A Model and a Language for Representing and
Manipulating Annotated Text Collections

Marek Maurizio and Renzo Orsini

Dipartimento di Informatica,
Universita Ca’ Foscari di Venezia,
Via Torino 155, Venezia Mestre, Italy,
{marek, orsini}@dsi.unive.it

Abstract. Traditionally, collections of texts are digitally represented as
a set of documents containing the text along with some kind of markup
to define extra information, like metadata, annotations, etc. We propose
a different approach that models the textual information in a dual way:
as a formatted sequence of characters, as well as a composition of a par-
ticular kind of objects, called textual objects. With them, it is possible
to represent different structures over the same text, together with com-
plex annotations. Manuzio is a statically typechecked language to define
a schema of such textual objects, and to write complex queries and ap-
plications on them with a set of powerful operators. In this paper we
introduce the foundation of our textual model, the main features of the
language, as well as a sketch of a system to manage persistent collections
of texts and execute Manuzio programs.

Key words: object-oriented language, component, text-analysis, tex-
tual object, Manuzio language

1 Introduction

Commonly, text which must be automatically processed is represented through
the use of some kind of markup language, which intersperses the base text
with other, distinguished, text carrying some information, like metadata, for-
matting instructions, declaration of textual structures, etc. This approach has
been widely diffused also by the availability of standards like XML, which made
possible the definition of specific formats for many kinds of text, from literary
texts (TEI [?]) to web pages (XHTML).

Many are the advantages of this approach: the marked text is easily created
or modified with a text editor and at the same time can be efficiently processed;
text can be exchanged among different systems and programs and in general
used in a robust, interoperable way; many different kinds of information can be
added to the text in a string-encoded format.

These advantages are, however, balanced by several, noteworthy, shortcom-
ings, both on the power and expressiveness of the representation and on the way
in which computation can be carried over that. A first severe limitation is that

2 M. Maurizio and R. Orsini

marking can be applied only to contiguous non-overlapping segments of text,
and that the text can be structured only in a strictly hierarchical fashion. Solu-
tions exist to overcome in part these limitations, like the ones surveyed in [?],
but they tend to be cumbersome, to produce complex unreadable texts, and to
notably increase the complexity of programs dealing with such texts. We could
summarize these critics by saying the traditional markup approach is not scal-
able: it is a simple and elegant solution for simple text annotations, but it is
not adequate to deal with very complex situations, where annotations are made
on different levels of the texts, belongs to different categories of meaning, are
created by different authors, and so on.

Another important disadvantage of the markup approach is, in our opin-
ion, the fact that programs for processing marked text are not easily written,
requiring the mastering of complex query languages, not specialized for the par-
ticular domain, like those typical of XML (for instance, XPath, XQuery, XSLT).
This problem becomes particularly serious when one has the objective of devel-
oping complex text analysis applications, like for instance those in the field of
text mining, or applications which perform sophisticated syntactic or semantic
analysis.

To overcome these disadvantages, we have developed a new data model which
can be considered a domain specific object-oriented model, with many similari-
ties to classical object-oriented models, both in the programming languages and
in database area. This model has, however, a few key differences from the clas-
sical ones, and, in our opinion, some of its characteristics could be useful in
domains different from that of texts in which it is now applied.

In this paper we will present the model, together with a concrete example
of a programming language in which it is embodied, the Manuzio language. The
language, which is still being designed, is intended to be used by a multi-user
system to store persistently a digital collection of texts over which queries and
programs are evaluated.

The objectives that we are trying to achieve through this approach are the
following:

— to represent collections of texts with any kind of structure, including different
overlapping structures for the same text;

— to represent any kind of annotations, even with complex information, on any
part of the text, taking into account whatever text structure we are interested
in;

— to provide a language in which to make queries, even sophisticated ones, on
text and annotations, and build text processing applications;

— to build a system which would store in a persistent way one or more collection
of texts, over which the programs written in the Manuzio language would be

executed efficiently.

