Fuzzy Graphs and Error-proof Keyboards *

Flaminia L. Luccio
Department of
Mathematical Sciences,
University, 34100 Trieste (Italy)
luccio@dsm.univ.trieste.it

Abstract

Fuzzy graphs are used to assess the
error-detecting and error-correcting
capabilities of usual and unusual
keyboards.

Keywords: Fuzzy graphs, error de-
tection, error correction.

1 Fuzzy graphs and their
extensions to sequences

A fuzzy graph G with vertex set V =
{v1,v2,...,vk} is a complete simple graph!
where each edge e = (v,v') between vertices
v # v is given a weight p(e) € [0,1]. The
number p(e) is interpreted as the degree of
membership of edge e to the (fuzzy) edge set
E. Crisp (ordinary) graphs are re-found when
p(e) is either 0 (edge e is lacking) or 1 (edge
e is present). Notice that the vertex set of
a fuzzy graph is always crisp, fuzziness is as-
sociated with the edge set only (cf e.g. [1]
for basics on fuzzy sets). Once a number (a
“level”) « has been chosen, from G one can
construct its a-cut G, by setting pqo(e) =1
iff u(e) > a, else p(e) = 0; in other words G4,
is the crisp graph obtained by retaining only
the edges whose degree of membership to the
edge set is at least a.

Research partially supported by MIUR.

In a simple graph loop-edges and multiple edges
are ruled out; when the graph is complete, all other
edges are present (possibly with weight equal to zero).
The reader will have observed that fuzzy graphs are a
nice way to represent fuzzy relations.

Andrea Sgarro
Department of
Mathematical Sciences,
University, 34100 Trieste (Italy)
sgarro@Qunits.it

Let V" be the n-th Cartesian power of the
vertex set V; its elements £ = z1xzo ... x, are
the K™ sequences obtained by juxtaposition
of n vertices (of course z; and z; might be
the same vertex v even if ¢ # j). We shall
now extend the fuzzy graph G with vertex set
V to a fuzzy graph G" with vertex set V";
the idea is that two vertex sequences z and
Y = Y1y2...yn (& # y) are adjacent when
adjacency is “tight enough” in each position
i. Formally, for the weight p(e) of the edge
e = (z,y) we set:

ple) = wlz,y) = mjin (5, y;5)

where the minimization is performed over all
positions j such that z; # y;. Other defini-
tions of power-graphs may be put forward; we
have chosen this one because it fits in with the
application we have in mind2. The following
equality for a-cuts is readily proved; it shows
that it is the same if one takes the power first
and then makes an a-cut, or the other way
round (the order of these two operations is
irrelevant):

(G")a = (Ga)"

We add one more technicality. Fix a threshold
«a which, without real restriction, we may con-
strain to be one of the available edge-weights,
inclusive of 1 even if 1 is not an edge-weight
(in the examples below, fuzzy edge-sets are
never normal, i.e. the membership degree
=1 is never used). An a-stable set of ver-
tices is a subset of vertices such that any edge

2This product is inspired by what in the crisp case

is called the strong power of a graph; for (crisp) com-
binatorics an excellent reference is [8].



connecting two of them has weight strictly less
than « (any two vertices in an a-stable set are
bound to be only “loosely connected”). Ac-
tually, an a-stable set of a fuzzy graph G is a
stable set of its a-cut G, in the usual sense
of combinatorics, i.e. it is a subset of vertices
no two of which are adjacent (no two of which
are linked by a crisp edge). We recall that the
problem of finding mazimal stable sets is NP-
hard (computationally “intractable 7). If S is
an a-stable set of the fuzzy graph G, then its
Cartesian power S” is an a-stable set of the
fuzzy power-graph G", as is proved by using
the equality above. However, even if § is a
maximal a-stable set of G, 8™ is not neces-
sarily maximal in G™; cf e.g. [8].

In this paper we shall put forward a method
meant to assess the error-detecting and error-
correcting capabilities of keyboards, e.g. of
telephone keyboards. = We shall put the
method to work upon two examples; the first
refers to what can be seen as the “kernel” of
a normal telephone keyboard as in use to-day,
in the second the design of the telephone key-
board is quite unusual. The performances of
the two keyboards will be compared. Much
more complicated keyboards might be taken
into account, but here we shall concentrate
precisely on simple phone keyboards.

