Manuzio: An Object Language for Annotated Text Collections

Marek Maurizio and Renzo Orsini
Dipartimento di Informatica
Universita “Ca’ Foscari” di Venezia
Via Torino 155, Venezia Mestre, Italy
{marek,orsini}@dsi.unive.it

Abstract

Traditionally, textual collections are digitally
represented as a set of files containing the
text along with some kind of markup to de-
fine extra information, like metadata, anno-
tations, etc. We propose a different approach
which exploits the natural structure of a text
to build specialized abstractions, called tex-
tual objects, over literary text’s collections.
These objects can be used to make non-
hierarchically nested multi-level annotations,
to create complex metadata, and to perform
complex queries and analysis on the collec-
tion. Manuzio, the result of this approach,
consists of a model, a language and a sys-
tem to manage persistent text’s collections
and write cornplex applications over them. In
this paper we introduce the main features of
the Manuzio model and language, as well as
a sketch of the system.

1 Introduction

The traditional way of representing textual infor-
mation for automatic processing is through some
kind of enrichment of the base text with other,
distinguished, text carrying some information, like
metadata, formatting instructions, etc., or by ex-
posing the structure of the text by marking its com-
ponents, like chapters, verses, etc. This approach,
in which the distinguished text is called the markup,
has been widely diffused also by the availability of
standard markup languages, like SGML and, in the
recent years, XML, which made possible the defi-
nition of standards specific for literary texts, like
the TEI ones (Sperberg-McQueen et al., 1994). In
this paper we propose a different vision of the tex-
tual information and we give the foundations of a

system based on the representation of text through
abstract structures.

The great advantages of a marked text is that
it can be read and written with relative ease by a
human being, as well as efliciently processed with
a computer program. Moreover, when the mark-
ing of the text follows some widely accepted stan-
dard, it can be exchanged among different systems,
processed by different applications, and, in general,
used in a robust, interoperable way. Finally, the
use of an extendible markup language, like XML,
allows any kind of information to be added to the
text in a string-encoded format.

These advantages are, however, balanced by sev-
eral, noteworthy, shortcomings, both on the power
and expressiveness of the representation and on the
way in which computation can be carried over it.
A first severe limitation is that marking can be ap-
plied only to contiguous segments of text that can-
not overlap. Moreover, a text can be structured only
in a strictly hierarchical fashion. Solutions exist to
overcome some of these limitations, like the ones
surveyed in (DeRose, 2004), but they tend to be
cumbersome, to produce complex unreadable texts,
and to notably increase the complexity of programs
dealing with such texts. We could summarize these
critics by saying the traditional markup approach is
not scalable: it is a simple and elegant solution for
simple text annotations, but it is not adequate to
deal with very complex situations, where annota-
tions are made on different levels of the texts, be-
longs to different categories of meaning, are created
by different authors, and so on.

Another important disadvantage of the markup
approach is, in our opinion, the fact that pro-

grams for processing marked text are not easily writ-
ten, requiring the mastering of complex query lan-
guages, not specialized for the particular domain,
like those typical of XML (for instance, XPath,
XQuery, XSLT). In particular, they are not easily
grasped by scholars and researchers in the humani-
ties, which, on the contrary, should have the possi-
bility of writing queries or even programs over such
kind of data. This problem becomes particularly
serious when one has the objective of developing
complex text analysis applications, like for instance
those in the field of text mining, or applications
which perform sophisticated syntactic or semantic
analysis.

For all the above reasons, in this paper we
propose a radically departure from the traditional
markup approach. Such approach, already success-
fully applied to represent, in a computer, knowledge
and information in fields different from that of text
processing, is known in the software engineering
area as object-oriented modeling.

The objectives that we are trying to achieve
through this approach are the following:

* to represent collections of texts with any kind
of structure, including different overlapping
structures for the same text;

* to represent any kind of annotations, even with
complex information, on any part of the text,
taking into account whatever text structure we
are interested in;

* to provide a simple way to make queries, even
sophisticated ones, on text and annotations;

* to provide tools to simplify the construction of
complex, efficient, textual analysis programs;

* to lay out the theoretical and practical founda-
tion of a general system to deal with multi-user
annotated text corpora, or digital library.

