Product-form solutions for models with joint-state dependent transition rates

Simonetta Balsamo, Andrea Marin

Università Ca' Foscari - Venezia Dipartimento di Informatica Italy

2010

<ロ> (四) (四) (四) (四) (四) (四) (四)

Presentation outline

Introduction and Motivations

- Framework
- Product-form solutions
- Motivations

2 Previous works

• The model of Henderson, Taylor et al. (HT)

3 The novel results

- Restrictions
- Main theorem
- Special cases and examples

Conclusion

4 B b 4 B b

Framework Product-form solutions Motivations

Notation

• We consider Labelled Markovian Automata (LMA) defined as follows:

$$S_i =$$

- Let S_i be the *i*-th model
- $S_i = \{n_i, n'_i, n''_i, \ldots\}$: denumerable set of states of S_i
- \mathcal{L}_i : finite set of labels of S_i
- $\mathcal{T}_i = \{n_i \xrightarrow{a_i} n_i'\}$: transition from state n_i to n_i' labelled by $a_i \in \mathcal{L}$
- q_i: T_i → ℝ⁺ is a partial function which associates a positive real number with each *active* transition (e.g., q(n_i ^{a_i}→ n'_i) = λ)
- Transitions without rates are *passive*
- Transitions with the same label must be all active or all passive
- $\mathcal{P}_i, \mathcal{A}_i$: sets of passive and active labels of S_i . $\mathcal{L}_i = \mathcal{P}_i \cup \mathcal{A}_i$

化原因 化原因

-

Framework Product-form solutions Motivations

Closed automaton

- An automaton S_i is closed if $\mathcal{P}_i = \emptyset$
 - $\mathcal{L}_i = \mathcal{A}_i$
 - All the transitions have an associated rate
- The transition rates are the parameters of the exponential distributed time needed to carry a transition on
- The process underlying a closed automaton is a Continuous Time Markov Chain (CTMC)
- If S_i is an open LMA and a ∈ P_i, then S_ia ← λ is the automaton S_i in which each transition labelled by a takes λ as a rate (closure)

イロト 不得 とくほ とくほ とうほう

Framework Product-form solutions Motivations

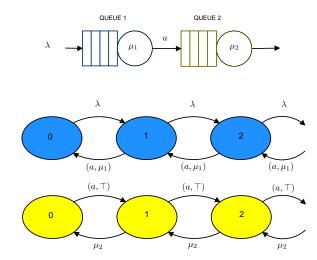
Specifying the cooperation

- S_1, \ldots, S_N is the set of cooperating models
- The state space is $S_1 imes S_2 imes \ldots imes S_N$
- For each label $a \in \bigcup_{i=1}^{N} \mathcal{L}_i$ we have one of the following:
 - No-cooperating label: $a \in A_i$ for some i = 1 ... N and $a \notin L_j$ with $j \neq i$
 - Cooperating label: $a \in \mathcal{A}_i \cap \mathcal{P}_j$ and $a \notin L_k$ with $k \neq i, j$
- If a ∈ A_i ∩ P_j transitions labelled by a in S_i and S_j can be performed only jointly. The rate of the joint transition is given by the rate of the active transition in S_i
- The automaton resulting from a cooperation has still an underlying CTMC
- We can specify only pairwise cooperations!

Introduction and Motivations

Previous works The novel results Conclusion Framework Product-form solutions Motivations

An example



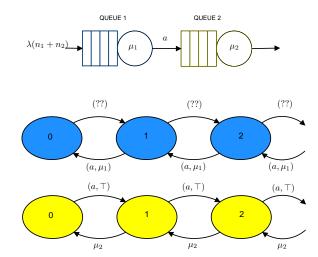
- Tandem of exponential queues
- Arrivals according to a Poisson process
- Independent service times

э

イロト イポト イヨト イヨト

Framework Product-form solutions Motivations

An example with joint-state dependent transition rates



- Tandem of exponential queues
- Arrivals according to a Poisson process whose rate depends on the total number of customers in the system
- Independent service times

