
A Model and a Language for Large Textual
Databases

Marek Maurizio and Renzo Orsini

Department of Computer Science, Ca’ Foscari Venice University, via Torino 155,
Venezia Mestre, Italy

Abstract. The markup approach to represent and store large corpora
of annotated textual documents is criticized for several reasons: it poses
problems in expressing non-hierarchical structures, it limits the annota-
tions in type and complexity, it makes difficult the writing of complex
textual analysis programs since it requires the use of generic query lan-
guages like XQuery which are not well suited to the special need of the
domain. We present a model and a language, called Manuzio, developed
to be at the base of a new generation of textual document management
systems which overcome the previous shortcomings. The model is an ob-
ject based one, specialized for the specific domain, and has abstraction
mechanisms which present some similarities with those of the object ori-
ented database models. The language has query facilities and allows the
development of sophisticated textual analysis applications. A prototype
for a system has been designed and applied to several test cases.

1 Introduction

Research in the field of humanities is often concerned with texts in the form
of documents, literary works, transcriptions, dictionaries, and so on. Interpret-
ing, analyzing, sharing insights and results on these documents is the core of
scholarship and research in literature, history, philosophy, and other, similar,
fields. Technology advancements are affecting profoundly the study and use of
texts in the humanities area, and a growing number of projects and experiments
have been presented in literature to explore the possibilities given by electronic
representations of those texts.

In this paper we propose a formal model to represent textual information
with a focus on the representation of literary texts. The model is based on the
idea that texts can be seen both as a sequence of characters and as multiple
hierarchies of objects called textual objects, similar to classical object-oriented
programming languages objects, but more focused on the specific domain. In
our approach collections of documents with the same structure are organized
in persistent textual repositories, databases of textual objects. To interact with
textual repositories we have developed a novel programming language, Manuzio,
with persistent capabilities and specific constructs to query, annotate, and ma-
nipulate textual objects and their annotations. From the language point of view
the persistency of textual objects is transparent, so that they are treated just like

any other of the language’s values, minimizing the paradigm mismatch usually
experienced by programmers in need to access external data.

The rest of the paper is organized as follows: in Section 2 a survey of related
works is given; the main drawbacks of the existing proposals are put in evidence
along with solutions provided by our approach. In Section 3 the foundations
of the data model are presented. In Section 4 we present the major features
of the Manuzio language along with some examples as a proof of concept. In
Section 5 an overview of the whole Manuzio system architecture is given. Finally,
in section 6 conclusions and hints on future work are given.

2 Motivations and Related works

Descriptive markup, realized mostly through XML, has become the de facto stan-
dard way of encoding literary texts in digital form. XML has, however, several
important shortcomings: first, on its capabilities to express complex textual
structures and annotations on them, second, in making difficult the expression
of queries and complex operations, and, last but not least, on providing a solid
background for building large libraries of multi-level annotated texts.

In particular, our proposal aims to solve some of the problems in the following
areas:

– Structure of text: XML allows the representation of exactly one hierar-
chy, while in general multiple overlapping hierarchies are common in texts.
Consider, for instance, a collection of classical lyrics, with two parallel hier-
archies lyric > stanzas > verses > words, and lyric > sentences > words.
This problem, known as the overlapping problem, has been largely discussed
in literature. Different ways of marking concurrent hierarchies in pure XML
have been proposed (see for a discussion [5]), but all these approaches are
in fact workarounds. They complicate the document compromising human
readability and often require special tools to be handled: standard query
languages for XML are not natively compatible with such approaches. In our
approach, instead, an object graph-based data model is used to allow a
straight representation of such hierarchies.

– Annotations: the main limit of the markup approach when dealing with
annotations on literary texts is the impractical representation of complex,
structured annotations. In XML all attributes can be represented only as
strings, which can be interpreted as different types. Moreover, only single el-
ements can have attributes, so that it is difficult to annotate non-contiguous
portions of text. Finally, annotations cannot overlap. In Manuzio, it is pos-
sible to declare annotations of any type, including structured values, or ref-
erences to other portions of the text. The capability of referencing multiple
textual objects as a single entity, or of having overlapping testual objects al-
lows the user to express annotations also on arbitrary, even non-contiguous,
parts of the text.

