AligNet:Alignment of Protein-Protein Interaction Networks

A. Alcalá R. Alberich M. Llabrés F. Rosselló G. Valiente

University of the Balearic Islands

Bioinformatics Day @ DAIS July 7, 2016

#### Protein-Protein Interaction Networks (PPI)



- Nodes are proteins
- Protein-Protein interactions are edges

Figure: Protein-Protein Interaction Network of Saccharomyces cerevisiae.

Xarxes d'interacció de proteïnes (PPI)

• PPI networks are huge:  $\sim$  6000 nodes,  $\sim$  20000 edges.

| Network         | Nodes | Edges  |
|-----------------|-------|--------|
| C. Elegans      | 2,805 | 4,495  |
| D. Melanogaster | 7,518 | 25,635 |
| H. Sapiens      | 9,633 | 34,327 |
| S. Cerevisiae   | 5,499 | 31,261 |

PPI networks from the IsoBase database.

• We need computer tools to analyze and compare PPI networks.

#### PPI networks comparison

Why do we need to compare PPI networks?

- Protein networks in disease, like for instance cancer, increase considerably their number of edges. That is, the amount of proteins that interact is much bigger.
  - Ideker T, Sharan R Protein networks in disease. Genome Res. 18:644–652 (2008)
- To detect network similarities and differences is a key point to identify the causes of certain diseases.

AligNet: Aligner of PPI networks.

#### PPI networks aligners

Local alignments:

- Aimed at finding local regions with the same network structure: low coverage.
- Local alignments are mutually inconsistent.

Global alignment:

- Aimed at finding the best overall alignment between two protein interaction networks.
- Designed to either obtain a high number of conserved interactions or a functional consistence between aligned proteins.

#### PPI networks aligners

• The right balance between network topology and biological information, is one of the most difficult and key points in every protein interaction network alignment algorithm.

With this lack of well-balanced algorithms in mind, we designed **AligNet**.

#### AligNet

Let G and G' be two PPI networks, **AligNet** is divided in the following steps:

- 1 The computation of overlapping clusterings C(G) and C(G'), respectively, of the input networks G, G'.
- 2 The computation of alignments between pairs of clusters in C(G) and C(G').
- 3 The computation of a matching between C(G) and C(G').
- 4 The computation of a local alignment of the input networks G, G'.
- 5 The extension of this local alignment to a global meaningful one.

1. Computation of overlapping clusterings

For every node  $u \in V$ , the *cluster*  $C_u$  in *G centered* at *u* is

$$C_u = \{ v \in V \mid s(u, v) > \alpha \}.$$

where  $\alpha$  be the third quartile of the distribution of the similarity score values s(u, v) on  $V \times V$  defined by

$$s(u, v) = \frac{B(u, v) + \frac{D(G) + 1 - d_G(u, v)}{D(G) + 1}}{2}$$

where:

- D(G) is the diameter of the G and  $d_G(u, v)$  is the distance between u and v.
- B(u, v) is the *normalized bit score* of the proteins associated to the nodes u and v.

#### Running Example

Subnetworks from to the *Drosophila melanogaster* (dme) and the *Homo sapiens* (hsa) PPI networks contained in the IsoBase database.



#### Running Example: Overlapping clusterings



#### 2. Alignments between pairs of clusters

For every pair of clusters  $C_u \in C(G)$  and  $C_{u'} \in C(G')$  (with B(u, u') > 0)

- (i) Match u with u'.
- (ii) Iteratively match the neighbors of u to the neighbors of u' taking into account their degree and sequence similarity.

Idea: a node v in  $C_u$  connected by a path to u should be matched to a node v in  $C_{u'}$  connected by a path to u' when they have a similar topological role in the cluster and similar sequences.

## Running Example: Alignments between pairs of clusters









### 3. Matching between families of clusters Let

$$\mathcal{A} = \{\eta_{u,u'} \mid u \in V, \ u' \in V', B(u,u') > 0\}$$

be the set of alignments obtained in step 2.