Solutions which are not markup-oriented have
been already presented in the literature. For in-
stance (Coombs et al., 1987; DeRose et al., 1997)
present a model where text is seen as one or more
hierarchies of objects that is the foundation of more
complex systems like those presented in (Carletta et
al., 2003; Petersen, 2002; Deerwester et al., 1992).

The approach that we propose presents a few sim-
ilarities with those described in these papers, but
it aims to provide a more complete solution. On
one hand the Manuzio model is easily scalable, as
the structure of each textual collection can be de-
fined ad-hoc. On the other hand Manuzio provides
a full programming and query language along with
the model; such a language has been built to be
expressive and easy to use in its specific domain of
application. Finally, the Manuzio system is aimed
to allow to store the data in a persistent database, to
annotate it in a multi-user way, and to share results
effortlessly.

The rest of the paper is organized as follows:
in section 2 the foundations of the Manuzio data
model are presented. In section 3 we have a look
at the major features of the Manuzio language and
finally, in section 4 an overview of the full system is
given.

2 The Manuzio Model

We consider the textual information in a dual way:
as a formatted sequence of characters, as well as a
composition of logical structures called textual ob-
jects. This latter structural aspect has many simi-
larities with other computer science’s models called
object-oriented data models, which are based on ab-
straction mechanisms to represent a certain reality
of interest (Nierstrasz, 1989).

The Manuzio model is characterized by the no-
tions of textual object, composition and repetition of
textual objects, attributes of textual objects, tex-
tual objects and attribute types, inberitance defini-
tion and specialization among types, underlying nor-
malized text. To make the presentation simpler to
understand, we introduce these concepts through a
graphical notation, while the language constructs
for the complete model specification will be pre-
sented in the next section.

2.1 Textual Objects

A textual object is a computer representation of a
text portion (called underlying text) together with its
structural and behavioral aspects. In the following
definitions we will use the term full text to refer to
the full text being modeled. The precise notion of
full text will be defined later in this section, but for
now it can simply be considered as a sequence of
Unicode characters.

Definition 2.1 A textual object is a software entity
with an identity, a state and a behavior. The iden-
tity defines the precise portion of the text underly-
ing the object. The state is constituted by a set of
properties which are either component textual ob-
jects or attributes that can assume values of arbi-
trary complexity. The behavior is constituted by a
collection of local procedures, eventually with pa-
rameters, called methods, which define computed
properties or perform operations on the object.

For instance the Fig. 1 shows the structural as-
pects of a small set of textual objects. Each box
represents a textual object and encloses its under-
lying text. If a box A is contained in another box
B, then the textual object corresponding to A is a
component of the object corresponding to B.

(:_I_:gf_'. :_rr_le_ ::_n_o_t'. Et§: [tbg 4 'lrnarriage_’. :_o_f'. itrue :-rﬁir_lcTs:']

Figure 1: Example of Textual Objects

Attributes

As previously stated, the properties of a textual
object are either other objects, called components,
or attributes. The intended use of attributes is
to complement textual objects with annotations,
metadata, variants, and in general any other type
of information of interest.

Definition 2.2 An aztribute is a value of any com-
plexity which is a property of a textual object.

An attribute has a type which can be one of
the common data types present in many program-
ming and database languages, like integers, strings,
booleans, arrays, records, etc. In Fig. 2 the first
line is associated with an attribute that represents

its meter, while the word ‘marriage’ has another at-
tribute which contains a comment about it.

/‘ comment: ...

/.

-
e e | e B e e e e e B st o
G—Let. |me \not, 'to] Ithe| 'marriage: 'of s itrue .mmdsg

NS

Author: "Shakespeare"
Work: "Sonnet CXVI"

Figure 2: Example of Textual Objects with Attributes

"Types

In computer science a type defines a set of possible
values and the operations which can be applied to
them. In the construction of our model, the types
arise from the abstraction process of grouping dif-
ferent parts of text that share similar characteristics.
Then the differences among the elements of those
groups are ignored in order to put in evidence their
similarities, i.e. their structure. For instance, the
first two verses of the above example are considered
(classified) as textual objects of type Line in order
to stress the fact that they all have the same kind of
properties (words, meter, etc.) and share the same
behavior.

Every textual object is an instance of a textual
object type. Each type has an associated interface
that defines the ways that type’s instances can be
used to access their properties and methods.

