

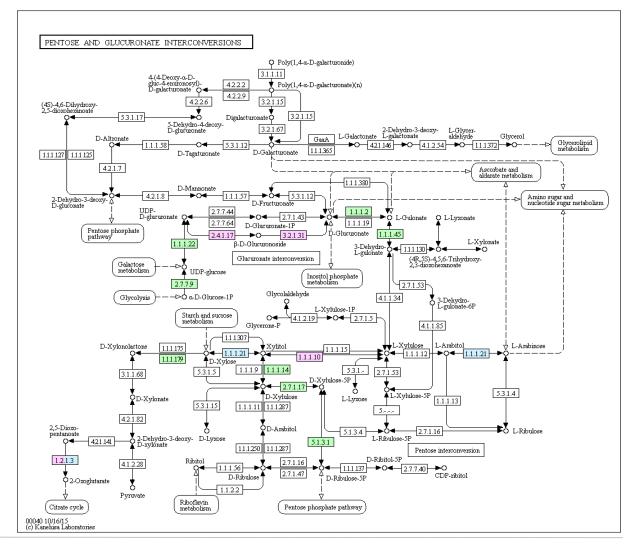
Ca'Foscari University of Venice Department of environmental sciences, informatics and statistics

Bioinformatics Day @ DAIS

Comparison of Metabolic Networks: a two-level approach

Erboso Gianluca & Meggiato Alberto

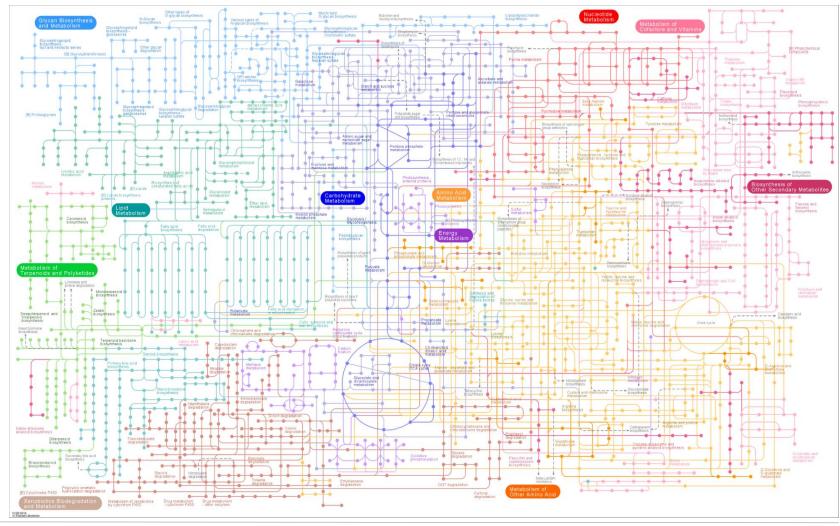
Supervisors: Prof. Cocco Nicoletta & Simeoni Marta


Outline

Framework State of the Art KEGG database The proposed method Similarity indexes Tool Experiments & Results Conclusions

Framework: metabolism

Metabolism [1, 2] is the network of all chemical and physical reactions that take place within the cells of the organisms.


Metabolic Pathways [3] are a sequence of reactions such that the product of a single reaction can be used as reagent for another one.

Framework: metabolism

The Metabolic
Network [4]
represents the
complete set of
metabolic functions
and their interections
that determine the
structure and
properties of the
cells.

>> Simplified version of a metabolic network.

Framework: motivations

Comparison of metabolic networks is relevant for studying the evolutionary process, discovering drug targets and more in general for supporting medical science activities.

Troubles:

- In biology, the comparison of metabolic networks is really complex
- Graph based modeling system represents graphs of huge dimensions
- Graph matching is NP-Hard

Comparison of metabolic networks as well as of metabolic pathways is challenging from a computational point of view.

Aim: propose a new comparison method that consider the entire metabolic networks while avoiding the computational problems.