The score of every alignment  $\eta_{u,u'} \in \mathcal{A}$  is defined as

$$Score(\eta_{u,u'}) = \frac{\sum_{v \in Dom \, \eta_{u,u'}} B(v, \eta_{u,u'}(v))}{|Dom \, \eta_{u,u'}|} + \frac{|Dom \, \eta_{u,u'}|}{\max_{\eta_{w,w'} \in \mathcal{A}} |Dom \, \eta_{w,w'}|}.$$

#### 3. Matching between families of clusters

AligNet obtains a matching between C(G) and C(G') by considering a bipartite graph such that

- the nodes are the clusters C(G) and C(G')
- the edges correspond to alignments  $\eta_{u,u'} \in \mathcal{A}$
- the weight of an edge connecting C<sub>u</sub> with C<sub>u'</sub> is the corresponding Score(η<sub>u,u'</sub>)

The matching between C(G) and C(G') is then obtained by applying the maximum weighted bipartite matching algorithm to this bipartite graph.

# Running Example: Matching between families of clusters





#### 4. Local alignment of PPI networks

AligNet builds a set of *appropriate* alignments  $\mathcal{R} \subseteq \mathcal{C}$  recursively such that  $\eta_{w_0,w'_0} \in \mathcal{R}$  if

- $w_0$  not belonging to the union of the domains of the mappings already in  $\mathcal{R}$ .
- $Score(\eta_{w_0,w'_0})$  maximum among all such mappings.

This procedure is iterated until every node in  $\bigcup_{\eta_{u,u'} \in \mathcal{C}} Dom \eta_{u,u'}$  belongs to the domain of some mapping in  $\mathcal{R}$ .

#### Running Example: Set of appropriate alignments









#### 4. Local alignment of PPI networks

 $\boldsymbol{H}$  a directed hypergraph where

- nodes are  $V \cup V'$
- hyperarcs are the mappings η<sub>w,w'</sub> ∈ R: each η<sub>w,w'</sub> is understood as a hyperarc with source its domain and target its image.

Then, **AligNet** obtains from this hypergraph a local well-defined alignment between G and G' as a solution of the corresponding weighted bipartite hypergraph assignment problem.

## Running Example: Local alignment of PPI networks



#### 5. Global meaningful alignment of PPI networks

#### To end, AligNet:

- Removes the nodes in G and G' that have already been aligned.
- Repeat step 2 4 while there exist nodes not aligned belonging to the domain or the codomain of some alignment η<sub>u,u'</sub> with (updated) score > 0.

## Running Example: Global meaningful alignment of PPI networks



### AligNet Testing

Following the tests and results presented in

Connor C., Jugal K. A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics 30.16:2351–2359 (2014)

we have downloaded from the IsoBase database the PPI networks of the organisms:

- C. elegans
- D. melanogaster,
- S. cerevisiae,
- M. Musculus,
- H. sapiens

and aligned each pair of them with AligNet, PINALOG and SPINAL.

#### AligNet Testing: 1. Running Times

Time comparison



M. Llabrés (UIB)

#### AligNet Testing: 1. Running Times

Comparison between Time and Size



#### Alignet Testing: Edge correctness ratio

The *edge correctness ratio* of a mapping  $\mu : G \rightarrow G'$  is the ratio of the edges that are preserved by  $\mu$ , and it is defined by

$$EC(\mu) = \frac{\left| \{ \{u, v\} \in E \mid \{\mu(u), \mu(v)\} \in E'\} \right|}{|E|}.$$

#### Alignet Testing: Edge correctness ratio

1.0 AligNetEC
PinalogEC SpinalEC 0.8 0.6 -СШ 0.4 0.2 0.0 cel-hsa cel-mus cel-sce sel-dme dme-hsa dme-mus dme-sce nsa-mus hsa-sce

EC comparison

M. Llabrés (UIB)

Alignet Testing: Functional Coherence Value

The *functional coherence value*, or *GO consistency*, of a mapping  $\mu : G \rightarrow G'$  is defined as

$$FC(\mu) = rac{\sum_{u \in V} FS(u, \mu(u))}{|V|}$$

where, on its turn, the functional similarity score FS is defined by

$$FS(u, u') = \frac{|GO(u) \cap GO(u')|}{|GO(u) \cup GO(u')|},$$

with GO(u) and GO(u') the sets of GO annotations of the proteins u and u', respectively.

#### Alignet Testing: Functional Coherence Value

FC comparison



#### Conclusions and Further Work

- AligNet is faster than PINALOG and SPINAL
- The Edge correctness ratio obtained with AligNet is higher than other aligners
- The Functional coherence value obtained with AligNet is reasonable
- Apply AligNet to
  - Protein complexes prediction
  - Protein-protein interaction prediction
  - Orthology prediction