by 1, . . . , r, . . . R and can be partitioned into chains. A
chain permanently characterizes a customer. In order to
simplify the notation we consider BCMP QNs with mul-
tiple chains but only one class for chain. Hence in this
context the terms class and chain becomes synonymous.
In the section on supported extension of the algorithm,
we show how it is possible to model class switching. We
use the following notation for QNs:
- p

(c)
ij with 1 ≤ i, j ≤ N and 1 ≤ c ≤ R is the probabil-

ity that a chain c customer goes to station j after being
served by station i

- p
(c)
i0 with 1 ≤ i ≤ N and 1 ≤ c ≤ R is the proba-

bility that a chain c customer exits the network after
being served by station i. Then the normalizing con-
dition holds, i.e.,

∑N
j=0 p

(c)
ij = 1, for 1 ≤ i ≤ N and

1 ≤ c ≤ R
- µ

(c)
i with 1 ≤ i ≤ N and 1 ≤ c ≤ R is the mean

service rate for a chain c customer at station i. If the
service time is Coxian distributed and L

(c)
i is the num-

ber of stages for chain c customers at station i, then
µ

(c)
`i , 1 ≤ ` ≤ L

(c)
i denotes the mean service rate for a

chain c customer at stage of service ` of station i.
- If chain c is open, i.e., external arrivals and departures
from the system are allowed, then λ(c) > 0 denotes the
external arrival rate for class c customers. The arrival
probability at node i and chain c is denoted by p

(c)
0i . It

is defined such that
∑N

i=1 p
(c)
0i = 1, for 1 ≤ c ≤ R. Then

λ(c)p
(c)
0i is the external arrival rate of chain c customers

to station i. If chain c is closed then p
(c)
0i = 0.

BCMP theorem considers four types of scheduling dis-
ciplines with some constraints. FCFS stations must
have exponentially distributed service time. The ser-
vice time must be chain-independent, i.e., µ = µ(c) for
1 ≤ c ≤ R. LCFSPR, PS and IS station types have less
restrictive conditions. The service time can be Coxian
distributed and the mean service rate can depend on
the customer being served. Let n = (n1, . . . ,nN) be a
vector whose components are R-dimension vector of vec-
tors and where component n

(r)
i represents the number

of class r customers at station i. Then BCMP theorem
(Baskett et al. 1975) states that, under stability con-



ditions, the stationary probability distribution is given
by:

π(n) =
1
G

d(n)
N∏

i=1

gi(ni), (1)

where gi(ni) is a function defined according to station
i type, d(n) is a function defined for state dependent
arrival rates and G is a normalizing constant. From
the stationary state distribution one can derive several
average performance indices.
BCMP theorem holds if the service rates depend on the
state of the network. Several load-dependent service
time functions have been defined in (Baskett et al. 1975).
However, for the sake of clarity, we first study stations
with a finite number of identical servers and scheduling
discipline IS, PS, LCFSPR, FCFS.

Generalized Stochastic Petri Nets
In this section we briefly recall the Generalized Stochas-
tic Petri Nets (GSPN). We consider the notation for
GSPN introduced in (Marsan et al. 1995). In order to
allow marking dependent probabilities for solving con-
flicts among immediate transitions we use the techniques
discussed in (Chiola et al. 1993). Let us define a marked
Stochastic Petri Net which consists of a 8-tuple as fol-
lows:

GSPN = (P, T , I(·, ·), O(·, ·),H(·, ·), Π(·), w(·, ·),m0)