Definition 2.3 A textual object type interface speci-
fies the the names and types of the properties and
the names and the parameter and result types of the
methods.

In Fig. 3 we show the types corresponding to the
different kind of boxes.

word j
line ()

sentence

sonnet

Figure 3: Example of Textual Object Types

Graphical Representation

As previously mentioned, we will use a graphical
notation to put in evidence the structure of a textual
model in terms of its textual objects types, their at-
tributes and the component relations among them.
In our notation an object type and its attributes are
represented by a rectangle split in two parts. The
upper part contains the name of the type, while the
lower one, if present, contains the name and the
data type of its attributes.

To put in evidence the fact that if a textual object
is component of another then there is a component
relation between their types, this relation is graphi-
cally represented through an arrow which connects
the two types, labelled with the component name.
And, since this relation can be one to one (for in-
stance each poem has only a title which is a sen-
tence) or one to many (for instance each poem has
many lines) we distinguish this fact with a different
graphical notation. The former case is represented
by a single-pointed arrow, the latter by a double-
pointed arrow. For instance, in Fig. 4, we represent
a very simple model about poems which arises from
the previous examples.

In Manuzio, the textual object type which has
no component is called Unit. A Unit type is al-
ways present, must be unique, and defines the min-
imal part of text which can be manipulated. For
instance, in Fig. 4, the Unit type is Character. Dif-
ferent textual models can have different Unit types,

Poem

author: String
year: Date

sentences lines

title
AR

words

Line

meter: String

7/
words

characters

Figure 4: A simple model about poems

depending on the granularity of the textual analysis
in which the user is interested to. For instance, one
could be interested in lemmas, or in syllables, in-
stead of characters for different kind of analysis, or
in written representation of phonemes to develop
phonetic analysis programs, etc.

2.2 Type Inheritance

Another important information that can be mod-
eled in Manuzio is that textual objects types are not
always independent, but can exist a particular re-
lation among them, called specialization, through
which we can model objects at different levels of
detail. Ifa type A is defined as specialization of type
B, then the instances of A inherits all the charac-
teristics of the instances of B, in addition to having
other, proper ones. For example, an hendecasylla-
ble has all the characteristics of a line (it s in effect
a line), but it has also the property of having exactly
eleven syllables.

The presence of the specialization between two
textual object types A (which will be called the sub-
type) and B (the supertype) has the effect that every
instance of the subtype (for example every hendeca-
syllable), can be treated both as a generic line (for
instance when performing a textual search), and as a
line with a specific number of syllables (for instance
to define specific methods which are significant only

for hendecasyllables).

Definition 2.4 A type A is subtype of a type B if
it is defined as such; in this case A inherits all the
properties and the behavior of B. A can also have
new properties and methods, and can redefine the
type of its components with a more specialized type.

Graphical Representation

A subtype is graphically connected to its super-
type through an arrow with a hollow arrowhead,
and shows only the new information (with respect
to its supertype). For this reason the lower part
of the rectangle contains only the new attributes,
while only the arrows representing the new compo-
nents are drawn. In Fig. 5 an example about simple
works is shown.

Work
author: String
year: Date
Novel Poem
title
subject: String sentences meter: String
lines
| Sentence | | Line |
words words

characters

[

Character

[

Figure 5: A model about poems and novels.

In the figure, both Novel and Poem are subtypes
of Work so that they inherit the components ti-
tle and sentences, as well as the attributes year and
author. Moreover, the Novel type has the new at-
tribute subject, while the Poem type has the new
attribute meter and a component lines which allows
to model lines of a poem.

2.3 Underlying Text

Each textual object has a direct correspondence to a
part of the text to be represented in our model (for
instance a single work, a corpora, a library, etc.).
We assume that such texts exist, as sequences of
Unicode characters, in a format which is chosen
by some expert. The following definitions spec-
ify the exact relation between texts and objects of
the model.

Definition 2.5 The full text is a sequence of Uni-
code characters that represents all the text described
by a specific Manuzio model.

Each textual object has an underlying text, defined
as:

Definition 2.6 The underlying text of a textual ob-
ject is a subsequence of the characters of the model’s
full text associated to it.