Example 1.1. Think of the keys (push-
buttons) of a digital telephone keyboard in
which digits from 1 to 9 are arranged on a
3 x 3 grid, left to right, top row to bottom
row, and forget about digit 0 which is usually
positioned below digit 8 (later we shall come
back to this lamentable absence). We now de-
fine a fuzzy graph over the nine push-buttons;
the edge set consists of those couples made up
of two push-buttons v # v’ which may be in-
advertently swapped by the user: & = {(v,v’)
which are easily swapped}. Two keys (two
vertices) are joined the more tightly the eas-
ier it is to “slip” from one to the other (the
more the corresponding edge belongs to &).
In this description fuzzy membership degrees
are seen as numeric counterparts for “linguis-
tic labels”, and so what really counts is the
ordering of the labels rather than their pre-
cise numeric values:

i) as a rule one pushes the correct button (this
would give loop-edges with weight y = 1; ac-
tually, in our formalism loop-edges are not al-
lowed, and so this weight will not be made
explicit)

i1) sometimes one inadvertently pushes a
neighbour of the correct button on the same
row or on the same column (u = 2/3)

ii1) it may also happen that one pushes a
neighbour of the correct button situated on
the same diagonal (u = 1/3)

iv) everything else is more or less out of the
question (u = 0)

E.g., u(1,4) =2/3, p(1,5) = 1/3, p(1,6) = 0.

Example 1.2. Think now of a fancy tele-
phone keyboard in which the 9 push-buttons
are arranged from 1 to 9 so as to form the ver-
tices of an enneagon (of a nine-sided regular
polygon); cf Figure 1 and also Figure 2.

Figure 1: First example of an enneagon key-
board.

We shall describe possible “slips” in the fol-
lowing way:

i) as a rule one pushes the correct button
i1) it does happen that one inadvertently

pushes a neighbour of the correct button, the
one before, or the one afterwards (u = a*)

ii1) it does even happen that one presses a
button which is situated two positions before
or afterwards, though this is quite exceptional

(1 =1/6)

iv) everything else is more or less out of the



&
N

Figure 2: Second example of a nine-button
keyboard.

question (4 = 0)

We did not bother to specify the numeric
value of a*, because we want to compare the
two keyboards and it is not clear how “physi-
cal contiguity” as in ii) and iii) of example 1.1
compares with “physical contiguity” of this
example; in the absence of empirical evidence,
it is fair to assume only 1/3 < o* < 2/3.
E.g., for the enneagon keyboard, u(1,2) = o,
p(1,3) =1/6, pu(1,4) = 0.

In both our examples we have to think also
of slips between “super-keys”, i.e. between
whole phone numbers (between vertex se-
quences, in our formalism). The construction
of fuzzy power-graphs for vertex sequences
will be dictated by our choice of a reliabil-
ity criterion, as described below at the begin-
ning of Section 2. Preliminarily, think of a
fuzzy graph G; with vertex set V" in which
two “vertices” xz # y are linked when it is
easy to slip from one sequence to the other
in ezactly the i-th position; so, we set for the
edge-weights pi(z,y) = p(zi,yi), pi(z,y) =1
if z; = y;. In a way, G and G; may be
seen as “the same fuzzy graph”, since in G;
all components other than the i-th do not
really matter. Now, our reliability criterion
is such that a slip from one sequence to the
other (from one phone number to the other)
easily happens only if slips easily happen in
each position i. Therefore, what we need is
a fuzzy graph over vertex sequences which is
the fuzzy intersection of the graphs G;. Now,
if one uses the standard fuzzy intersection

defined through a minimum, what one ob-
tains is precisely the strong power G™ as de-
fined in the preceding section. Let us choose
n = 6 and go back to example 1.1; one has
e.g. ((H65711,555511) = 1/3 (the minimum
is obtained for i = 4); going back to the en-
neagon keyboard of example 1.2, one has in-
stead p(565711,555511) = 1/6.

2 Error-detecting keyboards

Our goal is the design of keyboards which are
error-correcting (cf next section), or at least
error-detecting. Let us agree on a certain
phone number length n, e.g., as in our ex-
amples, n = 6. We shall fix a reliability level
a € [0,1]; in practice, and without real re-
striction, a will be equal to one of the edge-
weights of G, inclusive of 1 even if 1 is not an
edge-weight. Let us take in V" a subset C of
phone numbers, or, as we shall also say, let
us take a codebook C. The idea is that phone
numbers inside C will be assigned, while those
outside cannot be used. The codebook C is
a-reliable when it is an a-stable set of G";
the idea is that whenever a number outside C
is selected, the error is detected, connection
is refused and/or an alarm is triggered. Ob-
serve that error detection is always success-
ful, unless one or more slips occur for which
p(v,v") < a. Our reliability criterion is pre-
cisely one that leaves out of consideration the
occurrence of such slips, as if they were “im-
possible”; all other errors must be detected.
We stress that if a is larger the criterion is
looser.

An a-reliable code is optimal when it is max-
imal among a-stable sets of V™. As observed
above, finding optimal codebooks is an NP-
hard problem; in practice this mean that one
should look for good codes, and usually forget
about the optimal ones (this point of view is
typical of coding theory, say of algebraic cod-
ing theory, as opposed to the more asymptotic
and “philosophic” Shannon’s information the-
ory).

