Mobile Agents Rendezvous
in spite of a Malicious Agent

Shantanu Das!'*, Flaminia L. Luccio®**, and Euripides Markou?®* * *

L LIF, Aix-Marseille University, Marseille, France
2 DAIS, Universita Ca’ Foscari Venezia, Venezia, Italy
3 DIB, University of Thessaly, Lamia, Greece

Abstract. We examine the problem of rendezvous, i.e., having multiple mobile
agents gather in a single node of the network. Unlike previous studies, we need to
achieve rendezvous in presence of a very powerful adversary, a malicious agent
that moves through the network and tries to block the honest agents and prevents
them from gathering. The malicious agent can be thought of as a mobile fault
in the network. The malicious agent is assumed to be arbitrarily fast, has full
knowledge of the network and it cannot be exterminated by the honest agents.
On the other hand, the honest agents are assumed to be quite weak: They are
asynchronous and anonymous, they have only finite memory, they have no prior
knowledge of the network and they can communicate with the other agents only
when they meet at a node. Can the honest agents achieve rendezvous starting from
an arbitrary configuration in spite of the malicious agent? We present some neces-
sary conditions for solving rendezvous in spite of the malicious agent in arbitrary
networks. We then focus on the ring and mesh topologies and provide algorithms
to solve rendezvous. For ring networks, our algorithms solve rendezvous in all
feasible instances of the problem, while we show that rendezvous is impossible
for an even number of agents in unoriented rings. For the oriented mesh networks,
we prove that the problem can be solved when the honest agents initially form a
connected configuration without holes if and only if they can see which are the
occupied nodes within a two-hops distance. To the best of our knowledge, this
is the first attempt to study such a powerful and mobile fault model, in the con-
text of mobile agents. Our model lies between the more powerful but static fault
model of black holes (which can even destroy the agents), and the less powerful
but mobile fault model of Byzantine agents (which can only imitate the honest
agents but can neither harm nor stop them).

Keywords: Asynchronous; mobile agents; rendezvous problem; malicious agent.

* This work has been partially supported by the ANR - MACARON project (anr-13-js02-0002).
** This work has been partially supported by the PRIN 2010 Project Security Horizons.

*** Part of this work has been done while this author was visiting Universita Ca’ Foscari Venezia.
This research has been co-financed by the European Union (European Social Fund — ESF)
and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) — Research Funding Program:
THALIS-NTUA (MIS 379414).The final publication is available in the proceedings of AL-
GOSENSORS 2015. Lecture Notes in Computer Science, vol 9536. Springer, Cham. The final
publication is available at https://link.springer.com/chapter/10.1007/978-3-319-28472-9 3.

1 Introduction

One of the fundamental problems in distributed computing with mobile robots or agents
is the problem of gathering all agents at a single location, known as the rendezvous
problem. Rendezvous is important for example, for coordination between the agents
or for sharing information or for planning a collaborative task. This problem has been
well studied for the fault-free environment but there are very few results on solving
rendezvous in the presence of faults, in particular, in the presence of a hostile entity
that could prevent the agents from achieving their task. As in most previous works, we
model the environment as a connected graph with multiple mobile agents moving along
the edges of the graph; the objective is to gather them at a single node of the graph.
In this context, the hostile entity may be either stationary (e.g. a harmful node in the
graph) or mobile (e.g. a virus propagating on a network). Methods for protecting mobile
agents from malicious host nodes have been proposed, e.g. based on the identification
of the malicious host [14]. However, the issue of protecting a network (hosts and mobile
agents) from a malicious and mobile entity is still wide open (see [18] and references
therein).