– Query/Programming Language: XML has a rich set of query languages,
like XSLT or XQuery, to retrieve specific elements from a document and

manipulate them. These languages, however, perform poorly in terms of
usability when applied to XML documents that represent multiple hierarchies.
Solutions have been proposed [8, 6, 7], but the resulting languages, while
efficient and usable, are not standard and, moreover, are still not focused
on literary analysis applications. Our model has an associated programming
language with native support for textual objects and capabilities to access
persistent textual repositories, which makes easy to express complex queries
as well as large textual analysis programs.

– Integrated digital libraries: XML is not well suited to represent collec-
tions of documents with well defined structures and annotations, since it has
different kinds of type definitions and schema languages with complex syn-
tax and semantics. A number of schema languages has been proposed [9], for
instance the the TEI specification for literary texts, but schema adherence
is not inherently mandatory for XML documents. Moreover, it is difficult to
make multi-level/multi-user annotations to a set of documents, for the rea-
sons above discussed. In Manuzio, on the other hand, documents must follow
a schema (even if flexible for the schema defining mechanisms allowed, as we
will see in the rest of the paper), and the nature of the textual objects (which
can encompass any portion of text) and of their annotations (which are in
fact attributes with every kind of value) are the base for building complex
integrated digital libraries with robust multi-user access and modification.

Manuzio aims to draw a bridge between humanities researchers and pro-
grammers; when analyzing a text the humanities researchers often experience a
cognitive distance between their work and the data they work with. When work-
ing with XML-encoded texts with multiple hierarchies, for instance, the difficulty
in expressing queries of arbitrary complexity can hinder the research process.
When using ad-hoc, graphical systems, instead, the researcher is limited to the
answers the system is meant to give, and to expand such limits is, when possible,
a difficult task. In our approach users can express common queries in a simple
way and, at the same time, programmers can write both queries and programs
with arbitrary complexity with a high-level specific language.

3 Model

In this section the main concepts behind the Manuzio data model will be pre-
sented. The main idea of the model is to consider the text in a dual way: as a
finite sequence of characters as well as one or more hierarchies of textual objects.
In the rest of the paper we refer to the text being modeled as the full text.

A textual object is an abstract representation of a portion of the full text
together with structural and behavioral aspects. Textual objects have been in-
spired by the content objects expressed in [4], from concepts of concept-oriented
data modeling [11], and, most of all, from objects of object-oriented program-
ming languages. Usually a textual object has a logical meaning, like a paragraph,
a chapter, a word, and so on. A component relation exists between textual ob-

jects: in Manuzio most textual objects are composed by other, “smaller” objects,
which text is contained in their parent’s text.

Definition 1. A textual object is a software entity with a state and a behavior.
The state defines the precise portion of the full text represented by the object,
called the underlying text, and a set of properties, which are either component
textual objects or attributes that can assume values of arbitrary complexity. The
behavior is constituted by a collection of local procedures called methods, which
define computed properties or perform operations on the object.

Ordered sequences of textual objects of the same type are an entity of central
importance in our model and are called repeated textual objects. Differently from
a simple sequence, the elements of a repeated textual object cannot contain
duplicates. The text represented by a repeated textual object can have gaps: it
is not required for its elements to be contiguous. For instance we can consider
the first three words of a sonnet as a repeated textual object, all the lines of
a poem as another one, all the first lines of Shakespeare’s roman plays as yet
another, and so on.

Definition 2. A repeated textual object is a sequence of textual objects of the
same type, called its elements. Its underlying text is a composition of the under-
lying text of its elements. The order of its elements is induced by their natural
order in the text.

Each textual object is an instance of its textual object type. Repeated textual
objects also have types, which can include other useful information about the
collection of textual objects they represent. It is important to note that com-
ponents, introduced in Definition 1, can reference both a textual object or a
repeated textual object. A poem, for instance, can have a single textual object
component to represent its title, as well as a repeated textual object to represent
its words.