Objects for Texts 3
1.1 Related works

Solutions for text representation which are not markup-oriented have been al-
ready presented in the literature. For instance [?, ?] present a model where text
is seen as one or more hierarchies of objects that is the foundation of more com-
plex systems like those presented in [?, ?, ?]. The approach that we propose
presents a few similarities with those described in these papers, but it aims to
provide a more complete solution. On one hand the Manuzio model is easily
scalable, as the structure of each textual collection can be defined ad-hoc. On
the other hand Manuzio provides a full programming and query language along
with the model; such a language has been built to be expressive and easy to use
in its specific domain of application. Finally, the Manuzio system is aimed to
allow data to be stored in a persistent repository, to annotate it in a multi-user
way, and to share results effortlessly.

The rest of the paper is organized as follows: in section ?? the foundations of
the data model are presented. In section 7?7 we have a look at the major features
of the Manuzio language and, finally, in section 7?7 an overview of the full system
is given.

2 The Manuzio Model

We consider the textual information in a dual way: as a formatted sequence of
characters, as well as a composition of logical structures called textual objects.
These objects will be defined both in terms of the text which they represent
(called the underlying text), as well as in terms of the other textual objects
which are related to them. Textual objects participate to a composition relation,
which specifies which objects are components of others. Textual objects can
have also attributes and methods, and are classified through a set of types, called
textual object types, among which a specialization relation is defined.

In this section we will present the model in a somewhat abstract way, through
the help of a graphical notation, so that one can understand the main concepts
without being distracted by syntactic details; in the next section, we will show
a concrete syntax for the defined concepts.

2.1 Text

To put a concrete base to our model, we assume the existence of some text
which must be represented. This can varies from a single textual document, to a
collection of literary works of one or more authors, to a complete digital textual
library. To simplify the discussion, and without loss of generality, we can assume
that we intend to model a single (possibly very large) text, represented by a
sequence of Unicode characters, in a format which is chosen by the user.

Definition 1. The full text is a sequence of Unicode characters that represents
all the text described by a specific Manuzio textual model.

4 M. Maurizio and R. Orsini
2.2 Textual Objects

A textual object is a computer representation of a text portion of the full text
together with its structural and behavioral aspects.

Definition 2. A textual object is a software entity with an identity, a state and
a behavior. The identity defines the precise portion of the full text represented
by the object, the underlying text. The state is constituted by a set of proper-
ties, which are either component textual objects or attributes that can assume
values of arbitrary complexity. The behavior is constituted by a collection of local
procedures, eventually with parameters, called methods, which define computed
properties or perform operations on the object.

Fig. 7?7 shows the structural aspects of a small set of textual objects taken
from the start of a Shakespeare’s sonnet. Each box represents a textual object
and encloses its underlying text. If a box A is contained in another box B, then
the textual object corresponding to A is a component of the object correspond-
ing to B. So, the first line contains the first nine words of the sonnet, the first
sentence contains two words more, and so on. Attributes of objects are repre-
sented through balloon-like shapes: in the example, the first line is associated
with an attribute that represents its meter, the word ‘marriage’ has an attribute
which contains a comment about it; the entire sonnet has attributes author and
work.

/‘ comment: ...

[iLeti ime; not, [to; ithe, rrﬁér?lé@é. iofiitrue’! I'mlnds]

AN

meter:

author: "Shakespeare"
work: "Sonnet CXVI"

Fig. 1. Example of Textual Objects with Attributes

The containment, or component relation between two textual objects must
satisfy the following property:

Definition 3. A textual object TO, a component of a textual object TOs if and
only if the underlying text of TO1 is a subtext of the underlying text of TO-.

Objects for Texts 5

The subtezrt concept is not equivalent to that of substring, which is contiguous
part of a string: a subtext can comprise non-contiguous parts of a text. This is
another essential aspect of our model, and has an important consequence on
textual objects: a textual object can consist of a repetition of components.

Definition 4. A repeated textual object is either a special object, called the
empty textual object, or it is a homogeneous sequence of textual objects, and its
underlying text is the composition of the underlying text of its components.

For instance, we can consider the first three words of the previous sonnet as
a repeated textual object, all the lines of the sonnet as another, and so on.

In the next section we will show how to cope with the types of the different
kind of objects.