In our examples G has 9 vertices; standard
software can readily identify maximal stable
subsets for n = 1,2 but gets bogged down



already for n = 3 (G* has 729 vertices). One
can resort to approximations, and take a way-
out like the following:

1st order way out: find a maximal a-stable set
S in G, and then use the codebook S® (which
is a-stable, but not necessarily maximal); in
practice this means that some push-buttons
“far enough” from each other are permitted,
while the remaining push-buttons are not.

2nd order way out: find a maximal a-stable
set 7 in G2, and then use the codebook
73 C V5 in practice this means that some
couples of push-buttons are permitted, while
the others are not.

In some situations, as is the case with the
standard keyboard of example 1.1 both for
a = 1/4 and for a = 3/4, the two ways out
turn out to be one and the same. This is be-
cause, as it is easy to prove?, in these two cases
optimal codebooks are obtained precisely by
taking the Cartesian product of an optimal
a-stable set of push-buttons (this is true for
each value of n, in particular for n = 2 and
n = 6). Nothing better can be achieved. This
state of affairs means that optimal codebook
constructions are not especially cute, and it is
no relief to learn that these situations are as-
sociated to a type of graphs which combinato-
rialists dub perfect. Here we shall not indulge
in combinatorial digressions; it will be enough
to stress that a long-standing conjecture due
to Cl. Berge, called the perfect-graph conjec-
ture, points at using keyboards based on odd-
sided polygons, like the enneagon keyboard
of example 1.2, if one is looking for ways out
of the 2nd order which actually improve on
the 1st order way out*. We shall now present
some computational results.

30ne may use the following well-known and
straightforward result of (crisp) combinatorics: if in a
graph the maximum size of a stable set coincides with
the minimum number of cliques necessary to cover
the graph, then an optimal (maximum-size) stable set
in the strong-power graph is obtained by taking the
Cartesian product of an optimal stable set in the ini-
tial graph; cf [8].

40Optimal codebooks are associated with a sophis-
ticated asymptotic notion, called Shannon’s graph ca-
pacity; cf [3],[6],[7] or [8]. The Shannon’s graph capac-
ity of odd-sided polygons with 7 or more edges is as
yet unknown.

Let us take the standard keyboard of ex-
ample 1.1 and choose a@ = 2/3; one soon
hand-checks (cf footnote 3) that an optimal
codebook in V" is {1,3,5,7,9}"; for « = 1/3
an optimal codebook is instead {1,3,7,9}".
So, for n = 2 the optimal sizes are 25 and
16, respectively. Let us go to the enneagon
keyboard. For a = a* and n = 1 the optimal
size is just 4 and an optimal codebook is
{1,3,5,7}; for n = 2 a computer search
shows that the optimal size is 18 and an
optimal codebook is made up of the couples
{11,13,25,27,32, 39, 44,46, 51, 58, 63, 65, 77,
79,82, 84,96,98}. On the whole, as far as
error detection is concerned, the enneagon
keyboard does not beat the standard one.
Before going to the more ambitious goal of
error correction, we still have to take o = 1/6
for the enneagon keyboard; for n = 1 the
optimal size is 3 and an optimal codebook
is {1,4,7}, as made evident in Figure 2; the
2nd order way out does not bring any ad-
vantage, and an optimal codebook is simply
{1,4,7}5 (use again footnote 3). One might
think of other fancy shapes; for example one
might juxtapose two pentagon keyboards,
so as to have one push-button in common.
Unfortunately, the double pentagon is sort of
a ”squeezed enneagon”: this leads to a fuzzy
graph with higher connectivity, which is bad
both from the point of view of error detection
and error correction.

3 Error-correcting keyboards

We begin with a technicality. Once a fuzzy
graph G is given, we can resort to a fuzzy
proximity closure, and introduce a new
graph G for which

fi(v,v") = max {min[p(v,w), p(w,v")]}
weY
The maximum is taken over the vertex set
V, which is common to both graphs, agree-
ing that u(v,v) =1 (cf e.g. [4] for fuzzy rela-
tions, and in particular for fuzzy proximities).
One has ji(v,v') > p(v,v’) and so connectiv-
ity is higher in G than it is in G ; consequently,
maximal a-stable sets are in general smaller.
Take for example the standard keyboard; one



has p(1,7) = 0 but fi(1,7) = 2/3 (think of
the intermediate push-button 4); in the en-
neagon keyboard one has p(1,3) = 1/6 but
p(1,3) =a* > 1/6.