where:
- P = {P1, . . . , PM} is the set of M places,
- T = {t1, . . . , tN} is the set of N transitions (both
immediate and timed),
- I(ti, Pj) : T ×P → N is the input function, 1 ≤ i ≤ N ,
1 ≤ j ≤ M ,
- O(ti, Pj) : T × P → N is the output function, 1 ≤ i ≤
N , 1 ≤ j ≤ M ,
- H(ti, Pj) : T × P → N is the inhibition function, 1 ≤
i ≤ N , 1 ≤ j ≤ M ,
- Π(ti) : T → N is a function that specifies the priority
of transition ti, 1 ≤ i ≤ N ,
- m ∈ NM denotes a marking or state of the net, where
mi represents the number of tokens in place Pi, 1 ≤ i ≤
N ,
- w(ti,m) : T ×NM → R is the function which specifies
for each timed transition ti and each marking m a state
dependent firing rate, and for immediate transitions a
state dependent weight,
- m0 ∈ NM represents the initial state of the GSPN, i.e.,
the number of tokens in each place at the initial state.
We consider ordinary nets, i.e., functions I,O and H
take values in {0, 1}. For each transition ti let us
define the input vector I(ti), the output vector O(ti)
and the inhibition vector H(ti) as follows: I(ti) =
(i1, . . . , iM ) where ij = I(ti, Pj), O(ti) = (o1, . . . , oM )
where oj = O(ti, Pj) and H(ti) = (h1, . . . , hM ) where
hj = H(ti, Pj). Function Π(ti) associates a priority to

transition ti. If Π(ti) = 0 then ti is a timed transi-
tion, i.e., it fires after an exponentially distributed fir-
ing time with mean 1/w(ti,m), where m is the marking
of the net. If Π(ti) > 0 then ti is an immediate tran-
sition and its firing time is zero. We say that transi-
tion ta is enabled by marking m if mi ≥ I(ta, Pi) and
mi < H(ta, Pi) for i = 1, . . . ,M and no other transi-
tion of higher priority is enabled. We consider just two
priority levels, 0 and 1. Hence when an immediate tran-
sition is enabled all the timed ones are disabled. The
firing of transition ti changes the state of the net from
m to m− I(ti)+O(ti). The reachability set RS(m0) of
the net is defined as the set of all markings that can be
reached in zero or more firings from m0. We say that
marking m is tangible if it enables only timed transitions
and it is vanishing otherwise. For a vanishing marking
m let Tα be the set of enabled immediate transitions.
Then the firing probability for any transition ti ∈ Tα

and any state m is denoted by p(ti,m) and it is defined
as: p(ti,m) = w(ti,m)/

∑
tj∈Tα

w(tj ,m).
Given a tangible marking m the transition with the low-
est associated stochastic time fires. Sometimes it can
be useful to associate a probabilistic output vector to
a transition. In this case we denote a possible output
vector of transition ti by Oj(ti), the output function
by Oj(ti, Pj) and its firing probability by d(ti, j) where∑

j d(ti, j) = 1. Note that this is not a real extension to
the model definition.
A GSPN is represented by a graph with the following
conventions: timed transitions are white filled boxes,
immediate transitions are black filled boxes, places are
circles, if I(ti, Pj) > 0 we draw an arrow from Pj to ti
labeled with I(ti, Pj), if O(ti, Pj) > 0 we draw an arrow
from ti to Pj labeled with O(ti, Pj), if H(ti, Pj) > 0 we
draw an circle ending line from Pj to ti labeled with the
value of H(ti, Pj), the marking m is represented by a
set of mj filled circles representing the tokens in place
Pj for each j = 1, . . . ,M .For ordinary nets we do not
use labels for the arrows.
GSPN analysis consists in finding the steady state prob-
ability for each tangible marking of the reachability
set, from which one can derive other average perfor-
mance indices. Some analysis techniques are presented
in (Marsan et al. 1995). GSPN in product-form are
studied in (Balbo et al. 2002) and they are defined as
GSPNs reducible to SPNs in Coleman, Henderson et al.
product-form (Coleman et al. 1996). GSPN product-
form can be also identified as a special case of Boucherie
product-form definition (Boucherie 1994). The product-
from GSPN models that we introduce with the proposed
algorithm do not belong to any of the previous product-
form classes.