As previously mentioned, the identity of a textual
object is determined by the underlying text: two
objects are identical if they have the same underlying
text. Moreover, this concept is fundamental also
in defining an important semantics property of the
Manuzio model:

Definition 2.7 A textual model is well-formed if
each component of that textual object has an un-
derlying text which is a proper subsequence of its
underlying text.

Finally, the underlying text will be useful in the
system to provide the user a concrete representation
of a textual object.

While the Manuzio model has been presented so
far through a graphical notation, a formal language
is necessary in order to implement a computer sys-
tem for representing textual models according to
our approach and to operate on them. In the fol-
lowing section the main features of such a language
are introduced.

3 The Manuzio Language

The Manuzio language is a full programming lan-
guage with constructs to define textual models and
write complex query expressions or sophisticated
textual analysis applications. Such a language is in-
tended to be used by a multi-user system to store

persistently a digital collection of texts over which
these programs are evaluated.

The full syntax and semantics of the language
will be available in the forthcoming manual and are
beyond the scope of this article. In particular, the
language features aimed to describe the textual ob-
ject types of a model will be only shown through
the following example (Fig. 6).

Schema PlaySchema

type Play
has
title : Sentence
acts : Acts
attribute
author : String
year : Integer
end
type Act
has
scenes: Scenes
attribute
directions : String
end
type Scene
has
speeches : Speeches
end

type Prologue is Scene end

type Epilogue is Scene
has
salutations : Speech

end

type Speech
has
sentences: Sentences
lines : Lines
attribute
speaker : String
end

type Line
has words
end

: Words

type Sentence
has words : Words
end

type Word
has characters
end

: Characters
End
Figure 6: Schema definition example.

The model described in figure 6 concerns simple

plays, where a Play! is composed by a title and some
acts, and has attributes author and publication year.
The Speech type has two components, lines and
sentences, which are independent ways of consid-
ering a speech. The types Prologue and Epilogue
inherits their properties from the supertype Scene.
While Prologue does not have any additional prop-
erty, the Epilogue type adds a salutations compo-
nent. The type Word has components of the basic
predefined type Character, which represents a uni-
code character.

3.1 Repeated Textual Objects

In Fig. 6, types like Words or Lines, which are not
explicitly defined, are used. In fact, when we define
a textual object type, there is an implicit definition
of its “plural form”, which is a type whose instances,
called repeated textual objects, contains repetitions of
objects of the “singular form” type. For example, an
object of type Words is composed by a repetition of
instances of type Word.

The existence of these types in the language has
the following consequences:

* A repeated textual object is in effect a textual
object, can have properties or methods, and
in general can be treated as any other textual
object.

* Specific operators exist which take into ac-
count the multiplicity of the elements of a re-
peated textual object. For instance, we can
count how many words are present in an object
of type Words, we can select the first word,
and so on.

* The query language operators on single tex-
tual objects can be applied also to their rep-
etitions, with the meaning that the operator
is applied to all the repetition’s elements and
returns the collection of the results. For in-
stance, the operation that returns the title of
a single poem, when applied to a collection of
poems, returns all their titles.

We are ready to present now the operational fea-
tures of the language, but the reader must keep in
mind that, while Manuzio is a full programming

"By convention, a type name is capitalized.

language, like java or prolog, which allows experi-
enced users to write programs of arbitrary complex-
ity, in the rest of this section we will discuss only its
query-like operators. These operators allow non-
programmer to work with the system in an easy way
to fetch, refine, display and annotate query results,
in a manner similar to other data query languages,
like, for instance, the relational databases language

SQL.

3.2 Basic Textual Objects Access

A uniform notation is used to select both properties
and methods of a textual object. Such a selection
is performed through the access operator ‘of’. For
instance, if P is a poem then:

title of P

returns the textual object of type Sentence which is
the component title of the poem P, while

author of P

returns instead the value of the attribute author.
When the result of the ‘of” operator is a textual ob-
ject, the operation can be repeated:

words of title of P

returns the textual object of type Words which con-
tains the words of the title of P. As previously men-
tioned, when a component access is applied to a re-
peated textual object, the result is again a repeated
textual object, as in:

words of lines of P

which returns a textual object containing all the
words of all the lines of P.