2.3 Textual Object Types

To complete the above definition of textual objects, we must say that each
textual object is in effect an instance of a textual object type, which represents a
recognizable part of the text. For instance, in Fig. 7? we show, for the previous
example, the types corresponding to the different kind of boxes: Word, Line,
Sentence, Sonnet.!

({Letl me; Mot [t} Tihe] imarriage; [of (true | [minds)

((Adit; Timpediraerts: [[ovel 51 (ot love;)

((\Which Talters})
Word -5

Line C_——
Sentence ;:]

Sonnet

Fig. 2. Example of Textual Object Types

Each type has an associated interface that defines the properties and method
signatures of the type’s instances.

Definition 5. A textual object type interface specifies the type name, the names
and types of the properties, as well as the names and the parameters of the

! By convention, a type name is capitalized.

6 M. Maurizio and R. Orsini

methods together with their types. The type of a component is a textual object
type, while the type of an attribute is a data type, like integer, string, boolean,
a record type, etc. The parameters and result types of a method can be either
textual object types or any other type.

The type of a repeated textual object is derived from that of the elements of
the repetition:

Definition 6. If a textual object type T's is the plural form of a textual ob-
ject type T with a given interface, then its instances are repeated textual objects
which have as immediate and unique components objects of type T (called also
its elements). The type T is called the singular form of T's.

For example, a Poem can have a component with name title and type
Sentence, as well as a component with name lines and type Lines, which
is the plural form of the type Line. This means that the lines of a poem are a
repeated textual object with elements of type Line.

While type equality is by name, it is important to note that the type is used
in defining the equality between two textual objects: two objects are equal if and
only if they have the same type and the same underlying text.

2.4 The Component Relation

The component relation among textual objects is naturally extended to their
types:

Definition 7. A type T} is a direct component of a type 15 if there is a compo-
nent in Ty which is of type Ty or of its plural form Tys. A type Ty is a component
of a type T3 if it is a direct component of T3 or if it is a component of some of
its direct components.

We introduce a graphical representation for a set of object type interfaces
which evidences such relation. Each interface is represented by a rectangle split
in two parts. The upper part contains the name of the type, while the lower one,
if present, contains the name and the types of its attributes and methods. The
components, on the other hand, are represented by arcs which connect a type
interface with the interfaces of its component types. An arc is labelled with the
name of the component, and is a single-pointed arrow or double-pointed arrow,
depending on the singular or plural form of the component type. For instance,
in Fig. 7?7, a very simple model about poems which arises from the previous
examples is presented.

The component relation is transitive and antisymmetric. Through this rela-
tion, we can now give the formal definition of a well-formed textual model:

Definition 8. A well-formed textual model of a certain full text is a set of
textual object types which forms a bounded partial order set with respect to the
component relation and for which: a) there exists a minimal, undecomposable

Objects for Texts 7

Poem

author: String
year: Date

\

sentences lines

title

Line
meter: String

words words

characters

Fig. 3. A simple model about poems

type, (the Unit type); b) there exists a mazimal type, called by convention Total,
which has a single instance, total, the textual object whose underlying text is
the full text and the components are the top-level components of the model.

For instance, in Fig. ?? the Unit type is Character,? while the Total type,
not shown in the figure, has only a component poems of type Poems.

2.5 Subtyping and Inheritance

As in other traditional object-oriented models, in Manuzio a subtyping relation
can be defined among textual object types through which we can model textual
objects at different levels of detail. For instance, if a type Work has components
title and sentences, and attributes author and year, we could define the type
Poem as specialization of Work. Poem, in addition to inheriting properties and
methods from Work, could have a new component, 1ines, and a new attribute,
meter.

Definition 9. A type A is subtype of a type B if it is defined as such; in this
case A inherits all the properties and the behavior of B. A can also have new
properties and methods, and can redefine the type of its components with a more
specialized object type.

2 Different textual models can have different unit types (e.g. lemmas, syllables, written
phonemes) depending on the granularity of the model in which the user is interested.

8 M. Maurizio and R. Orsini

The presence of the subtyping (or specialization) relation between two textual
object types A (the subtype) and B (the supertype) has the effect that every
instance of the subtype is also an instance of the supertype. For example, every
poem can be treated both as a generic work (for instance by asking for its
author), and as an object with a component lines (for instance to count them).