A model for a particularly harmful node which has been extensively studied is the
black hole, where a node which contains a stationary process destroys all mobile agents
upon visiting it, without leaving any trace. In this case, although the hostile entity is
very powerful, it is stationary; the mobile agents can simply avoid the black hole once
its location is known. Thus, the main issue is locating the black hole [14, 17, 19]. Locat-
ing and avoiding a malicious entity that is also mobile and moves from node to node of
the graph, seems to be a more difficult problem. A recent result considers the problem
of rendezvous in the presence of Byzantine agents [12]. A Byzantine agent is indistin-
guishable from the legitimate or honest agents, except that it may behave in an arbitrary
manner and may provide false information to the honest agents in order to induce them
to make mistakes, thus preventing the rendezvous of the honest agents. Thus, the issue
here is identifying the Byzantine agents and distinguishing them from the honest agents.
Note that the Byzantine agent cannot actively harm the agent or physically prevent the
agents from gathering. In this paper, we consider a more powerful adversary called a
malicious agent which can actively block the movement of an honest agent to the node
occupied by the malicious agent. For example, when two honest agents are close to
each other, the malicious agent can enter the path between the two agents and prevent
them from meeting. We investigate the feasibility of rendezvous in the presence of such
a powerful adversary. In particular, the malicious agent is more powerful than the hon-
est agents; it can move arbitrarily fast through the graph, has full information about the
current configuration (i.e. the graph and location of the agents), and has knowledge of
the next action to be taken by each honest agent. On the other hand, the honest agents
are relatively weak; they are anonymous finite automata, they move asynchronously
without any prior knowledge of the graph and they can communicate only locally on
meeting another agent at the same node. We remark here that the malicious agent is dis-
tinguishable from the honest agents, so the question of identifying the malicious agent
(as in Dieudonne et al. [12]), does not arise here.

We believe this is an interesting model for studying mobile faults in a graph, that
has never been considered before. In some sense this model can be seen as an extension

of the model of networks with delay faults. For example, Chalopin et al. [8] consider
the problem of rendezvous in the presence of an adversary that can prevent an agent
from moving for an arbitrary but finite time. In their case, the agent cannot be blocked
forever as in our scenario. Our model can also be contrasted with the model for network
decontamination or, cops and robbers search games on graphs, where a team of good
agents (called cops) tries to capture a fast fugitive (robber). The fugitive or hostile entity
is exterminated as soon as one of the cops reaches it. Thus the behavior of the hostile
entity, in this case, is opposite to that of the malicious agent in our model — instead of
blocking the honest agents, the hostile entity tries to get away from the good agents.

In terms of practical motivation for this research, we can think of the malicious
agent as representing a virus that may spread around the network. While in the classi-
cal decontamination problem the aim is to extinguish the virus, in our setting the virus
cannot be extinguished and has to be contained in one part of the network, thus dividing
the network into unstrusted and trusted subnetworks. This scenario can be compared to
the problem of botnets, i.e. a subnet of compromised computers (bots), typically used
for denial-of-service attacks on the internet. The untrusted subnetwork in our model
can be seen as a botnet, and the botmaster who controls the bots represents the mali-
cious agent. An honest agent that resides on a node protects the trusted network from
the untrusted one by running some protection mechanism (e.g. a firewall, an intrusion
detection mechanism, etc.). Thus the malicious agent cannot enter a node already occu-
pied by an honest agent. On the other hand the botnet is dynamic, and it may reduce its
dimension (i.e., when the botmaster leaves the host) or it may increase it only on hosts
not occupied, i.e., not protected by an agent. Honest agents may expand towards the
untrusted hosts which are not controlled by the botmaster anymore by running botnet
detection mechanisms (see, e.g., [25]). We are then interested in solving the rendezvous
problem in the trusted subnetwork, and we want to study how this malicious behaviour
affects the solvability of the Rendezvous problem.

Related Work: The rendezvous problem has been studied for agents moving on
graphs [2] or for robots moving on the plane [9], using either deterministic or ran-
domized algorithms. In the fault-free scenario, the rendezvous problem can be solved
relatively easily, even in asynchronous networks, when the network has an asymmetry
(e.g., a distinguished node), and can be explored by the agents, since the mobile agents
can simply be instructed to meet at such a distinguished node. However, this is not the
case for symmetric networks, or when the agents is incapable of visiting all nodes of
the network, and the rendezvous problem in such settings is non-trivial and not always
solvable even in simple topologies such as the ring network [21]. Symmetry-breaking
for the rendezvous problem can be achieved by attaching unique identifiers to the agents
(see, e.g., [10,24]), or in the anonymous case using tokens as in e.g., [6, 11]. With re-
spect to hostile environments, the Rendezvous problem has been studied when there
is a black hole or other stationary faults in the network [7, 13, 23]. Another model for
hostile nodes has been presented in [3, 20], where the authors have studied how a more
severe (than a black hole) behaviour of a malicious host affects the solvability of the
Periodic Data Retrieval problem in asynchronous networks. A well studied problem in
the context of a mobile adversary is the problem of graph searching where a team of
mobile agents has to decontaminate the infected sites and prevent any reinfection of

cleaned areas. This problem is equivalent to the one of capturing a fast and invisible
fugitive moving in the network. For results on this and related problems see, e.g., [4,
15,16,22].