State of the Art

The existing methods make use of different data structures keeping different level of detail:

- Sets (multisets)
- Sequences (Reactions profile)
- Graphs (including hypergraphs and Petri Nets)

<u>Drawback</u>: each of these approaches present a **computational problem** that is related to the **complexity of the data structure**

Metabolisim Databases (most popular)

- KEGG (Kyoto Encyclopedia of Genes and Genomes)
- BioCyc
- SEED
- EcoCyc (E. coli Database)
- SGD (Saccharomyces Genome Database)

KEGG Database

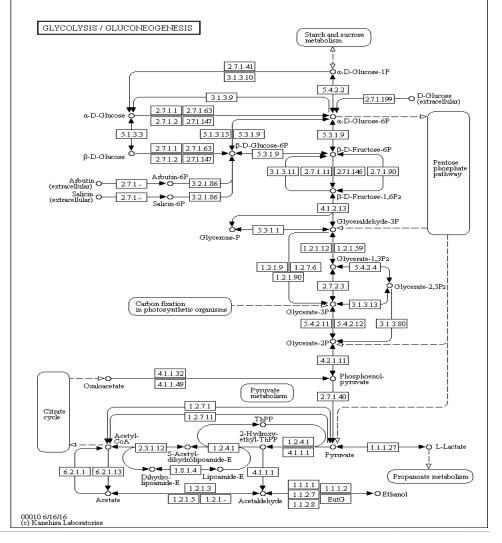
It is one of the most important **collections of biological data**, containing information of different organisms on:

- metabolic pathways,
- genomic,
- chemical,
- health (i.e. human diseases).

Main advantages:

- √ 4290 cataloged organisms (Eukaryotes: 333, Bacteria: 3729, Archaea: 228)
- ✓ Standardized representation of the data
- ✓ Good modularization
- ✓ Integration of graphical and textual information
- ✓ Freely available and costantly updated

KEGG: metabolic pathways


KEGG associates to each metabolic function, a unique **reference pathway** which corresponds to the union of the corresponding pathway in different organisms. (**unique modularization**)

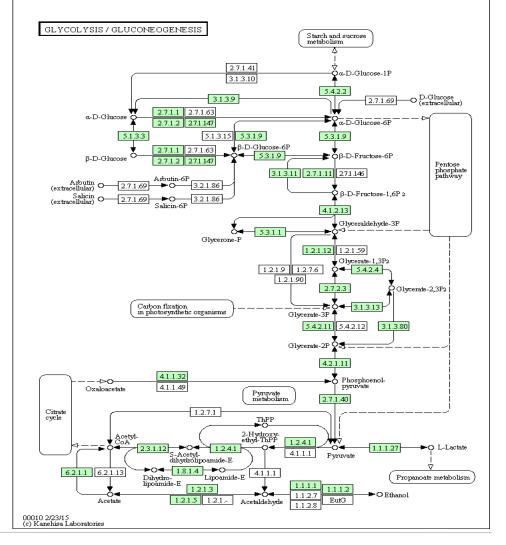
Data representation:

- graphical (pathway map) → all the KEGG knowledge of a metabolic pathway
- textual (KGML file) → the organism-specific info for the corresponding pathway map

Aim:

- use the KGML files for metabolic pathway comparison
- exploit the KEGG API for data retrieval