We extend our graphical notation for this new concept. A subtype is graphi-
cally connected to its supertype through an arrow with a hollow arrowhead, and
shows only the new information (with respect to its supertype). For this reason,
the lower part of the rectangle contains only the new attributes, while only the
arrows representing the new components are drawn. In Fig. 7?7 an enrichment of
the previous example with subtypes is shown.

Work
author: String
year: Date
Novel] Poem
subject: String title sentences meter: String
lines
| Sentence | | Line |
AN -
words words

I

characters

Character

I

Fig. 4. A model about poems and novels.

In the figure, both Novel and Poem are subtypes of Work so that they in-
herit the components title and sentences, as well as the attributes year and
author. Moreover, the Novel type has the new attribute subject, while the Poem
type has the attribute meter and a component 1lines which allows to model lines
of a poem.

The subtype relation among textual objects types is independent from the
component relation, a part from the fact that it applies to the same set of
types. For completeness, every type which is not defined as subtype of another

Objects for Texts 9

is implicitly subtype of the abstract type TObject, which has no components
and attributes, and has a set of methods to deal with the underlying text, some
of which will be presented in the next section.

3 The Manuzio Language

In this section we present the Manuzio programming language that provides
a full syntax to define textual models and operate on them. Of course other
approaches could be followed to implement our model, like, for instance, by
extending an existing object-oriented language with a suitable library. The choice
of a full specialized language, instead, is motivated by our interest in exploring
the model’s characteristics in a setting not constrained by the peculiarities of an
existing language.

Only the aspects of the language related to the Manuzio model are presented
here. For what concerns its other aspects it is sufficient to say that it is a static
type checked language, it has a rich set of predefined types and type constructors
(like Integer, String, Boolean, Sequences, Records etc.), and, finally, it has per-
sistence handling capabilities, since it is intended to be embedded in a system
which manages persistent collections of texts (see section ?7?). In effect, some
of the Manuzio features have been influenced by object-oriented database lan-
guages, in particular the Galileo language [?]. A full description of the language
will be available in the forthcoming manual.

3.1 Textual Object Types

A textual object type can be defined with the following syntax:

type TypeName (pl. PluralTypeName) is SuperTypeName
has
componentName : ComponentType
attributes
attributeName : AttributeType

methods

methodName : MethodType := meth (parameters:ParametersTypes) is
methodBody
end

In Fig. 77 the type definitions of a textual model concerning simple theatrical
plays is shown. Note that, if the plural type name is omitted then it is assumed
to be the type name with a juxtaposed ’s’. Moreover, if the super type name is
omitted, TObject is assumed.

10 M. Maurizio and R. Orsini

type Play
has
title : Sentence
scenes: Scenes

attribute
author : String
year : Integer
end
type Scene
has

speeches : Speeches
attribute
directions : String
end

type Prologue is Scene end

type Epilogue is Scene
has
salutations : Speech
end

type Speech (pl. Speeches)
has
sentences: Sentences
lines : Lines
attribute
speaker : String

end
type Line

has words : Words
end

type Sentence
has words : Words
end

type Word
has
characters : Characters
methods
part_of_speech : String := meth () is
compute_part_of_speech(self, self.Sentence)
end

Fig. 5. Model definition example.

Objects for Texts 11

In the model described in Fig. 7?7, a Play is composed by a title and some
scenes, and has as attributes the author and the publication year. The Speech
type has two components, lines and sentences, which are independent ways
of considering a speech. The types Prologue and Epilogue inherits their prop-
erties from the supertype Scene. While Prologue does not have any additional
property, the Epilogue type adds a salutations component. The type Word has
components of the basic predefined type Character, which represents a unicode
character, as well as a method to compute its part of speech.

An important aspect of the language is that no operators exist to create
textual objects instances. This is due to the fact that they are created during
the full text analysis and stored persistently by the system. On the other hand,
many language operator returns textual objects as the result of their evaluation.

3.2 Object Access

The usual dot notation is used both to select properties (components and at-
tribute) and to call the methods of a textual object. For instance, if p is a play
then:

p.title

returns the textual object of type Sentence which is the component title of
the play p, while:

p.author

returns instead the value of the attribute author, which is a String.