RELATED WORKS
In this section we review some previous results on re-
lations between BCMP queueing network and GSPNs.
Hybrid modelling and combining different classes of



stochastic models has been studied in literature by
considering various types of models. For example in
(Balbo et al. 1998) the authors illustrate a hybrid
GSPN/QN modelling technique although product-form
is not deeply explored. In (Bause 1993) the author stud-
ies an hybrid formalism SPN/QN. He considers a SPN
with product-form (Coleman et al. 1996) and then in-
troduces a new place type which exhibits a queueing
station behavior. Then he shows that the whole system
maintains the product-form property. Our approach dif-
fers from the previous ones for several reasons:
- it considers multiple class QNs in product-form.
- it combines GSPNs and QNs so it allows the modeler
to use immediate transitions.
- an hybrid model is translated into a standard GSPN
model. Hence existing GSPN analyzers can be used in
order to simulate the net or to obtain exact results.
The definition of a GSPN model that is equivalent to a
multiple-class queueing station is presented in (Balsamo
and Marin 4-6 June 2007; October 23-25, 2007) and we
shall now informally recall the main idea. Let us con-
sider a multiple class FCFS station. In order to define
the GSPN model, when we consider the system state,
as mentioned above, we cannot just count the number
of customers in the stations for every class, as this tech-
nique would ignore the queueing discipline, leading to
incorrect results as discussed in (Balbo et al. 2003). For
each customer class we use a place for representing the
customers in queue, and a place for the customer in ser-
vice. Another place stores as many tokens as the free
servers are. If there is a free server and a set of waiting
customers an immediate transition puts a customer in
service. The problem is how to choose which customer
has to get the service. In (Balsamo and Marin 4-6 June
2007) we showed that we can choose the customer to
put in service probabilistically, according to the uniform
distribution. This is obtained by an appropriate defini-
tion of the immediate transition weights. Service time
is simply modelled by a timed transition. Figure 1 il-
lustrates the GSPN model equivalent to a two classes
FCFS station with 3 identical servers.

Figure 1: FCFS equivalent representation by GSPN

Representing an LCFSPR queueing station is more com-
plex than FCFS, because it allows Coxian distributed

service times, so we have to represent every stage of ser-
vice. In the GSPN model, as soon as a token represent-
ing a new customer arrives, two things can happen: 1)
a customer is preempted. This happens if there are not
free servers. The customer to preempt is chosen proba-
bilistically with uniform distribution. This is modelled
by immediate transitions. 2) The customer enters in ser-
vice immediately. This happens if there is at least one
free server. This is modelled by immediate transitions.
When a token representing a customer leaves the net for
a service completion, a server becomes free if there are
not preempted customers, or a preempted customers is
resumed otherwise. The customer to be resumed is cho-
sen probabilistically with uniform distribution. When a
customer is preempted, the correspondent token has to
be stored in an appropriate place that will identify the
customer class and the stage of serviced reached.
The equivalence between the models and the QN sta-
tions is defined and proved in (Balsamo and Marin 4-
6 June 2007; October 23-25, 2007) and is based on
M ⇒ M property. (Muntz 1972). GSPN models can
be combined with any other models holding M ⇒ M
property obtaining a product-form solution. In order to
decide whether a system holds M ⇒ M property the
space state has to be built, so it cannot be considered
a structural property. Deciding how this property can
be translated into general structural GSPN conditions
is still an open problem.

ALGORITHM DEFINITION
We shall now define the algorithm that converts a
BCMP QN with multiple classes of customers into a
product-form GSPN. Let Ω be the set of queueing sta-
tions of the BCMP network. In the algorithm we use the
following syntactical conventions for the input that is
the set of parameters of the QN, according to the defini-
tion introduced in the section on product-form stochas-
tic models:
- P is the routing matrix.
- Ω = {c1, . . . cN} is the set of queueing stations, and ci

is a record with the following fields: ci.µ
(c) is the sin-

gle server service rate, ci.K is the number of servers,
ci.type is a description of the station type. For FCFS
stations, we use ci.µ to point out that class-dependent
service rate is not allowed.
- If station i has a Coxian service time distribution, then
we use the following notation for a customer of class r:
ci.Lr is the number of stages of the random variable,
ci.µ

(r)
` the rate of stage `, ci.a

(r)
` (` < Lr) the probabil-

ity that a customer goes to stage `+1 after being served
at stage `, and by ci.b

(r)
` the probability of leaving the

Coxian service after being served at stage `.
- λ = (λ1, . . . , λR) is the vector of the arrival rates for
chain r, 1 ≤ r ≤ R. If chain r is closed then λr = 0.
Vector K = (K1, . . . ,KR) components denote the num-
ber of customers for closed chains. Kr = 0 for open
chains.