KEGG: metabolic pathways

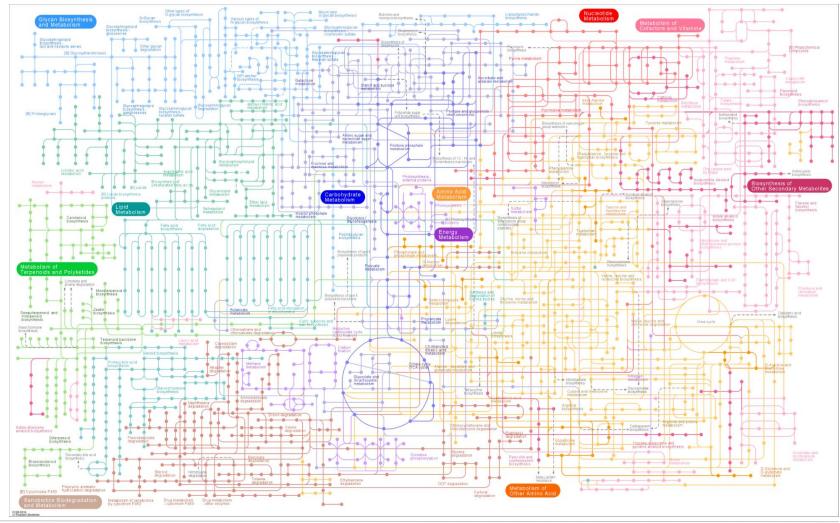

KEGG associates to each metabolic function, a unique **reference pathway** which corresponds to the union of the corresponding pathway in different organisms.

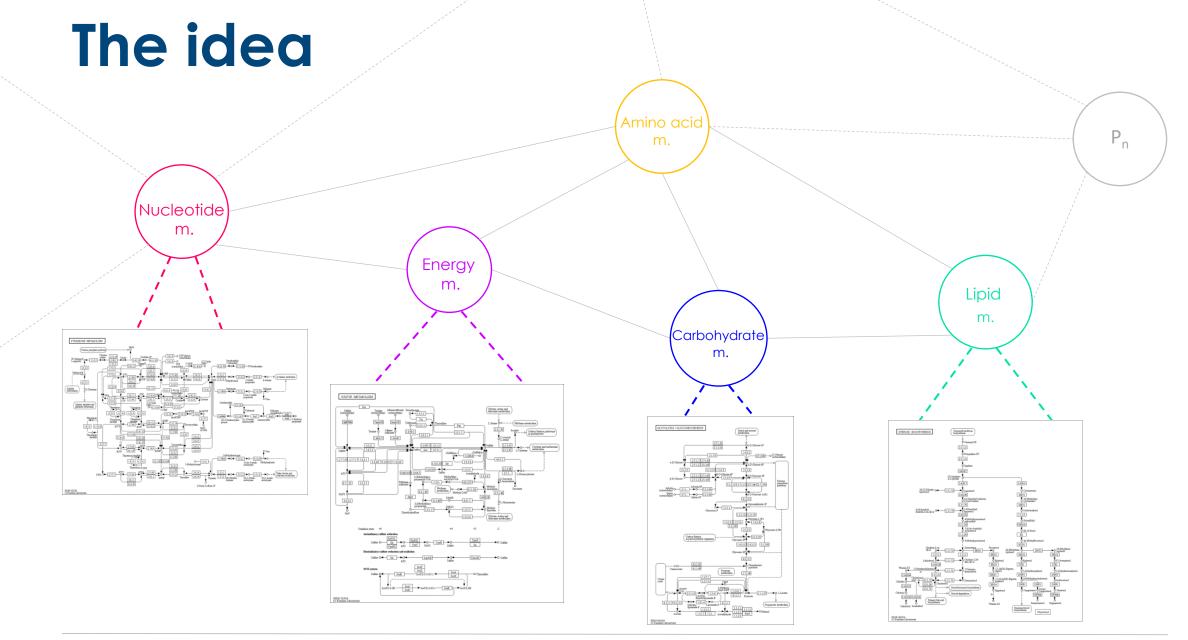
Data representation:

- graphical (pathway map) → all the KEGG knowledge of a metabolic pathway
- textual (KGML file) → the organism-specific info for the corresponding pathway map

Aim:

- use the KGML files for metabolic pathway comparison
- exploit the KEGG API for data retrieval