Gathering of mobile agents has been also studied in the plane when there are faulty
agents which may crash [1, 5] and in networks with delay faults [8] or in the presence
of Byzantine agents [12], as mentioned before. However, to the best of our knowledge,
the rendezvous problem has never been studied under the presence of hostile agents that
may block other agents from having access to parts of the network.

Our Results: In this paper we consider a network modelled as a connected undirected
graph with multiple honest agents located at distinct nodes of the graph. There is also
a hostile entity which is mobile, called the malicious agent. It cannot harm the honest
agents but can prevent them from visiting a node: an honest mobile agent cannot visit a
node which is occupied by a malicious agent and vice versa. We are interested in solving
the rendezvous of all honest agents in this hostile environment. Our objective is to study
the feasibility of rendezvous with minimal assumptions. Thus, we consider the weakest
possible model for the honest agents. The honest agents are finite state automata with
local communication capability and having no prior knowledge of the network. In Sec-
tion 2 we show some configurations in which the problem is unsolvable and we discuss
properties that must be respected by any correct algorithm for the problem. For the rest
of the paper, we consider ring and mesh networks — two topologies that can be explored
even by a finite automaton. In Section 3 we present a rendezvous algorithm for ring
networks. For oriented rings, we have a universal algorithm that achieves rendezvous
starting from any initial configuration, despite the existence of a malicious agent. We
prove that the problem is unsolvable for any even number of agents in unoriented rings.
Finally, we present an algorithm for rendezvous of any odd number of agents in unori-
ented rings, thus solving the problem in all solvable instances. In Section 4 we consider
oriented mesh topologies and we prove that the problem can be solved when the agents
initially form a connected configuration without holes if and only if they can detect
which are the occupied nodes within a distance of two hops. We show that this latter ca-
pability is necessary to achieve rendezvous even for connected configurations without
holes. We conclude in Section 5 with a discussion about future research directions for
this new model. For space limitation, proofs of some lemmas and theorems have been
omitted; these can be found in the full version of the paper.

2 Preliminaries

2.1 Our Model

We represent the network by a graph G = (V, E) composed by |V| = n anonymous
nodes or hosts and |E| edges or connections between nodes. Each host is connected
to other hosts by bidirectional asynchronous FIFO links (i.e., an agent cannot overtake
another agent moving in the same edge), and it is capable of serving agents by a mu-
tual exclusive mechanism (i.e., an agent at a node u must finish its computation and
move or decide to stay, before any other agent at w starts its computation or another
agent visits w). The links incident to a host are distinctly labelled but this port labelling

(unless explicitly mentioned), is not globally consistent. In the network there are some
mobile agents which are independent computational processes with some constant in-
ternal memory. The agents are initially scattered in the network (i.e., at most one agent
at a node), and can move along its edges. An agent arriving at a node u, learns the label
of the incoming port, the degree of u and the labels of the outgoing ports. We assume
there are k honest anonymous identical agents Ay, Ao, ... Ay, and one malicious agent
M which may deviate from the proper operations. The initial locations of the honest
and malicious agents are decided by an adversary. We describe below the capabilities
and behaviour of honest and malicious agents.

Honest agents: An honest agent located at a node u can see all other agents at u (if
any), and can also read their states. It can also read the degree of u and the labels of
the outgoing ports. The agents are anonymous, cannot exchange messages and cannot
leave messages at nodes. They are identical finite state automata, hence they have some
constant memory. The agents do not know n and k. Two agents travelling on the same
edge in different directions do not notice each other, and cannot meet on the edge. Their
goal is to rendezvous at a node.