Definition 3. A textual object type specifies the interface of a textual object.
In particular, it specifies the name and type of its components and attributes.
A repeated textual object type is a type which instances are repeated textual
objects. Each repeated textual object type is an aggregation of textual objects of a
same type, called its elements, and specifies the name and type of its attributes.

Note that both textual object types and repeated textual object types can have
attributes. This distinction is important because it offers a flexible way to anno-
tate texts. A repeated textual object composed by the three words, for instance,
can be annotated with a grammatical structure. Such structure will be tied to
the three words as a whole, but not to any of them individually.

In Manuzio schemas, i.e. sets of type definitions, are designed so that, for any
textual object type like, for instance, Verse there is one and only one associated
repeated textual object type with elements of type Verse and its name is, by
convention, Verses. This restriction does not hinder the expressiveness of the
model and has significant impact on the elegance of the language’s type system.

As in other traditional object-oriented models, in Manuzio a subtyping relation
can be defined among textual object types through which we can model textual
objects at different levels of detail. This feature adds to the model the ability to
make incremental changes to textual objects.

The component relation is always a function from a single textual object
to single or repeated textual objects. A Poem, for instance, could have a single
textual object component of type Title, as well as a repeated textual object
component of type Parts. The component relation can be considered as a graph
where nodes are textual object types and arcs are relations.

Definition 4. A well-formed textual schema is a set of textual object types
which forms a bounded partial order set with respect to the component relation
and for which: a) there exists a minimal, undecomposable type, (the Unit type);
b) there exists a maximal type, called by convention Collection, which has a
single instance, collection, the textual object whose underlying text is the full
text and the components are the top-level components of the model.

The specific definition of the Unit type is decided in the modeling phase, so
that, for certain schemas, the unit type can be the word, for others the syllable,
the character, and so on. For this reason the granularity of the model can vary
from schema to schema. The Collection type is, instead, a maximal type which
always has a single instance, called collection that is an ancestor of all the other
textual object types and which underlying text is the whole full text.

To represent models we developed a simple graphical notation, shown in
Figure 1. Single textual object types are represented as boxes split in two parts:
the upper part contains the name of the type, while the lower one, if present,
contains the name and the types of its attributes and methods. Components are
represented by labeled arrows. A single arrow represent a component relation
between two single textual objects, while double arrows represent a relation
between a single textual object and the repeated textual object associated with
the pointed type. The example Figure 1 shows the structure of a collection of
italian poems. The top part of the schema is a single hierarchy of books > sections
> poems. Each object of type Poem is composed by a Title and some Parts.
Strophes are composed by both Sentences and Lines, two unrelated types
that forms a parallel, overlapping hierarchy. Finally both sentences and lines are
composed by a sequence of Words, which is the Unit type in this example. Each
word has an associated method used to compute that word’s stem.

4 Language

4.1 Overview

In this section we present the Manuzio programming language, whose main goals
is to define textual models and write queries and programs over textual repos-
itories. While the development of a new language is often considered an aca-
demic exercise, we felt that our choice to implement a completely novel language

lines
sentences

title

words words

author: String
year: Date

Poem

meter: String
Line

Sentence

name: String
Collection

poems

name: String
Book

name: String
Section

Title

Part Strophe

sections

books

parts

strophes

Word
stem: Word->String

words

Fig. 1. A Manuzio schema for a collection of italian poems.

granted an unbiased, free environment to experiment new features. We are aware
that the resulting language is still neither adequately polished nor particularly
efficient. However, the results obtained by experimenting with this language can
be very useful to design and develop future implementations.

The Manuzio language is a functional, type-safe language with object-oriented
elements and persistent capabilities to interact with textual repositories. In the
rest of the section we will show only the main features of the language, while a
full description of its syntax and semantics can be found in [10]. The examples
in the rest of the section show some typical use case of Manuzio and are based
on the schema presented in Figure 1. Comments are started by the # symbol
and are used to display the results of computations.

4.2 Textual Objects

In Manuzio both textual objects and repeated textual objects are equipped with
a rich set of predefined operators. The most important ones are called the access
operators, and are used to access their components and attributes. Such operators
are called get..of and getall..of 1.