Let us describe the output syntactical conventions that
is the definition of the GSPN equivalent to the given
QN.
- P, T are the sets of places and transitions, respectively.
Each element of P or T can be labeled by a superscript
(e.g. P I

r,`,i is labeled by an I). Subscript letters denote
some variables defined in the algorithm. In particular
letter r denotes the customer chain/class, ` the stage of
a Coxian random variable, i, j the correspondent service
center number. For example PS

r,`,i is a place defined in
the i-th service center translation, correspondent to the
`-th stage of the r class Coxian service time. Timed
transitions use capital T . Labels I and O play a spe-
cial role for places, as P I

r represents the input-place for
class r customers, and PO

r the output place. Later in
this section we show an example.
- m is a net state and M is the initial state. Vector m
consists of components whose names are derived from
the correspondent place names. For example mS

i is the
number of initial tokens in place PS

i .
- The arcs are specified in terms on input, output, in-
hibition functions as defined above in the section on
product-form stochastic models. Transition priorities
can be either 0 or 1 and they are determined by func-
tion Π introduced above.
- The arc weights are defined by function w(t,m) for
each timed transition t and state m. For brevity we
write just w(t). As arc weights can be state dependent,
a symbolic function must be assigned w(t). In order to
point out this, we use the assignment symbol ← instead
of the usual :=.
- Function d(t, j) defines the probability of the output
vector Oj(t, Pj) for a transition t and a place Pj , as de-
scribed above in the section on product-form stochastic
models.

Before introducing the algorithm it is worthwhile illus-
trating some notes on the translation approach. The al-
gorithm first translates every QN station into a GSPN
(sub)model. Then it combines these GSPNs obtained by
the first step by connecting them through a set of imme-
diate transitions that model the QN routing. In order
to simplify the definition of the new combined GSPN
in product-form, we use a standard name for input and
output places for each GSPN (sub)model correspond-
ing to a station type. This can be thought as an input
and output interface of each GSPN submodel that sim-
plifies their composition (see Figure 2). Although this
can be a complication in the net structure, as a set of
reducible immediate transitions could be generated, the
modularity of our algorithm results really enhanced. In
fact, let us consider station i and suppose that p

(r)
ij > 0

and p
(r)
ik > 0. Using input and output interfaces we can

represent this probabilistic routing without caring about
the queueing discipline of stations i and j as illustrated
in Figure 3. The main structure of the algorithm is
simple and is shown by Algorithm 1. The main cycle of

Figure 2: Modularity of station equivalent GSPN blocks

Figure 3: Modelling the QN probabilistic routing.
In this example the output vector of transition tZr,i

is determined probabilistically and O0(tZr,i, P
I
r,j) = 1,

O0(tZr,i, P
I
r,k) = 1 and d(tZr,i, 0) = p

(r)
ij , d(tZr,i, 1) = p

(r)
ik .

the algorithm considers each service center of the QN
and executes the appropriate code block. Finally, the
queueing network routing is modelled by ROUTING-
Block. Instructions graph(g) := ∅, where g is a func-
tion, are used to initialize the function definitions to the
empty set, i.e. their domain is initially empty.
FCFSBlock is defined by Algorithm 2. It generates the
FCFS-equivalent GSPN block described in the previous
section. PS

i is the place for the free servers, P I
r,i the

place for queued customers of class r (and also the input
place), PS

r,i the place for customers being served. Place
PO

r,i receives the class r customers after job completion.
Transition tr,i puts in service a class r customer and Tr,i

models the service time.
Let us illustrate the LCFSPRBlock. In order to clarify
the notation, we recall that i denotes the considered sta-
tion, ` the Coxian service stage, r the customer class, la-
bel Q denotes the queue and label S denotes the service.
The transformation algorithm for the LCFSPRBlock is
illustrated by Algorithm 3. Place PS

r,`,i contains the to-
kens representing class r customers in service at stage `
while place PQ

r,`,i contains the preempted ones. Transi-
tion tPr,`,i implements the preemption if there is an ar-
rived customer (I(tPr,`,i, P