Malicious agent: We consider a worst case scenario in which the malicious agent M
is a very powerful entity compared to honest agents: It can move arbitrarily fast inside
the network (since the model is asynchronous and the adversary is combined with the
malicious agent) and it can permanently ‘see’ the positions of all the other agents. It
has unlimited memory and knows the transition function of the honest agents. When it
resides at a node wu it prevents any honest agent A from visiting u (i.e., it “blocks” A):
if an agent A attempts to visit u it receives a signal that M is in u (botnet detection)
and in that case we say that A bumps into M. The malicious agent can neither visit a
node which is already occupied by some honest agent, nor cross some honest agent in
a link. It also obeys the FIFO property of the links (i.e., it cannot overpass an honest
agent which is moving on a link).

We call a node u occupied (respectively, free or unoccupied) when one or more
(no) honest agents are in u. We notice here that some of our impossibility results hold
even for stronger models, e.g., when honest agents have unlimited memory, distinct
identities, knowledge about the size of the network, visibility, etc. Our algorithm for the
ring topology only requires the capabilities of the honest agents mentioned above while
for the mesh topology we assume that the honest agents also have the ability to scan
whether a node within a two-hops distance, is occupied or not.

2.2 Basic Properties

In this section we show a special class of configurations for which the problem is un-
solvable. Intuitively, those are configurations in which the malicious agent can keep
separated at least two agents forever.

Definition 1. Let C be a configuration of a number of agents in a graph G with a
malicious agent. The configuration C is called separable if there is a connected vertex
cut-set F' composed of free nodes which, when removed, disconnects G so that not all
occupied nodes are in the same connected component.

Lemma 1. Rendezvous is impossible for any initial configuration in a graph G which is
separable, even if the agents have unlimited memory, distinct identities and can always
see their current configuration.

Proof. Let C be an initial configuration which is separable, and let F' be a connected
vertex cut-set, whose removal disconnects GG so that not all occupied nodes are in the
same connected component. Let u, v be two occupied nodes which are in different con-
nected components of G and let A, B be the honest agents located at u, v respectively.
Due to asynchronicity an adversary can introduce delays to A’s and B’s movements
while at the same time the malicious agent, which has been initially placed at a node
in F, can move everywhere in F' (since F' has only free nodes and it is connected)
preventing agents A, B, from visiting any node in F'. Since all paths between u and v
include at least one node of F', agents A, B can never meet, no matter how powerful
they are. a

Hence for every initial separable configuration the problem is unsolvable. A natural
question is whether there are non-separable initial configurations for which the problem
is unsolvable. The answer is yes and one can easily find such configurations. We now
state sufficient conditions under which the problem is unsolvable for a separable (initial
or not) configuration of agents.

Definition 2. Let C; be a configuration at time t > 0 (i.e., initial or not) of a number of
agents in a graph G with a malicious agent. The configuration C; is called separating
if C; is separable and either C; is an initial configuration or the following conditions
hold:

— there is a node x,, € F; (F} is any vertex cut-set of C; as defined in Definition 1)

and a path of nodes (xo, 1, ..., Ty) so that x is free at time 0 and,
— the sequence of nodes (xg,x1, . ..,Zy) can be partitioned in k < t + 1 contiguous
0 0 1 1 k k :
subsequences (xq, ..., 23), (Tiyqy @)y ooy (T, o, Ty,), where 0 < i <

j <l<mand,
— the nodes (x5, ...,x5) belonging to the same subsequence s are free at time s,
where 0 < s < k and nodes (x% ..., x%) are free at time t.

»r

Lemma 2. Rendezvous is impossible for any separating configuration in a graph G,
even if the agents have unlimited memory, distinct identities and can always see their
current configuration.

Intuitively, Lemma 2 states that if C; is a separable configuration, and in C; there is
a free node z so that either: i) x has been always free or, ii) there are paths of nodes
which eventually become free and they form a connection between a free node at Cy
and z, then there are at least two agents in C; which will never meet. Hence, any correct
algorithm for the solution of the problem should avoid creating a separating configura-
tion.

3 Rendezvous in a Ring Network

In this section we will study the rendezvous problem in bidirectional rings with a ma-
licious agent M. Notice that in a ring topology there are no separable (and hence no

separating either) configurations, since there cannot exist a connected cut-set composed
of free nodes whose removal would disconnect the ring. However, since the ring is
highly symmetric, rendezvous is impossible even if the agents have unlimited memory
and have full knowledge of the configuration, since an adversary can keep synchronized
the agents so that they always take the same actions at the same time and therefore they
maintain their initial distances (the malicious agent can keep on moving synchronized
with the honest agents). Thus, in order to solve the problem we need to add some con-
straints to the model. A natural step is to assume that there is a special node labeled
o* in the ring which can be recognized by the agents. Note that the malicious agent is
so powerful that it could place itself on 0o* and never move from there. Our strategies
also work under this scenario. We now present algorithms for solving the problem in
oriented and unoriented rings.