1 The syntax of Manuzio makes large use of keywords instead of symbols.

Source Code 1 Component and attribute retrieval from textual objects and
repeated textual objects.
let collection : Collection = usedatabase "montale";

let allbooks : Books = get books of collection;

get name of collection; #=> "Poesie di Montale":String

get name of allbooks; #=> [’Ossi di Seppia’,

’La Bufera e Altro’, ...]:[String]

The get operator is used to access a component or an attribute. By speci-
fying the name of a component, the textual object (or repeated textual object)
associated to that component is returned. The operator can be applied in a seam-
less way both on single and repeated textual objects. When applied to repeated
textual objects it retrieves the components of every the repetition’s element and
performs a flattening such results: the final result is a repeated textual object.
This behavior has been chosen because it represents the most common way of
accessing data in a literary text context.

In Source Code 1 the command usedatabase is used to connect to a textual
repository. This command returns a value of type Collection from which all
other textual objects can be reached. In this example all the books of the collec-
tion are retrieved by the get operator and the result, of type Books, is assigned
to the identifier allbooks. The get operator retrieves also attributes in addition
to components. In the example the name of the collection, a string, is retrieved.
Also, the name of all books is also retrieved and the result is a sequence of
strings.

The getall operator is used instead to retrieve a textual object’s components
recursively. By specifying a textual type T the getall operator traverses the
textual hierarchy starting from the caller object t and fetch all the textual objects
of type T that are, directly or indirectly, components of t. In Source Code 2,
for instance, the words of a set of books are retrieved. The effect of this call
is to descend the hierarchy of all components of the books recursively until the
bottom of the scheme is reached, and collect all the different objects of type
Word that are found. The resulting value is a repeated textual object of type
Words. Note that, since there can be multiple paths connecting a type T with
another type S, one component can be found multiple times. This is not an issue
because all the elements of a repetitions are unique, so a set union of the results
is performed.

Another important operator is text..of, that performs the mapping between
textual objects and their underlying text. Such operator returns a string, and
can be applied both to single textual objects and to repetitions. When applied
to repetitions the operator returns a sequence of strings, each containing the
text of one of the repetition’s elements. An example of component access and
text operators usage can be found in Source Code 2, where the words of the first
three books are assigned to the words identifier. The underlying text of these
words are then retrieved, uniqued and sorted.

Source Code 2 Retrieval of all words in the first three books and retrieval of
the underlying text of each word.

let words = getall Word of books[1..3];

sort unique (text of words); #=> ["A", "ALBUM", "ALTA",

"ANGUILLA", ...]:[String]

Other important operators on textual objects take into account their natural
ordering, and are used to compute distances or to construct repeated textual
objects based on positional properties, like, for instance, all the words within
a certain distance from a given word. There exist also a comparison operator
(<=>), that can be used to examine the relations between object’s positions [3].
They allow, for instance, to know if an object is fully contained in another one,
if one partially precedes another, and so on. Table 1 summarize the syntax and
semantics of the operators discussed so far.

4.3 Query Operators

Another family of Manuzio operators allow the writing of complex queries on
textual repositories. Some of them are inspired by the Galileo language [2] and
their syntax is similar to the one typical of object databases query languages.
This family of operators allows users to interact with a textual repository directly
from the Manuzio programming language without the need of embedding a query
language with different syntax, types, and paradigm. Moreover, it is important
to note that the same set of operators is able to work on sequences, repeated
textual objects, and other kind of collections with a single simplified syntax.

In Source Code 3, for instance, the first query returns a repeated textual
object of type Poems that contains all the poems which text is shorter then 300
characters. The title of such poems is then retrieved.

In Source Code 4, instead, we show how to construct a sequence of records
each containing the title of a poem and the number of verses in that poem
that contains the word stem “amor”, only for poems where this word occur at
least once. The first query selects all the verses of the collection where at least
one word satisfies our requisite. The result is a repeated textual object of type
Verses. Each verse is then grouped by the title of the poem it is contained

Operator Semantics

get l of e returns the component or attribute of e which label is l
getall T of e recursively returns all the components of e of type T
text of e returns the underlying text of e
e distance from e′ returns the distance between e and e′

e <=> e′ compare the relative position of e and e′

Table 1. The main operators on textual objects.