T
i ) := 1), there is at least a

class r customer in stage ` (I(tPr,`,i, P
S
r,`,i) := 1), there

are no free servers (H(tPr,`,i, P
S
i ) := 1). Transition tRr,`,i

implements the resume of a customer. Place PT
r,i stores

the class r just arrived customers that will get the ser-
vice immediately.
The ISBlock is simple and is illustrated by Algorithm 4.
PSBlock is similar to ISBlock so the same Algorithm 4



Input: BCMP QN: Ω,P, λ,K
Output: GSPN T ,P, w,H, I,O, d,M
/* Initialization */
M := 0; P := ∅; T := ∅;
graph(d) := ∅; graph(H) := ∅; graph(I) := ∅;
graph(O) := ∅; graph(w) := ∅;
/* Transform every service center */
foreach ci ∈ Ω do

switch ci.type do
case FCFS

FCFSBlock;
end
case LCFSPR

LCFSPRBlock;
end
case IS

ISBlock;
end
case PS

PSBlock;
end

end
end
/* Model the routing */
ROUTINGBlock;
/* Model arrivals and closed chains population

*/
CHAINSBlock;

Algorithm 1: Main program

/* Add a place for the free servers */

P := P ∪ {PS
i };

foreach r ∈ ci.R do
/* Add 2 places, an immediate transition

and a timed transition for each class */

P := P ∪ {P I
r,i, P

S
r,i, P

O
r,i};

T := T ∪ {tr,i, Tr,i} ;
/* Input functions of immediate transition

*/
I(tr,i, P

S
i ) := 1;

I(tr,i, P
I
r,i) := 1;

I(Tr,i, P
S
r,i) := 1;

/* Set immediate transitions */

O(tr,i, PS
r,i) := 1;

O(Tr,i, P
O(r, i) := 1;

O(Tr,i, P
S
i ) := 1;

w(tr,i) ← mA
r,i;

/* Set timed transition rates */

w(Tf,r,i) ← mS
r,i ∗ ci.µ;

/* Transition priority */
Π(tr,i) := 1;
Π(Tr,i) := 0;
MS

i := ci.K;
end

Algorithm 2: FCFSBlock

/* Add a place for the free servers */

P := P ∪ {PS
i };

P := P ∪ {PT
i };

foreach i ∈ ci.R do
/* Set up the arrival places and

transitions */

P := P ∪ {P I
r,i, P

T
r,i};

T := T ∪ {tIr,i};
I(tIr,i, P

I
r,i) := 1;

O(tIr,i, P
T
r,i) := 1;

O(tIr,i, P
T
i ) := 1;

w(tIr,i) := 1; Π(tIr,i) := 1;
/* Set up the output places */

P := P ∪ {PO
r,i};

/* Add the other needed places and
transitions for each class */

for ` := 1 to ci.Lr do
P := P ∪ {PQ

r,`,i, P
S
r,`,i};

/* Add transitions which model the
service time */

T := T ∪ {Tr,`,i};
w(Tr,`,i) ← ci.µ

(r)
` ∗ mS

r,`,i;
Π(Tr,`,i) := 0;
I(Tr,`,i, P

S
r,`,i) := 1;

if ` 6= ci.Lr then
O0(Tr,`,i, P

S
r,`+1,i) := 1;

d(Tr,`,i, 0) := ci.a
(r)
` ;

end
O1(Tr,`,i, P

S
i ) := 1;

O1(Tr,`,i, P
O
i ) := 1;

d(Tr,`,i, 1) := ci.b
(r)
` ;

/* Add transitions modelling the
preemption (label P) */

T := T ∪ {tPr,`,i}; I(tPr,`,i, P
S
r,`,i) := 1;

I(tPr,`,i, P
T
i ) := 1; H(tPr,`,i, P

S
i ) := 1;