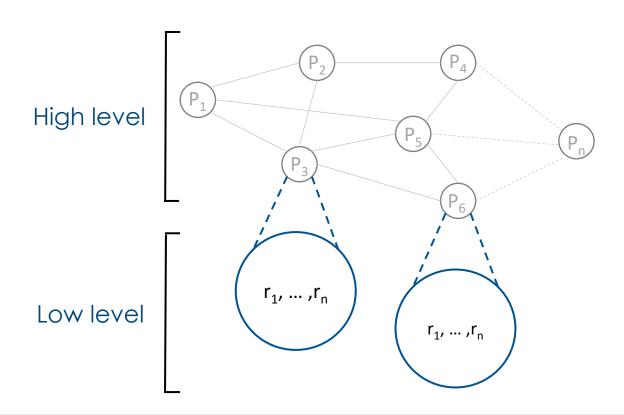



KEGG: metabolic network

Reference metabolism:

- Union of the reference pathways
- Implicit subdivision of the metabolism

standardized
modularization of the
pathways given by
KEGG we are able to
reconstruct the
metabolic network



The proposed method

We propose a new comparison method based on a **two-level approach** providing an abstraction of a metabolic networks.

- High level: the net is modeled as a graph: nodes represent metabolic pathways and arcs the relations between pathways themselves;
- Low level: each metabolic pathway is modeled as set or multiset of chemical reactions.

Indipendent levels allows for computing different similarity indexes (topology and functionality) that can be combined later.

Metabolic network reconstruction

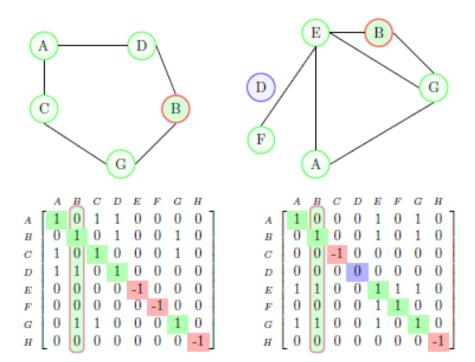
Organism's **metabolism reconstruction**

```
<pathway name="path:hsa00010" org="hsa" number="00010"</pre>
        title="Glycolysis / Gluconeogenesis"
        image="http://www.kegg.jp/kegg/pathway/hsa/hsa00010.png"
        link="http://www.kegg.jp/kegg-bin/show_pathway?hsa00010">
   <entry id="41" name="path:hsa00030" type="map"</pre>
       link="http://www.kegg.jp/dbget-bin/www_bget?hsa00030">
       <graphics name="Pentose phosphate pathway" fgcolor="#000000" bgcolor="#FFFFFF"</pre>
            type="roundrectangle" x="656" y="339" width="62" height="237"/>
   </entry>
   <entry id="56" name="hsa:2597 hsa:26330" type="gene" reaction="rn:R01061"</pre>
       link="http://www.kegg.jp/dbget-bin/www_bget?hsa:2597+hsa:26330">
       <graphics name="GAPDH, G3PD, GAPD, HEL-S-162eP..." fgcolor="#000000" bgcolor="#BFFFBF'</pre>
            type="rectangle" x="458" y="484" width="46" height="17"/>
   </entry>
   <relation entry1="41" entry2="56" type="maplink">
       <subtype name="compound" value="130"/>
   </relation>
```

Consider each pathway (KGML) that belongs to the metabolism of a specific organism. Through a **parsing** of these files we extract the information useful for the metabolism reconstruction

During the parsing phase we consider:

- The current metabolic function --> node
- Relation tag of type='maplink' --> edge



<relation entry1="41" entry2="56" type="maplink">

Data structure

Graph of metabolism → modified adjacecy matrix of fixed size → Implicit mapping

Let us consider the metabolic networks of two organisms, O and O'. The set of metabolic pathways is represented by {A; B; C; D; E; F; G; H}.