Source Code 3 Query operators examples.
let short_poems : Poems =

select p from p in poems where size of text of p < 300;

text of (get title of short_poems)

#=> ["LONGOMARE", "LASCIANDO UN DOVE", ...]:[String]

Source Code 4 Compute a data structure to find the most love-related poems.
let loveVerses : Verses =

select v

from v in (getall Verse of collection)

where some w in (getall Word of v)

with (get stem of w) = "amor";

select {title = poemTitle, numberOfLoveVerses = (size of partition)}

from v in loveVerses

groupby {poemTitle = get title of (parent Poem of v)};

#=> [{poemTitle = "L’ANGUILLA", numberOfLoveVerses = 1},

{poemTitle = "INCANTESIMO", numberOfLoveVerses = 2},

...] : [{poemTitle:String, numberOfLoveVerses:Int}]

in, and such title is returned along with the number of verses in the relative
partition.

5 Implementation

In the development of our first prototype the focus has been on the implemen-
tation of the language processor and persistent store. The schema definitions,
the corpus parsing process, and the user interface aspects have been developed,
instead, in a simpler way in order to have a working prototype. The results,
while not ready for a production environment, let us evaluate critical language
mechanisms early in its development and will influence future implementations.

5.1 Interpreter

The Manuzio interpreter is a highly modularized, easily extensible interpreter to
be used in the process of language development and evaluation rather then as a
fast and optimized software. The current version of the interpreter implements all
the major features of a functional programming language with a particular focus
on strings, textual objects, and their operators. The interpretation of textual
schema declarations, however, is not, at the time of writing, fully implemented.

5.2 Persistency Model

The current implementation of the text store has been realized through a rela-
tional database in order to achieve a good tradeoff between performances and

quick development of the prototype. The language persistent layer encapsulates
the implementation so that the user is not aware of the underlying storage sys-
tem.

Textual objects are first-class values of the language and also stored in the
textual repository. Each textual object is univocally identified by the pair (T, s),
where T is the object type and s it’s position in the fulltext. For this reason, two
textual objects with the same text but in different position are considered differ-
ent both at language and database level. The database contains also information
about the textual objects types. This has two important consequences: first, the
database schema is generic and does not need to be changed to represent differ-
ent textual models, and second, the database contains all the information needed
to reconstruct its whole textual model. In this way the Manuzio language users
do not need to declare textual object types before using them. Such types are
automatically parsed from the database and loaded into the environment by the
usedatabase command.

5.3 Data loading

The problem of loading initial data into textual repositories arise from the fact
that textual collections already in digital form often lack a standard encoding.
Such lack of a standard both motivate the proposal of alternatives like Manuzio
and makes hard to produce general import algorithms. Currently in Manuzio,
data loading has been carried out through ad-hoc parsers from both XML and
plain-text input documents. A complete parser for the Unified Scripture Format
XML (USFX)[1] format is being developed.

5.4 Graphical User Interfaces

We have currently two different, web-based, graphical interfaces. The first one al-
lows the production of simple queries patterned after the structure of the textual
schema. The user does not need to know the language, and at the same time can
produce queries most sophisticated that the traditional “keywords style” inter-
faces. The tools synthesize a Manuzio query, then call the interpreter to evaluate
it. The result is then shown to the user as text.

A second interface has been defined to browse directly the textual repository
managed by the relational DBMS. The user can navigate a schema hierarchy
and perform simple filter operations.

5.5 Overall System Architecture

A sketch of the whole system and of its intended use is shown in Figure 2. A
domain expert and a programmer cooperate to instantiate textual repositories:
the domain expert analyzes the input text, and defines the textual object types
to be used in the new textual repository. The programmer then writes a set
of recognizer functions that, given the input text and the textual object types

defined in the textual schema, identifies the instances of these types in the text
and fills the repository.

In the user section of the schema, instead, different kind of users interact
with the textual repository through either a graphical user interface or directly
by writing Manuzio programs. Textual analysis programs written in Manuzio
use a special command to connect to the textual repository and retrieve the
contained textual object types directly from it. The data in the repository can
then be queried by multiple users, and their results can be annotated and shared.