O(tPr,`,i, P
Q
r,`,i) := 1; w(tPr,`,i) ← mS

r,`,i;
Π(tPr,`,i) := 1;
/* Add transitions modelling the resume

(label R) */

T := T ∪ {tRr,`,i}; I(tRr,`,i, P
Q
r,`,i) := 1;

I(tRr,`,i, P
S
i ) := 1; H(tRr,`,i, P

T
i ) := 1;

O(tRr,`,i, P
S
r,`,i) := 1; w(tRr,`,i) ← mQ

r,`,i;
Π(tRr,`,i) := 1;

end
/* Add transitions modelling the customers

entering in stage of service 1 */

T = T ∪ {tRr,0,i}; I(tRr,0,i, P
S
i ) := 1;

I(tRr,0,i, P
T
i ) := 1; I(tRr,0,i, P

T
r,i) := 1;

O(tRr,0,i, P
S
r,1,i) := 1; w(tRr,0,i) := 1;

Π(tRr,0,i) := 1;
MS

i := 0;
end

Algorithm 3: LCFSPRBlock



applies, except for the definition of function w. In fact
in PS stations there is a limited number of servers, hence
the servers speed must be partitioned among all the cus-
tomers in the station. The the weight w of transition
Tr,`,u for PS station is defined as follows:

w(Tr,`,i) ←
min

(∑
t∈ci.R

∑ci.Lr

u:=1 mt,u,i, ci.K
)

∑
t∈ci.R

∑ci.Lr

u:=1 mt,u,i

∗ ci.µ
(r)
` ∗ mr,`,i.

Place Pr,`,i contains the class r customers at stage ` of
station i. Transition Tr,`,i models the stage ` service
time and its output vector is probabilistic according to
the Coxian random variable parameters.

/* Set the places set */
foreach r ∈ ci.R do

P := P ∪ {PO
r,i};

for ` := 1 to ci.Lr do
/* Add place for stage ` of class r

customers */
P := P ∪ {Pr,`,i};
/* Add transitions modelling service

time */
T := T ∪ {Tr,`,i};
w(Tr,`,i) ← mr,`,i ∗ ci.µ

(r)
`,i ;

I(Tr,`,i, Pr,`,i) := 1;
O0(Tr,`,i, Pr,`+1,i) := 1;
d(Tr,`,i, 0) := ci.ar,`;
O1(Tr,`,i, P

O
r,i) := 1;

d(Tr,`,i, 1) := ci.br,`;
end
Let P I

r,i be an alias for Pr,`,1;
end

Algorithm 4: ISBlock

In the ROUTINGBlock we define a set of transitions
tZ , where tZr,i models the probabilistic routing for class
r customers after being served by station i. The main
idea has been introduced at the beginning of this sec-
tion. The external arrivals are modelled by appropri-
ate timed transition that are always enabled. In order
to model a chain population it suffices to set the initial
marking M I

r,i for an arbitrary service center i equals to
the chain population. This work is done by CHAINS-
Block illustrated by Algorithm 6.

SUPPORTED EXTENSIONS
The proposed algorithm that transforms BCMP QNs
into GSPNs can support some extensions of the intro-
duced class of BCMP QNs. In this section, for sake of
brevity we just cite some extensions that can be easily
supported by the algorithm with small changes.
State dependent service rate. BCMP theorem de-
fines several extensions of the product-form solution to

/* model the QN routing by GSPN */
foreach ci ∈ Ω do

foreach r ∈ ci.R do
/* Model internal routing */

T := T ∪ {tZr,i};
I(tZr,i, P

O
r,i) := 1;

w(tZr,i) := 1;Π(tZr,i) := 1;
f := 0;
foreach cj ∈ Ω do

if p
(r)
i,j > 0 then

f := f + 1;
Of (tZr,i, P

I
r,j) := 1;

d(tZr,i, f) := p
(r)
i,j ;

end
end
/* model QN departures */

if p
(r)
i,0 > 0 then

d(tZr,i, f + 1) := p
(r)
i,0 ;

end
end

end
Algorithm 5: ROUTINGBlock

for r := 1 to R do
if λr > 0 then

/* Open chain */
T := T ∪ {Tr,0};
w(Tr,0) := λr;
f := 0;
foreach p

(r)
0,j > 0 do

Of (Tr,0, P
I
r,j) := 1;

d(Tr,0, f) := p
(r)
0,j ;

f := f + 1;
end

end
else

/* Closed chain */

Choose an arbitrary i such that P I
r,i exists;