The diagonal represents the state of the node:

- 1 connected pathway
- 0 isolated pathway
- -1 pathway not present

The other values in the matrix represent the edges

Pathway Similarity Index

It considers the union of the metabolic pathways of the two organisms.

$$Sim P_i = \begin{cases} 0 & \text{if } P_i \text{ is missing in } O \text{ or } P_i' \text{ is missing in } O' \\ 1 & \text{if } P_i \text{ is present in } O \text{ and } P_i' \text{ in } O' \text{ but there are no reactions to compare} \\ \frac{|R_i \cap R_i'|}{|R_i \cup R_i'|} & \text{otherwise} \end{cases}$$

- 0 and 0': the two organisms,
- P_i and P'_i : the corresponding metabolic pathway,
- R_i and R'_i : the reactions of P_i and P'_i in O and O'.

The similarity measure depends on the metabolic pathway representation. In our case since we use sets, the definitions are based on **Jaccard index**.

Functional Similarity Indexes

The **functional similarity index** is the mean similarity over the union of the pathways of 0 and 0'.

$$SimPA = \frac{\sum_{i=1}^{n} SimP_i}{n}$$

The **weighted functional similarity index** is the weighted mean similarity wrt. the number of reactions of the pathways in 0 and 0'.

$$SimPW = \frac{\sum_{i=1}^{n} SimP_{i} * |R_{i} \cup R'_{i}|}{\sum_{i=1}^{n} |R_{i} \cup R'_{i}|}$$

where n = |M| and M is the union of the metabolic pathways of both O and O'.

The *SimPW* index provides a refined measure since it balances the values wrt. the number of common reactions.

>> The two indexes can be used in the definition of the Separated Similarity Index.

Structural similarity indexes

Let us consider two organisms O and O' and their corresponding graphs of metabolic network, G=(V,E) and G'=(V',E'). Let us consider the i-th pathway, $P_i \in V$ and $P_i' \in V'$. Let E_i and E_i' be the sets of edges that connect P_i and P_i' , respectively, with other nodes. Let e_i deg(v) (deg(v')) the degree of the vertex e_i v (v' e_i V').

The structural similarity index wrt. the i-th pathway, $SimS_i$, is defined as:

$$\textit{SimS}_{i} = \begin{cases} 0, & \textit{if} P_{i} \ \textit{or} P'_{i} \ \textit{is not present} \\ 1, & \textit{if} P_{i} \ \textit{and} \ P'_{i} \ \textit{are both isolated} \\ \frac{1}{1 + \deg(P_{i})}, & \textit{if only } P'_{i} \ \textit{is isolated} \\ \frac{1}{1 + \deg(P'_{i})}, & \textit{if only } P_{i} \ \textit{is isolated} \\ \frac{|E_{i} \cap E'_{i}|}{|E_{i} \cup E'_{i}|}, & \textit{if } P_{i} \ \textit{and } P'_{i} \ \textit{are both connected} \end{cases}$$

The structural network similarity index is define as:

$$SimS = \sum_{i=1}^{n} \frac{SimS_i}{n}$$

where
$$n = |V \cup V'|$$

Global similarity indexes

The **global similarity indexes** compare two metabolic networks considering both the similarity of their structure and the similarity of the corresponding functions.

The **combined similarity index** is defined as follows:

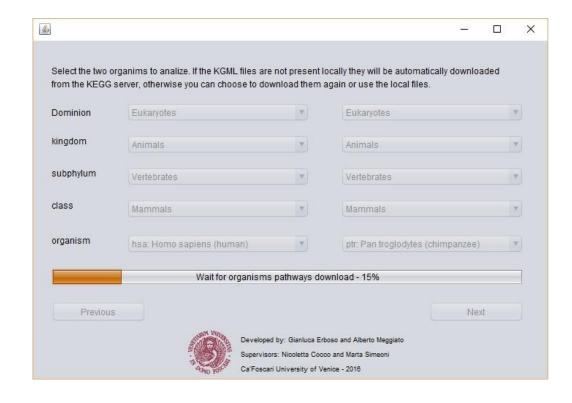
$$CI = \frac{\sum_{i=1}^{n} SimS_{i} * SimP_{i}}{n}$$