Also in the case of error correction, a relia-
bility criterion is chosen which abstracts from
slips for which pu(v,v') < a (we stress that
the weights of the slips, either those allowed
or those ruled out, are as in G and not as
in its closure é) An optimal codebook C
is then a maximal a-stable set of the power-
graph G™, and not of the power graph G™, as
is the case for error detection; in other words,
error-correcting codebooks are obtained in the
same way as error-detecting codebooks, only
replacing the fuzzy graph G" by its proxim-
ity closure Gn (a proof of this claim is soon
obtained by adapting the corresponding proof
given in [7] to the "language” of fuzzy graphs,
as used here). If a sequence z is pressed which
lies outside C, it is automatically corrected
to the unique sequence ¢ in the codebook for
which p(c, z) < « (the uniqueness of ¢ is also
proved in [7]). Let us present some computa-
tional results.

Let us take the standard square keyboard; a-
stable sets are {1,9} and {1} for & = 2/3 and
a = 1/3, respectively. One can show that for
n > 2 one cannot do anything better than
taking Cartesian products, and so no error
correction is feasible for a = 1/3. In particu-
lar, for n = 2 the optimal codebook sizes are
4 and 1, respectively. The square keyboard
performs rather poorly from the point of view
of error correction. Let us go to the enneagon
keyboard. As one can readily check, the a*-
cut of the closure graph G coincides with the
1/6-cut of the initial graph G; this equality
carries over to the corresponding stable sets.
This means that the same codebook is opti-
mal both for error detection at level & = 1/6
and for error correction at level & = a*; the
user can select the option he needs. We recall
that for n = 1 the optimal size is 3, while for
n = 2 the optimal size is 9. The enneagon
keyboard performs better than the standard
one as an error-correcting device, and it has
the additional advantage of being a double-
use device. The fact that 9 is not a prime

number may be used to give the keyboard a
pleasant appearance as we have tried to do in
Figure 2; a zero push-button may be located
in the center of the enneagon. If one agrees
that it is quite hard to push such a button by
mistake, the analysis performed so far need
not be modified, since the new push-button
can be used freely.

Final remark. In [2], [6], and more system-
atically in [7], a “soft” approach to coding,
and in particular to error correction, has been
introduced which is based on possibility the-
ory rather than probability theory. As argued
in [6] and [7], this approach is quite adequate,
simpler and at the same time more powerful
than the traditional approach to this sort of
problems taken in the so called zero-error in-
formation theory (historically, the zero-error
theory, which has a probabilistic basis, was
started in the fifties by the late Cl. Shannon
[5]; for an excellent overview cf [3]). Actu-
ally, the fuzzy graph approach taken in this
paper, though necessarily limited to very spe-
cial problems of error detection and error cor-
rection, appears to be even simpler and more
direct than the possibilistic approach of [6]
and [7]. Unlike what one does usually in
the zero-error probabilistic approach, or in
the possibilistic approach of [6] and [7], in
this paper our interest has not been Shannon-
theoretic, but has been more matter-of-fact,
as is the case in much of coding theory proper.
Zero-error information theory has been al-
ways held in high esteem because of the beau-
tiful problems and results that it has provided
to “pure” combinatorics; we hope that our ef-
fort may help to convince people that zero-
error information theory, if suitably re-visited
in the spirit of soft mathematics, be it pos-
sibility theory or fuzzy set theory, can also
exhibit a large degree of practical applicabil-

1ty.
References

[1] D. Dubois, W. Ostasiewicz, H. Prade.
Fuzzy Sets: History and Basic Notions.
In Fundamentals of Fuzzy Sets, ed. by D.
Dubois and H. Prade, Kluwer Academic
Publishers, 2000.



[2] F. Fabris, A. Sgarro. Possibilistic Data
Transmission and Fuzzy Integral Decod-
ing. In Proceedings of the conference IP-
MU’2000, pages 1153-1158, Madrid, Spain,
July 3-7 2000.

[3] J. Korner, A. Orlitsky. Zero-error Infor-
mation Theory. IEEE Transactions on In-
formation Theory, 44(6): 2207-2229, 1998.

[4] S. Ovchinnikov. An Introduction to Fuzzy
Relations. In Fundamentals of Fuzzy Sets,
ed. by D. Dubois and H. Prade, Kluwer
Academic Publishers, 2000.

[5] C.E. Shannon. The Zero-Error Capacity of
a Noisy Channel. IRE Trans. Inform. The-
ory (IT-2): 8-19, 1956.

[6] A. Sgarro. The Capacity of a Possibilis-
tic Channel. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty,
ed. by S. Benferhat and Ph. Besnard, Lec-
ture Notes in Artificial Intelligence, 398-
409, Springer, 2001.

[7] A. Sgarro. Possibilistic Information The-
ory: a Coding Theoretic Approach. Fuzzy
Sets and Systems, galley proofs, 2002.

[8] J.H. van Lint, R.M. Wilson. A Course
in Combinatorics, Cambridge University
Press, 1992.