As stated in the definition 2.4 in the Section 2,
for the inheritance property of the subtyping mech-
anism, the ‘of” operator for a certain type can be
applied also the the instances of its subtypes. For
instance, since Epilogue is a subtype of Scene, we
can select the speeches of a epilogue E (since it is
also a scene), in the same manner as its salutations:

speeches of E

Analogously, if there were methods defined on
Scene, they could be applied also to instances of

Epilogue.
3.3 Repeated Objects Operators

There exist operators specific to repeated textual
objects which take into account the elements of

those objects by performing some operations on all,
or a subset, of them.

A first group of operators can be used to get a part
of a repetition by specifying the elements in which
we are interested either by using ordinal adjectives
or numeric ranges.

first line of P
words(l..3) of second line of P
last sentence of P

It is also possible to count the elements of a rep-
etition, like in:

number of lines of P

as well as use other operations on sequences, like
concatenation of sequences, test for a condition
holding on some or all the elements, test for in-
clusion of an element, etc., which are not described
here since their are typical for data structures like
sequences or arrays present in other languages.

The most important operator of this category,
which is the foundation of the query-like part of
the Manuzio language, is the ‘select’ operator. As
suggested by the name, it has a syntax similar to
SQL selection, and can be used to retrieve objects
through conditional expressions. Here, it will be
described through examples, in which we assume C
a collection of poems.

The first example shows the simple form “select
El from Id in E2”, where E2 is an expression re-
turning a repeated textual object whose elements
are bound, in order, to the identifier Id, used in the
evaluation of the expression E1. The result is the
collection of such values.

select title of p
from p in poems of C

The first example returns a repeated textual ob-
ject composed by the sentences formed by all titles
of the poems of the collection C. The type of the
resulting object is Sentences, and, in this simple
form, it is equivalent to the expression:

title of poems of C

A select expression can have a ‘where’ clause,
which can be used to give a condition to filter the
elements over which the construct iterates. For in-
stance, the following example returns only the titles
of Shakespeare’s poems.
select title of p

from p in poems of C
where author of p = ”“Shakespeare”

The last example shows how to use this construct
to build complex queries. For instance, to find all
the lines of Shakespeare’s poems with exactly five
words, we could write:

select 1
from 1 in (select lines of p

from p in poems of C

where author of p = ”“Shakespeare”)
where number of words of 1 =5

The internal ‘select’ returns a repeated textual
object, over which the external one iterates.

3.4 Access to the underlying text

Given a textual object, we can select its underlying
text with ‘text’. For instance, given a word W, the
following expression:

text of W

returns a string that contains the unicode characters
of the word W.

It is also possible to access the starting position
of the underlying text of an object:

text position of W

which returns a number which specify the offset po-
sition of the underlying text of W from the start of
the full text.

Note that, since the language has a complete set
of operators on regular data types, once we get the
text of a textual object we can apply to it all the
operators available on character strings (which in-
cludes, among others, pattern matching through
regular expressions).

3.5 Comparisons and test operators

In the language, the usual comparison operators on
strings and other simple values (=, >, <, etc.) are
available.

On the other hand, two textual objects can be
tested for identity (i.e. if they are in effect the same
object) with the identity operator ‘==":

ol == 02

When applied to textual objects, the string
equality operator is an abbreviation for testing the
equality of their underlying text, like in:

ol = o2
which is equivalent to:

text of ol = text of o2

Also the other comparison operators, when ap-
plied to textual objects, takes into account their un-
derlying text. For instance:

ol < o2

is an abbreviation for:

text position of ol < text position of o2

that returns true when the object ol precedes 02 in
the full text (analogously for <, >=, <=).

In addition, the operator ‘><’ returns true when
an object overlaps another, so that, for instance, we
can test if a sentence and a line overlap.

Finally, the language has a few other operators
to test about the relative positions of two textual
objects, known as the Allen relations (Allen, 1983).
They allow, for instance, to know if an object is fully
contained in another one, if one partially precedes
another, and so on.

4 An overview of the Manuzio System

The purpose of Manuzio is to be a system, based
on the presented language, with the capabilities of
storing in a persistent way complex annotated text
collections and allowing their manipulation by dif-
ferent users in a coherent and cooperative way. To
reach such a goal the Manuzio language has other
features, in addition to those shown in section 3, to
deal with users permissions, dynamic annotations,
and management of the model’s persistency.

While the full system architecture is the sub-
ject of a forthcoming paper, here we will present
an overview of its capabilities.