Collection of
Textual Documents

User

Graphical User
Interface

Domain
Expert

Parsing Tools Manuzio Interpreter
and Runtime System

Programmer Expert
User

Manuzio Programs

Textual Schema
Declarations

Textual Repository

Textual Schema

Textual Objects

Users

Administration

Runtime Environment

Fig. 2. The system functional architecture.

6 Conclusions and future work

In this paper we presented the Manuzio model and its associated language.
Our model has some similarities with the classical object-oriented models in
the field of programming languages. In fact, if we consider textual objects as
composed only by attributes and methods, we can view them just as another
kind of objects. The novelty of our approach is given by the domain-specific
composition mechanism which organize our textual objects in a directed acyclic
graph. The nature of the domain allows the construction of a bounded partial
order set of textual object types so that interesting, powerful, and easy to use
operators can be introduced in the associated language. An important aspect

of the Manuzio model is the uniform way of dealing with both single as well as
repeated textual objects through a set of powerful, homogeneous operators.

The implemented prototype has been used to perform different kinds of ap-
plied analysis on three textual repositories written in different languages: a col-
lection of selected latin epic poems, the entire assortment of Shakespeare’s plays,
and all the italian poems of Eugenio Montale. Common queries on our reposito-
ries can be executed in acceptable times. We are aware that a great deal of work
on optimization must yet be done to provide satisfying performances for larger
collections of texts. However, we think that work on modeling and linguistics
aspects of retrieval of texts and computations over them is very important, and
prerequisite to enrich the solutions offered by research areas such as information
retrieval and digital libraries. In particular, we believe that our language allows
the user to take into account structural and semantic information in queries and
programs, and this could easily improve the quality of the work in such areas.

An alternative implementation of the language as a library for a well-known
object-oriented language is also under development to test the feasibility of such
approach. Other side projects, in various stages of development, include an au-
thoring system for “Manuzio texts” and a web-based visualization tool for tex-
tual repositories. Moreover, other system modules are under implementation.
One will allow the direct authoring of textual objects, with a novel, touch-based,
graphical interface, while another one will allow the users to annotate the result
of the queries cooperatively.

Finally, we note that the implementation is easily interoperable with the
majority of existing, XML-based, textual analysis tools. We have implemented, for
instance, a set of simple algorithms to import XML-encoded data into Manuzio
text repositories and to export views of a them, or query results, in XML.

References

1. Unified scripture format xml (usfx) url: http://ebible.org/usfx/.

2. A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly-typed, interactive con-
ceptual language. ACM Transactions on Database Systems, 10(2):230–260, 1985.

3. J.F. Allen. Time and time again: The many ways to represent time. International
Journal of Intelligent Systems, 6(4):341–355, 1991.

4. K.B. Bruce. Foundations of object-oriented languages: types and semantics. The
MIT Press, 2002.

5. Steven J. DeRose. Markup overlap: A review and a horse. In Extreme Markup
Languages, 2004.

6. I.E. Iacob and A. Dekhtyar. Processing xml documents with overlapping hierar-
chies. In Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries,
page 409. ACM, 2005.

7. I.E. Iacob and A. Dekhtyar. Towards a query language for multihierarchical xml:
Revisiting xpath. In Proceedings of the 8th International Workshop on the Web
and Databases (WebDB 2005), Baltimore, Maryland, USA. Citeseer, 2005.

8. I.E. Iacob, A. Dekhtyar, and W. Zhao. Xpath extension for querying concurrent
xml markup. Technical report, Citeseer, 2004.

9. D. Lee and W.W. Chu. Comparative analysis of six xml schema languages. ACM
Sigmod Record, 29(3):76–87, 2000.

10. Marek Maurizio. Manuzio: an Object Language for Annotated Text Collections.
PhD thesis, Dipartimento di Informatica, Università Ca’ Foscari di Venezia, 2009.

11. A. Savinov. Concept-oriented model. Encyclopedia of Database Technologies and
Applications, 2005.