The dot operator can also be applied to repeated textual objects, with a
semantics similar to a mapping operation. For instance, if s is an object of type
Speeches, then:

s.lines

returns an object of type Lines, which contains all the lines of all the elements
of s. Instead, the selection of an attribute from a repetition, like:

s.speaker

returns a sequence of values of type String.
Note that the composition of this operator always performs an implicit flat-
tening of its result. For instance:

s.lines.words

returns a textual object of type Words.

For the inheritance property of the subtyping mechanism, the dot operator
for a certain type can be applied also the the instances of its subtypes. For
instance, since Epilogue is a subtype of Scene, we can select the speeches of
an epilogue e:

12 M. Maurizio and R. Orsini

e.speeches

Another way to select components of textual objects is by the exploitation
of the component relation among their types, through the operators .| and | .
For instance, since the type Word is a component of the type Sentence, if s is
an instance of Sentence and w is an instance of Word then:

s .| Word

returns the textual object composed by all the words which are components of
s, while:

w |. Sentence

returns the (single) object of type Sentence which has w as component.?
These two operators are not limited to direct components. For instance, if p
is a Play:

p .| Word

returns the textual object composed by all the words which are components of
p, while:

w |. Play

returns the object of type Play which has w as component.

3.3 Repeated Objects Operators

The language offers a set of operators specific to repeated textual objects which
allow to work on their elements. These operators are patterned on the classical
sequences operators, although their result is always a textual object.

A first group of operators can be used to get a part of a repetition by spec-
ifying the elements in which we are interested by using integers and ranges as
indexes. In the following examples, p is an object of type Play.

p-lines.index (1)
p.words.slice(1..3)

The first expression returns an object of type Line, and the second of type
Words.
It is also possible to count the elements of a repetition, like in:

p.lines.size

3 Note that the component relation definition implies that this object is always unique.

Objects for Texts 13

The language defines for repeated textual objects other operations typical
of sequences, like concatenation, test for a condition holding on some or all the
elements, test for inclusion of an element, etc., which are not described here
since their are typical for data structures present in other languages (see for
instance [?]).

We will focus here on the select operator which is the most important to
query textual objects. As suggested by the name, it has a syntax similar to SQL
selection, and can be used to retrieve objects through conditional expressions.
Here, it will be described through examples, in which we assume c a textual
object of type Plays.

The first example shows the simple form select E1 from id in E2, where
E2 is an expression returning a repeated textual object whose elements are
bound, in order, to the identifier id, used in the evaluation of the expression
E1l. The result is the collection of such values.

select p.title
from p in ¢

This example returns a textual object of type Sentences constituted by the
titles of all the plays in c.

A select expression can have a where clause, which can be used to give a
condition to filter the elements over which the construct iterates. For instance,
the following example returns only the titles of Shakespeare’s plays.

select p.title
from p in ¢
where p.author = "Shakespeare"

Finally, we show how to use this construct to build complex queries. For
instance, to find all the lines of Shakespeare’s plays with exactly five words, we
could write:

select 1
from 1 in (select p.lines

from p in ¢

where p.author = "Shakespeare")
where 1l.words.size = 5

The internal select returns a textual object of type Lines and the external
one iterates on its elements.

3.4 Other Operators on Textual Objects

The operators of this section are present in every textual object, since they are
defined on TObject, which is the supertype of any other type. These operators
can be used to retrieve and manipulate the underlying text of an object and to
test various objects properties.

Given a textual object, we can obtain its underlying text with text. For
instance, given a sentence s, the following expression:

14 M. Maurizio and R. Orsini

s.words.text

returns a sequence of values of type String each containing the unicode charac-
ters of a word of s.*

Other operators exists to extract various information from the underlying
text of an object. Note that, since the language has a complete set of operators
on regular data types, once we get the text of a textual object we can apply to
it all the operators available on strings (which includes, among others, pattern
matching through regular expressions).