1. The system provides an efficient way of stor-
ing, in a persistent way, and querying very
large quantities of textual material, together
with annotations. To achieve this objective we
are investigating different solutions including
those based on relational database technology.

2. The system has as its main programming
and administration language the Manuzio lan-
guage. For this reason, the language has also
constructs to extend the model’s schema with
new types, to extend a type with new attributes
and methods, to make persistent textual ob-
jects retrieved by a query, and to add and mod-
ify annotations on them.

3. The system has tools that allow the access to
concurrent users, through an appropriate set
of permissions. For instance, different groups
of users can work with different sets of anno-
tations, that can later be compared and even-
tually merged.

4. Users can interact with the system either
through the Manuzio language or through
a friendly graphical interface to perform as-
sisted queries whose results are visualized with
a choice of different graphical formats and
mediums.

5. To exchange texts and annotations with other
systems the XML standard format can be used
through a set of tools which facilitates the
mapping between it and the Manuzio inter-
nal format. In particular, XML is the priv-
ileged way of loading the data into the tex-
tual database, an operation which is done by
a parsing process that can be automatic, semi-
automatic or manual, depending on the com-
plexity of the source data.

The system is currently under development, but
the Manuzio model capabilities and a subset of the
language’s features have been tested using a sim-
ple prototype built with the Ruby programming
language. The prototype has a fixed scheme of
medium complexity concerning epic latin poems,
and has been used to successfully performs clause-
related analysis on a medium-sized corpora.

5 Conclusions and future work

This paper is an introduction to a novel approach
for dealing with annotated collection of texts. We
have presented the Manuzio model, which has some
similarities with other object-oriented models, al-
though it is specialized for the specific domain. Our
proposal includes also a full programming language,
the Manuzio language, of which only the query fea-
tures have been discussed. Finally, a sketch of a
complete solution, consisting of a system based on
that language, has been presented. While Manuzio
is still a work in progress, our first experiments have
shown the feasibility of the approach in dealing with
collection of literary texts.

The next step in Manuzio development will be
the complete language specification and implemen-

tation, along with a full functional architecture of
the system.

Acknowledgment

This work has been supported in part by grants
of the italian Ministero dell'Istruzione, Universita e
Ricerca Scientifica, under the PRIN Project “Mu-
sisque deoque II. Un archivio digitale dinamico di
poesia latina, dalle origini al Rinascimento italiano”
about a digital archive of latin poetry. We are in-
debted to Paolo Mastandrea and Luigi Tessarolo,
who have stimulated our interest in this subject
and provided useful suggestions and challenging
examples through discussions about their previous
work.

References

Sperberg-McQueen, C., Burnard, L., Bauman, S.:
Guidelines for electronic text encoding and inter-
change. (1994)

DeRose, S.J.: Markup overlap: A review and a horse.
In: Extreme Markup Languages. (2004)

Coombs, J.H., Renear, A.H., DeRose, S.J.: Markup
systems and the future of scholary text processing.
Commun. ACM 30(11) (1987) 933-947

DeRose, S., Durand, D., Mylonas, E., Renear, A.:
What is text, really? ACM SIGDOC Asterisk Journal
of Computer Documentation 21(3) (1997) 1-24

Carletta, J., Evert, S., Heid, U., Kilgour, J., Robertson,
J., Voormann, H.: The NITE XML Toolkit: flex-
ible annotation for multi-modal language data. Be-
havior Research Methods, Instruments, and Comput-
ers 35(3) (2003) Special issue on Measuring Behavior.

Petersen, U.: The standard MDF model. Unpub-
lished article. Obtainable from URL: http://emdros.
org (2002)

Deerwester, S.C., Waclena, K., LaMar, M.: A textual
object management system. In Belkin, N.J., Ingw-
ersen, P, Pejtersen, A.M., eds.: SIGIR, ACM (1992)
126-139

Mastandrea, P.: De fine versus, repertorio di clausole
ricorrenti nella poesia dattilica latina

Allen, J.F.: Maintaining knowledge about temporal in-
tervals Communications of the ACM 26(11) (1983)
832-843

Nierstrasz, O.: A Survey of Object-Oriented Concepts
Object-Oriented Concepts, Databases and Applica-
tions (1989) 3-22