3.1 Oriented Ring

In an oriented ring, the two incident edges at each node are labelled as clockwise or
counter-clockwise in a consistent manner; so, all agents agree on the ring orientation.

The idea of the algorithm is the following. Each agent moves in the clockwise di-
rection until it meets o* or bumps into M. For the first three times that the agent bumps
into M without meeting o™, it reverses its direction and continues moving in the op-
posite direction. Due to the FIFO property and the fact that the agent cannot pass over
M, we can show that if an agent bump into M after reversing directions at least three
times, then the other agents should have bumped into M at least twice, without meeting
the special node o* (see Lemma 3). After an agent has already bumped into M three
times, the next time it bumps into M or meets o* it stops. On the other hand, if the
agent meets o* before it bumps into M twice, then the agent stops at o*, and all the
other agents will arrive at o* after bumping into M at most once. The algorithm called
RV-OR is presented below.

Lemma 3. During the execution of the algorithm, if an agent bumps into M in the
fourth iteration of the while loop, then any other agent must have bumped into M at
least two times.

Lemma 4. Algorithm RV-OR solves rendezvous of k > 2 agents in spite of one mali-
cious agent, in any oriented ring containing one special node o*.

3.2 Unoriented Rings

In unoriented rings, each agent has its own notion of clockwise and the agents may not
agree on the clockwise direction. In this case rendezvous is not always feasible.

Lemma 5. For any even number k > 2, the rendezvous problem for k honest agents
and one malicious agent cannot be solved in any bidirectional unoriented anonymous
ring with a special node 0*, even if the agents know k.

We now present an algorithm for solving rendezvous of k agents, for any odd integer
k, in an unoriented asynchronous ring network. Notice that in an unoriented ring, if we

Algorithm 1: RV-OR : Rendezvous of £ > 2 agents in oriented rings
Let: :=0;
DIR := Clockwise;
while nort Stopped do
Move DIR until you bump into M or meet o™ or a stopped agent;
i=i+1;
if you met a Stopped agent then
L Become Stopped and Exit loop;

if : =1 ori= 2 then
if Current node is o™ then
L Become Stopped and Exit loop;

else if Bumped into M then
L Reverse direction (DIR := inverse(DIR));

if i = 3 then
if Current node is 0™ or Bumped into M then
L Reverse direction (DIR := inverse(DIR));

if ¢ = 4 then
if Current node is 0™ or Bumped into M then
L Become Stopped and Exit Loop ;

follow an algorithm similar to Algorithm RV-OR it is possible that the agents form
two distinct groups that gather at two distinct nodes. However, since the total number
of agents is odd, exactly one of the two groups would have even number of agents,
thus one of the agents of this group could move to collect all the other agents. The
algorithm must ensure that there are at most two groups of agents, i.e. there are at most
two distinct nodes where the agents stop in the initial phase. In our algorithm, an agent
stops at o* only if it has seen it at least three times, while moving in the same direction.
This implies that this agent has traversed the complete ring two times and while M
has moved at least once around the ring. So, there could be no agents moving in the
opposite direction. On the other hand if some agent stops while bumping into M, then
any agent moving in the same direction would reach this node with the stopped agent
before reaching M or o*. In all cases, there will be at most two nodes where the agents
stop. When two or more agents have gathered at a node v, one of the agents called
the searcher' reverses direction and moves to search for the other agents. The searcher
only stops when it reaches the other node w containing stopped agents. If the number of
agents gathered at node w is even then the searcher becomes a Collector and it collects
all agents and returns to node v. Note that the agent does not need to count the number
of other agents as the algorithm depends only on the parity of the size of the group of
agents. The complete algorithm, called RV-UR is presented in a following table.

! We select as searcher the second agent that arrives at node v.