Comparison operators on textual objects can take into account the structure
as well as the underlying text. Two textual objects can be tested for identity
(i.e. if they are in effect the same object) with the identity operator ‘==" like in:

ol == 02

When applied to textual objects, the simple equality operator is an abbrevi-
ation for testing the equality of their underlying text:

ol = 02
which is equivalent to:
ol.text = o2.text

Also the other comparison operators, when applied to textual objects, takes
into account their underlying text. For instance, to tell if an object starts before
another, we can write:

ol < o2

which is an abbreviation for:
ol.text_position < o2.text_position

that returns true when the object ol precedes 02 in the full text (analogously
for <, >=, <=).

In addition, the operator ‘><’ returns true when an object overlaps another,
so that, for instance, we can test if a sentence and a line overlap.

Finally, the language has other operators to test the relations between ob-
ject’s positions, known as the Allen’s relations [?]. They allow, for instance, to
know if an object is fully contained in another one, if one partially precedes
another, and so on.

4 Remember that, as seen in section ??, an underlying text can comprise non-
contiguous parts of the full text.

Objects for Texts 15

4 An overview of the Manuzio System

The Manuzio system is based on the presented language and has the capability
to store in a persistent way complex annotated text collections and allow their
manipulation by different users in a coherent and cooperative way. To reach such
a goal the Manuzio language has other features, in addition to those shown in
section 7?7, to deal with users permissions, dynamic annotations, and manage-
ment of the model and data persistency.

While the full system architecture is the subject of a forthcoming paper, here
we will present an overview of its main functionalities.

1. The system should provide an efficient way of storing and querying very
large quantities of textual material, together with annotations. To achieve
this objective we are investigating different solutions, including those based
on relational database technology.

2. To manage the textual model evolution, the Manuzio language has constructs
to extend the model’s schema with new types, to extend a type with new
attributes and methods, to make persistent textual objects retrieved by a
query, and to add and modify annotations on them.

3. The system should allow the access to concurrent users, through an appro-
priate set of permissions. For instance, different groups of users could work
with different sets of annotations on the same textual objects.

4. A graphical, user friendly, interface is planned to perform assisted queries
whose results are visualized with a choice of different graphical formats and
mediums.

5. To exchange texts and annotations with other systems the XML standard
format will be used through a set of tools which facilitates the mapping
between it and the Manuzio internal format. In particular, XML is the privi-
leged way of loading the data into the textual database, an operation which is
done by a parsing process that can be automatic, semi-automatic or manual,
depending on the complexity of the source data.

The system is currently under development, but the Manuzio model capa-
bilities and a subset of the language’s features have been tested using a simple
prototype which has been used to perform a clause-related analysis of a medium-
sized latin text corpus.

5 Conclusions and future work

This paper is an introduction to a novel approach for dealing with annotated
collection of texts. We have presented the Manuzio model that, while specialized
for this specific domain, has many similarities with other object-oriented models.
In fact, if we consider only attributes and methods of the textual objects, we
can view them just as another kind of objects. On the other hand, the novelty
of our approach is given by the specific composition mechanism of objects which

16 M. Maurizio and R. Orsini

connects their underlying text with their structure. The nature of the specific
domain allows the construction of a bounded partial order set of their types
and the introduction of interesting operators that take account of this structure.
Another interesting aspect of the language is, in our opinion, the introduction
of plural form types, along with their operators, which allow to treat repeated
textual objects as the single ones, in a simple and uniform way.

While Manuzio is still a work in progress, our first experiments have shown
the feasibility of the approach in dealing with collection of literary texts. We
are now implementing an interpreter for the Manuzio language and developing a
first prototype of the system. Moreover, since we think that this approach could
be applied fruitfully in different domains, like, for instance, music and genetic
sequences, we are currently investigating this possibility.

Acknowledgment

This work has been supported in part by grants of the italian Ministero
dell’Istruzione, Universita e Ricerca Scientifica, under the PRIN Project “Mu-
sisque deoque II. Un archivio digitale dinamico di poesia latina, dalle origini al
Rinascimento italiano” about a digital archive of latin poetry. We are indebted
to Paolo Mastandrea and Luigi Tessarolo, who have stimulated our interest in
this subject and provided useful suggestions and challenging examples through
discussions about their previous work.