The **separated similarity index** is defined as:

$$SI = \alpha * SimS + (1 - \alpha) * SimPW$$

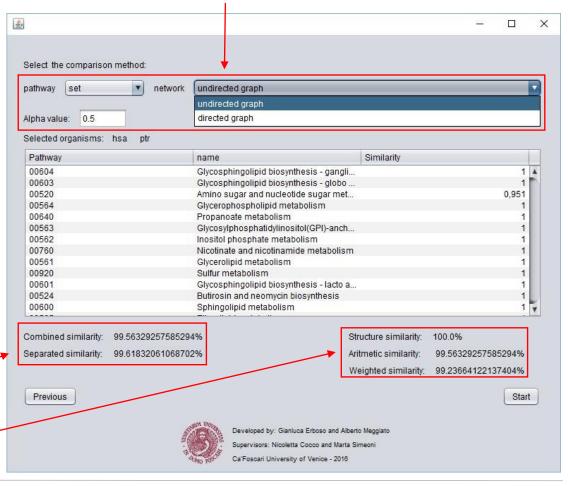
The tool

Functionalities:


- Selection of two different organisms from KEGG database
- Selection of the comparison methods (at high and low level)
- Computation of different similarity indexes
- Management of KGML files
- Automatic exportation of the results as .xls file

Strengths:

- ✓ Portable across different platforms (Java Technology)
- ✓ Use of multi-threading techniques to parallelize the computation
- ✓ Fast comparison thank to the abstraction of the metabolic networks (30 ~ 90s)
- ✓ Offline use (KGML required)
- ✓ Good modularization thanks to MVC pattern
- ✓ Ready for further development


The tool

Global similarity indexes

High and low level similarities

Selection of the comparison methods.

Experiment 1: Sulfur metabolism

Pathway: Sulfur Metabolism

<u>Aim</u>: Test the classification of our method analyzing a set of organisms that take sulfur in different ways.

Sim. Index: SimPi

- Animals take sulfur indirectly from proteins that they assume through their diet;
- Plants, Fungi and Bacteria are able to perform sulfur reduction producing sulfide, the simplest form of sulfur useful for amino acids construction.

\mathbf{Code}	Organism	Kingdom	Taxonomic group
hsa	Homo sapiens (human)	Animals	Mammals
ecb	Equus caballus (horse)	Animals	Mammals
gga	Gallus gallus (chicken)	Animals	Birds
tgu	Taeniopygia guttata (zebra finch)	Animals	Birds
ath	Arabidopsis thaliana (thale cress)	Plants	Mustard family
osa	Oryza sativa japonica (Japanese rice)	Plants	Grass family
bdi	Brachypodium distachyon	Plants	Grass family
nfi	Aspergillus fischeri	Fungi	Eurotiomycetes
ang	Aspergillus niger	Fungi	Eurotiomycetes
cpw	Coccidioides posadasii	Fungi	Eurotiomycetes
cow	Caldicellulosiruptor owensensis	Bacteria	Caldicellulosiruptor
toc	$Thermosediminibacter\ oceani$	Bacteria	Thermosediminibacter
hsl	$Halobacterium\ salinarum$	Archaea	Halobacterium
hvo	Haloferax volcanii	Archaea	Haloferax
pto	Picrophilus torridus	Archaea	Picrophilus