Algorithm 2: RV-UR : Rendezvous in unoriented rings

Case 0. [nitial state
Move clockwise until:
Case 0.1. You meet node o™ unoccupied for the third time:
Change state to stopper;
Case 0.2. You bump into M trying to move from a node that hosts only you:
Change state to stopper;
Case 0.3. You meet an agent not at node o™:
Case 0.3.1. The agent you meet is alone and is a stopper:
Change state to transformer-1;
Case 0.3.2. Every other agent at the node is at state final:
Change state to stopper;
Case 0.3.3. You meet a stopper and at least one agent at state final:
Change state to transformer-2;

Case 1. State transformer-1
Wait until all other agents change to state final;
Change state to searcher;

Case 2. State searcher
Move counter-clockwise until you bump into M while you try to move from a node u:
Case 2.1. You see one or more agents at v and all of them are at state final:
Change state to stopper;
Case 2.2. You see no agent at v or an agent not at state final:
Change state to collector;

Case 3. State stopper
Wait until:
Case 3.1. You see a transformer-1 or transformer-2: Change state to final,
Case 3.2. You see a collector: Follow collector;
Case 3.3. You see a terminator: Change state to terminator;

Case 4. State collector
Wait until every other agent at the node changes its state to stopper;
Collect everyone;
Move clockwise collecting every agent you meet, until you meet an agent at state final;
Change state to terminator;

Case 5. State final
Wait until:
Case 5.1. You see a collector: Change state to stopper;
Case 5.2. You see a terminator: Change state to terminator;

Case 6. State transformer-2
Wait until every other agent at the node changes its state to final;
Change state to final;

Case 7. State terminator
Wait until every other agent at the node changes its state to terminator;
Exit;

Lemma 6. Consider an anonymous ring consisting of n nodes, including a special
node o* and one malicious agent. If k > 2 honest agents execute Algorithm RV-UR,
then, after a total number of O(kn) edge traversals the honest agents correctly ren-

dezvous, if k is odd.
The following result summarizes the results of this section:

Theorem 1. In any anonymous and asynchronous ring with a special node o* and one
malicious agent, k honest agents having constant memory and no knowledge about their
number, can solve the rendezvous problem if and only if either the ring is oriented or k
is odd.

We briefly consider the case when there could be multiple malicious agents in the
network. In this case, rendezvous is feasible only if all the malicious agents are located
in a continuous segment of the ring with no honest agent in between. This scenario is
equivalent to the one with a single malicious agent and thus the same algorithm would
work in this case.

4 Rendezvous in an Oriented Mesh Network

We now study the problem in an oriented mesh network. In view of Lemma 1, ren-
dezvous is impossible for separable initial configurations. Hence, in this section we
study the problem for a special class of non separable initial configurations and we give
an algorithm that solves the problem for this type of configurations. In particular, we
focus on initial configurations where the induced subgraph of the occupied nodes is
connected without holes, i.e., there is no connected set of unoccupied nodes surrounded
by occupied nodes. At the end of the section we discuss the solvability of the problem
in other classes of initial non separable configurations.

First observe that even in configurations that consist of a simple path of occupied
nodes, the problem is unsolvable in the considered model due to network asynchronic-
ity: Initially all agents have the same input and thus (following any potentially correct
algorithm), they should all try to move; however, an adversary may slowdown all agents,
except for one not located at the endpoints of the path, hence creating a separating con-
figuration. Thus, by Lemma 2 the problem is unsolvable. Therefore, the agents need to
be able to gain some knowledge about their current configuration before they move in
order to avoid creating a separating configuration. We enhance our model by giving the
agents, the capability to discover all occupied nodes within a distance of d-hops.

Definition 3. We say that an agent A located at a node x can see (or scan) at a distance
d or it has d-visibility if A can decide for any node u within a distance of d hops from
x, whether u is occupied or not by an honest agent.

We emphasize that, if a node u scanned by agent A is occupied, A cannot tell how
many agents are in u, or read their states. When the agents have a d—visibility capability
we assume that moves are instantaneous, i.e., an agent cannot be traveling along an edge
while another agent is scanning its neighbourhood. Unfortunately, as we show below,
even when the agents have 1—visibility (i.e., they can only scan their neighbours), the
problem remains unsolvable for some connected without holes configurations.

10

Lemma 7. The rendezvous problem is unsolvable in an oriented mesh with a malicious
agent for initial connected without holes configurations, even when the agents are ca-
pable of scanning their adjacent nodes.