M I
r,i := Kr;

end
end

Algorithm 6: CHAINSBlock



include state dependent service rates. We can represent
all the extensions whose service rates depend only on the
state of the stations (i.e., we exclude the service rates
depending of the state of a subnet of the QN).
Multiple chain and multiple class. In this work we
have not considered the case of customer class switching.
This has been done just to keep the notation simple. In
fact by introducing some easy changes to the algorithm,
with a more complex state notation we can also model
multiple classes and multiple chains BCMP QNs.
Other service station queueing disciplines. Some
extensions of BCMP theorem have been defined to al-
low different queueing disciplines that lead to M ⇒ M
product-form. If a GSPN model can represent such
disciplines, then the proposed transformation algorithm
from QN to GSPN can be easily modified in order to in-
clude these new station types. In fact it suffices to define
a station type label and extend the switch construct of
Main Program to include that new type of station. Then
the model definition must provide an input interface and
an output interface as described in the previous section.

EXAMPLE
In this section we sketch an example of application of
the proposed algorithm, by considering also its exten-
sions. We apply the algorithm to the queueing network
illustrated in Figure 4 (a). It is a QN with three classes
of customers clustered in two chains (classes A and B,
class C) and there is a class switching. Classes A and B
form an open chain while class C a closed one. Note that
the QN has product-form solution, but it is not a BCMP
QN because of the presence of a MSCCC station, i.e., a
queueing discipline not considered by BCMP theorem.
MSCCC discipline follows a multiple servers RANDOM
discipline, but cannot serve two customers of the same
class simultaneously. It is described in Le Boudec (1986)
and it is proved and it holds M ⇒ M property. Cus-
tomers of class A and B have the same stochastic be-
havior once they reach the servers, and they leave the
system at the end of the service. Class C customers
can be thought as representing a set of interior control
processes whose number is given, denoted by K = 5.
In order to simplify the system model we assume that
all the service times are exponentially distributed. We
assume that station 2 has 2 servers and station 3 has 3
servers.
By applying the proposed algorithm the three service
centers can be translated into GSPN models that are
eventually composed and connected according to the
routing matrix, as described in the previous section.
Then we obtain the overall GSPN equivalent to the
given QN, as showed in Figure 4 (b). The parameters of
the GSPN are completely defined by the various steps
of the algorithm.
As the three blocks hold M ⇒ M property, we can state
that the whole system has a product-form stationary
probabilities function. Then the derived GSPN can be

analyzed by product-form solution or by simulation.
Note that in this example we have showed how it is pos-
sible to deal with class switching and no-BCMP queue-
ing disciplines.

CONCLUSIONS
In this paper we have defined an algorithm that given a
BCMP QN returns an equivalent GSPN. The algorithm
computational complexity is linear with the number of
stations of the QN and with number of no-zero elements
of its routing probability matrix (in the worst case, with-
out class switching it is of O(N2R) operations, and with
class switching it is O((NR)2) operations, where N is
the number of the QN stations and R the number of
classes). The proposed algorithm is defined in terms
of a mathematical definition of the models, it can be
easily rewritten in order to deal with well-defined lan-
guages for representing PNs and their extensions such
as PNML Weber and Kindler (2003). Further research
can have two directions. From the theoretical viewpoint
an open problem is the definition of general structural
sufficient conditions on GSPN models that ensure that
a model holds the M ⇒ M property. This could allow
an automatic verification of the conditions to combine
a GSPN block with others ones holding M ⇒ M prop-
erty to obtain a product-form model. From the practi-
cal viewpoint, open research concerns possible language
extensions to represent GSPNs in order to be able to
represent the following features:
- to represent the concept of class of a place. Note that
this does not necessarily require the idea of color, as de-
fined in Colored Petri Net extension.
- to identify whether a model holds M ⇒ M property.
An open problem is the definition of an automatic effi-
cient algorithm to decide this condition.
- to represent the stationary state probability expres-
sion of the model in isolation for each GSPN model. In
fact, although we know that a GSPN model holding the
M ⇒ M property has a product-form solution, only
if the explicit expression of the product-form is known
we can obtain the stationary state probabilities for the
whole net. When the product-form expression is not
known, the model can be still studied by simulation, and
the theoretical results guarantee that the performance
indices are the same of the original hybrid model.