3

(a)

Framework Product-form solutions Motivations

RCAT product-form

Let S_1, \ldots, S_N a cooperation of LMAs Assume that the following conditions are satisfied:

- for each synchronising label a:
 - if $a \in \mathcal{P}_i$ then $\forall n \in \mathcal{S}_i \exists ! n' \in \mathcal{S}_i$ s.t. $n \xrightarrow{a} n' \in \mathcal{T}_i$
 - if $a \in \mathcal{A}_i$ then $\forall n \in \mathcal{S}_i \exists ! n' \in \mathcal{S}_i$ s.t. $n' \xrightarrow{a} n \in \mathcal{T}_i$
- There exists a set of positive real value $\mathcal{K} = \{K_1, \dots, K_T\}$ for each synchronising label a_1, \dots, a_T such that $S_i^C = S_i \{a_t \leftarrow K_t, \forall a_t \in \mathcal{P}_i\}$ satisfies the following condition:

$$\forall a_u \in \mathcal{A}_i, \forall n \in \mathcal{S}_i \ \frac{\pi_i(n')}{\pi_i(n)} q_i(n' \xrightarrow{a_u} n) = K_u$$

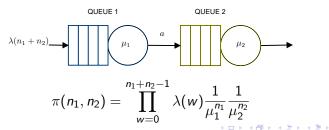
Then the steady-state distribution of π of the joint automata is in product-form:

$$\pi(\mathbf{n}) \propto \prod_{i=1}^{N} \pi_i(n_i) \quad \mathbf{n} = (n_1, \dots, n_N)$$

Framework Product-form solutions Motivations

Product-form solutions for model with joint-state dependent rates

- \bullet Values in ${\cal K}$ represent the reversed rates of the active transitions
- RCAT requires them to be constant
- How to check this condition with models in isolation?
- Is this a necessary condition for joint-state dependent transition rates?



Solution for queueing networks and stochastic Petri nets in product-form

- We take inspiration from earlier works of Coleman, Henderson, Taylor, Lucic for Stochastic Petri nets, and Serfozo for queueing networks
- We explain their technique for the tandem of exponential queues with joint-state dependent arrival rate
- Define the joint-state dependent rates of station *i* as follows:

$$q_i(\mathbf{n} - \mathbf{1}_i + \mathbf{1}_j) = rac{\psi(\mathbf{n} - \mathbf{1}_i)}{\phi(\mathbf{n})}\chi_i$$

直 と く ヨ と く ヨ と

The model of Henderson, Taylor et al. (HT)

Why does it work?

<ロ> <同> <同> < 同> < 同>

Restrictions Main theorem Special cases and examples

Restrictions on the model class

Simonetta Balsamo, Andrea Marin Product-form solutions for models with joint-state dependent tra

《曰》《聞》《臣》《臣》

Restrictions Main theorem Special cases and examples

Product-form theorem

Simonetta Balsamo, Andrea Marin Product-form solutions for models with joint-state dependent tra

・ロン ・部 と ・ ヨ と ・ ヨ と …

Restrictions Main theorem Special cases and examples

Intuition of the conditions

Simonetta Balsamo, Andrea Marin Product-form solutions for models with joint-state dependent tra

・ロン ・四 と ・ ヨ と ・ 日 と

Restrictions Main theorem Special cases and examples

The theorem applied to HT models

Simonetta Balsamo, Andrea Marin Product-form solutions for models with joint-state dependent tra

э

Restrictions Main theorem Special cases and examples

An example

Simonetta Balsamo, <u>Andrea Marin</u> Product-form solutions for models with joint-state dependent tra

・ロト ・回ト ・ヨト ・ヨト

Conclusion

Simonetta Balsamo, Andrea Marin Product-form solutions for models with joint-state dependent tra

<ロ> <同> <同> < 同> < 同>

э