Hence we further equip the agents with the capability of discovering the occupied
nodes within a two-hops distance. In that case, as we show below, the problem can be
solved for any connected without holes initial configuration.

We present an algorithm which instructs the agents to move only to occupied nodes
in a way that they maintain the connectivity and they do not create holes. In order to
describe the algorithm we define eleven local configurations as shown in Fig. 1. In these
configurations, empty circles represent free nodes, while circles containing black dots
represent occupied nodes. The remaining vertices on the figures represent nodes which
may be either occupied or free. The agent (let us call it A) which is located below a
horizontal arrow in cases (a-g), moves horizontally as depicted by the arrow. The agent
(let us call it B) which is located left of a vertical arrow in cases (h-m), moves vertically
as depicted by the arrow. Hence the algorithm can be described as follows:

Algorithm RV-MESH: If an agent has a view (within two hops) like the one of agent
A or B described before, then this agent moves towards the direction shown by the
corresponding arrow, otherwise the agent does not move.

Nodes which are within two hops from the scanning agent and are not shown in
those configurations can be either occupied or free. If the location of the scanning agent
is close to the border of the mesh and some of the nodes in those eleven configurations
do not exist, then the agent acts as it would act if those nodes existed in its view and were
free. Moreover, while an agent A located at a node u is executing its scan or compute
phase then no other operation can take place at u before A moves or decides to stay
(i.e., no other agent at u can start scanning and no other agent can arrive at w). That
is, operations at a node u are executed in mutual exclusion. Notice that if two adjacent
agents want to swap positions they can only do it at the same time.

(a) (b) (©) @ (@)

e T

® 6] (h) (i) U] (m)

Fig. 1. View of the scanning agent located below (cases a-g) or left (cases h-m) of the depicted
arrow. Occupied nodes are depicted as cycles containing black dots, while free nodes are depicted
as empty cycles. Nodes which are within two hops from the scanning agent but not shown, can
be either occupied or free. The scanning agent will move East in cases (a,b), West in cases
(c,d, e, f,g), South in case (h), and North in cases (4,1, m).

11

Lemma 8. Given an n X m oriented mesh, for any connected configuration without
holes of at least three occupied nodes, there is at least one agent whose view is in one
of the configurations depicted in Fig. 1.

Lemma 9. Given an n X m oriented mesh, consider a connected configuration of k
agents in two occupied nodes. According to Algorithm RV-MESH, after a total number
of at most k + 1 edge traversals there will be only one occupied node.

Lemma 10. Given an n x m oriented mesh, consider any connected configuration
without holes of k agents occupying at least 3 nodes. After any number of moves ac-
cording to Algorithm RV-MESH, the resulting configuration is also connected without
holes. Furthermore, the number of occupied nodes will strictly decrease after at most k
edge traversals, reaching the value of only one occupied node after at most O(k?) edge
traversals.

In view of Lemmas 7, 8, 9, 10 we have:

Theorem 2. The rendezvous problem for k > 2 agents can be solved for any initial
connected without holes configuration of agents in an n X m oriented mesh if and only
if the agents are able to discover the occupied nodes within a distance of two-hops.

If the initial non separable configuration is different from the one considered above,
then even the 2-visibility capability is not sufficient anymore to solve rendezvous. In
fact the problem remains unsolvable for connected configurations with holes even when
the agents are able to discover the occupied nodes within any constant distance. The
problem is also unsolvable for some disconnected non separable configurations. Hence
it appears that for many initial non separable configurations in an oriented mesh, the
combination of the asynchronicity and the limited view (to any constant fraction of the
complete view) makes the problem unsolvable.

5 Conclusion

In this paper we studied deterministic protocols for the rendezvous of k£ > 2 honest
agents in asynchronous networks with a malicious agent which can prevent the agents
from reaching any node it occupies. We have presented algorithms for oriented and un-
oriented ring networks which gathers the honest agents within O(kn) edge traversals
for all feasible instances of the problem. We have also presented a deterministic pro-
tocol for oriented n x m meshes which leads the agents to rendezvous within O(k?)
edge traversals for any initial connected without holes configuration when the agents
can discover the occupied nodes within a distance of two-hops (which is a necessary
condition). Given the novelty of the model there are many interesting open questions.
The first is whether the problem can be solved in unoriented meshes for connected con-
figurations without holes when the agents are capable of scanning within a constant
distance. It would be also interesting to study randomized protocols for some of the un-
solvable cases, and also to study this problem in synchronous networks with unit-speed
cooperating agents and unit-speed/infinite-speed malicious agents. Finally, it would be
interesting to study the problem in (m + 1)-connected graphs in the presence of m ma-
licious agents, or in the solved cases presented in this paper in the presence of malicious
agents that show a more severe behaviour.