REFERENCES

Balbo G.; Bruell S.C.; and Ghanta S., 1998. Combining
queueing network and generalized stochastic Petri nets
for the solution of complex models of system behavior.
IEEE Trans on Computers, 37, 1251–1268.

Balbo G.; Bruell S.C.; and Sereno M., 2002. Product
Form Solution for Generalized Stochastic Petri Nets.
IEEE Trans on Software Eng, 28, 915–932.

Balbo G.; Bruell S.C.; and Sereno M., 2003. On the rela-



Figure 4: (a) System modelled by a no-BCMP queueing network. (b) System modelled by a product-form GSPN.

tions between BCMP Queueing Networks and Product
Form Solution Stochastic Petri Nets. Proc of 10th In-
ternational Workshop on Petri Nets and Performance
Models, 2003, 103–112.

Balsamo S. and Marin A., 4-6 June 2007. On represent-
ing multiclass M/M/k queues by generalized stochastic
Petri nets. In Proc. of ECMS/ASMTA-2007 Confer-
ence. Prague, Czech Republic, 121–128.

Balsamo S. and Marin A., October 23-25, 2007. Repre-
senting LCFSPR BCMP service centers with Coxian
service time distribution. In Proc. of Valuetools ’07
conference. Nantes, France.

Baskett F.; Chandy K.M.; Muntz R.R.; and Palacios
F.G., 1975. Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers. J ACM,
22, no. 2, 248–260.

Bause F., 1993. Queueing Petri Nets: A Formalism for
the Combined Qualitative and Quantitative Analysis
of Systems. In 5th International Workshop on Petri
Nets and Performance Models. Toulouse (France), 14–
23.

Boucherie R.J., 1994. A Characterisation of indepen-
dence for competing Markov chains with applications
to stochastic Petri nets. IEEE Tran on Software Eng,
20, no. 7, 536–544.

Chandy K.M.; John H. Howard J.; and Towsley D.F.,
1977. Product Form and Local Balance in Queueing
Networks. J ACM, 24, no. 2, 250–263.

Chiola G.; Marsan M.A.; Balbo G.; and Conte G., 1993.
Generalized stochastic Petri nets: a definition at the
net level and its implications. IEEE Trans on Software
Eng, 19, no. 2, 89–107.

Coleman J.L.; Henderson W.; and Taylor P.G., 1996.
Product form equilibrium distributions and a convolu-
tion algorithm for Stochastic Petri nets. Performance
Evaluation, 26, 159–180.

Le Boudec J.Y., 1986. A BCMP extension to multi-
server stations with concurrent classes of customers.
In SIGMETRICS ’86/PERFORMANCE ’86: Proc.
of the 1986 ACM SIGMETRICS Int. Conf. on Com-
puter performance modelling, measurement and eval-
uation. ACM Press, New York, NY, 78–91.

Marsan M.A.; Balbo G.; Conte G.; Donatelli S.; and
Franceschinis G., 1995. Modelling with generalized
stochastic Petri nets. Wiley.

Muntz R.R., 1972. Poisson Departure Processes and
Queueing Networks. Tech. Rep. IBM Research Report
RC4145, Yorktown Heights, New York.

Sereno M. and Balbo G., 1997. Mean Value Analysis
of stochastic Petri nets. Performance Evaluation, 29,
35–62.

Weber M. and Kindler E., 2003. Petri Net Technol-
ogy for Communication-Based Systems, H. Ehrig, W.
Reisig, G. Rozenberg, H. Weber, chap. The Petri Net
Markup Language. 124–144.