12

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.
SIAM J. on Computing, 36(1):56-82, 2006.

S. Alpern and S. Gal. Searching for an agent who may or may not want to be found. Opera-
tions Research, 50(2):311-323, 2002.

. E. Bampas, N. Leonardos, E. Markou, A. Pagourtzis, and M. Petrolia. Improved periodic

data retrieval in asynchronous rings with a faulty host. In SIROCCO, LNCS 8576, pages
355-370, 2014.

. L. Barriere, P. Flocchini, F. V. Fomin, P. Fraigniaud, N. Nisse, N. Santoro, and D. Thilikos.

Connected graph searching. Information and Computation, 219:1-16, 2012.

. Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash

faults. In /IEEE 33rd International Conference on Distributed Computing Systems, ICDCS
2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA, pages 337-346, 2013.

. J. Chalopin and S. Das. Rendezvous of mobile agents without agreement on local orientation.

In ICALP, LNCS 6199, pages 515-526, 2010.

. J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown graphs with

faulty links. In Proc. of 21st Int. Conf. on Distributed Computing, pages 108—122, 2007.

. J. Chalopin, Y. Dieudonne, A. Labourel, and A. Pelc. Fault-tolerant rendezvous in networks.

In Proc. of 41st Int. Colloquium on Automata, Languages and Programming, LNCS 8573,
pages 411-422, 2014.

. R. Cohen and D. Peleg. Convergence of autonomous mobile robots with inaccurate sensors

and movements. SIAM J. on Computing, 38:276-302, 2008.

J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere.
In Proc. of 21st Annual ACM-SIAM Symp. on Discrete Algorithms, 2010.

S. Das, M. Mihalak, R. Sramek, E. Vicari, and P. Widmayer. Rendezvous of mobile agents
when tokens fail anytime. In OPODIS, LNCS 5401, pages 463—480, 2008.

Y. Dieudonne, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Transactions on
Algorithms, 11(1):1, 2014.

S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous in a ring
in spite of a black hole. In OPODIS, pages 34-46, 2003.

S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole in an
anonymous ring. Algorithmica, 48(1):67-90, 2007.

P. Flocchini, M. J. Huang, and F. L. Luccio. Decontamination of chordal rings and tori using
mobile agents. Int. Jour. of Foundation of Comp. Sc., 3(18):547-564, 2007.

P. Flocchini, M. J. Huang, and F. L. Luccio. Decontamination of hypercubes by mobile
agents. Networks, 3(52):167-178, 2008.

P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: Optimal black
hole search with pebbles. Algorithmica, 62(3-4):1006-1033, 2012.

P. Flocchini and N. Santoro. Distributed security algorithms for mobile agents. In J. Cao
and S. K. Das, editors, Mobile Agents in Networking and Distributed Computing, chapter 3,
pages 41-70. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.

R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation results for
black hole search in arbitrary graphs. TCS, 384(2-3):201-221, 2007.

R. Krélovi¢ and S. Miklik. Periodic data retrieval problem in rings containing a malicious
host. In SIROCCO, LNCS 6058, pages 157-167, 2010.

E. Kranakis, D. Krizanc, and E. Markou. The Mobile Agent Rendezvous Problem in the Ring.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2010.
F. L. Luccio. Contiguous search problem in sierpinski graphs. Theory of Comp. Sys.,
(44):186-204, 2009.

23. Y. Yamauchi, T. Izumi, and S. Kamei. Mobile agent rendezvous on a probabilistic edge
evolving ring. In /CNC, pages 103-112, 2012.

24. X. Yu and M. Yung. Agent rendezvous: A dynamic symmetry-breaking problem. In /CALP,
pages 610-621, 1996.

25. Y. Zeng, X. Hu, and K. Shin. Detection of botnets using combined host- and network-level
information. In IEEE/IFIP DSN 2010, pages 291-300, June 2010.

ii