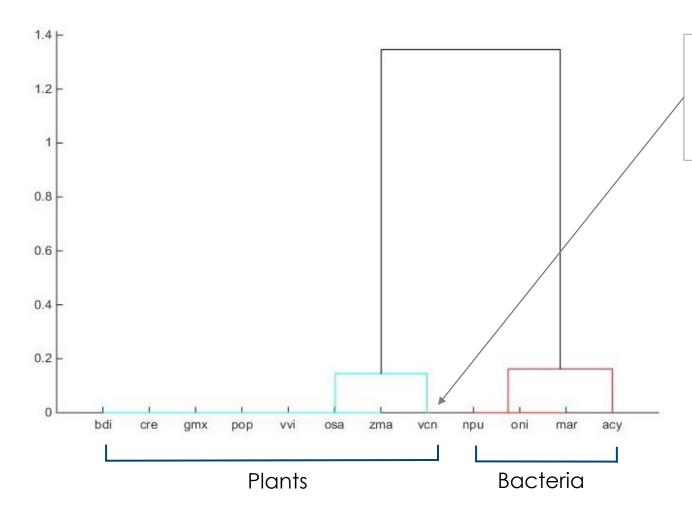
Experiment 1: results

Considerations

- ✓ Good classification between Kingdoms
- ✓ Good discrimination of the organisms belonging to the extreme ecological niches
- hsl and hvo are more similar thanks to their ability to resist in environment with high level of salinity
- pto survives in torrid environments

Experiment 2: Carbon fixation

<u>Pathway</u>: Carbon fixation in photosynthetic organisms


<u>Aim</u>: Test the discrimination of our method wrt. a set of organisms that perform variants of the carbon dioxide conversion process.

Sim. Index: SimPi

Organisms that lives in different environment present variant of the metabolic pathway due to the environmental adaptation.

Code	Organism	Kingdom	Taxonomic group
\overline{gmx}	Glycine max (soybean)	Plants	Pea family
pop	Populus trichocarpa (black cottonwood)	Plants	Willow family
vvi	Vitis vinifera (wine grape)	Plants	Grape family
osa	Oryza sativa japonica (Japanese rice)	Plants	Grass family
zma	Zea mays (maize)	Plants	Grass family
bdi	Brachypodium distachyon	Plants	Grass family
cre	$Chlamydomonas\ reinhardtii$	Plants	Green algae
vcn	Volvox carteri f. nagariensis	Plants	Green algae
npu	Nostoc punctiforme	Bacteria	Nostoc
acy	Anabaena cylindrica	Bacteria	Anabaena
oni	Oscillatoria nigro-viridis	Bacteria	Oscillatoria
mar	$Microcystis\ aeruginosa$	Bacteria	Microcystis

Experiment 2: results

vcn is a green algae and in particular a pluricellular organisms with a simplified carbon fixation cycle.

Considerations:

- ✓ Good classification of Plants and Bacteria
- ✓ Good discrimination of the green algae vcn wrt. the other Plants

Experiment 3: Metabolic evolution

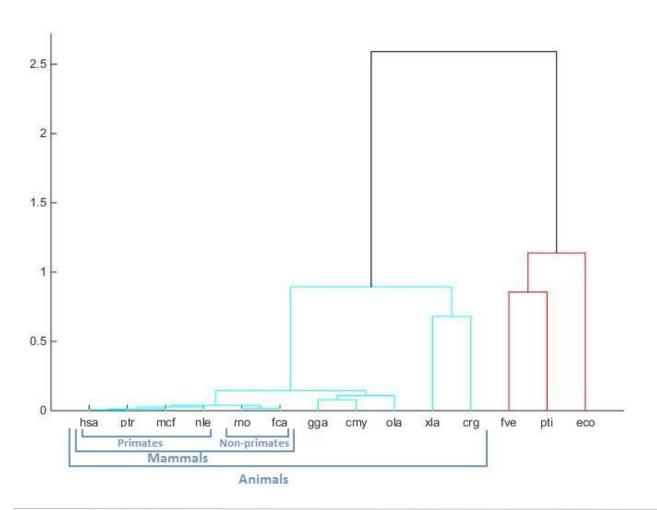
Aim

The aim of the experiment is to verify if the similarities in the metabolism of a group of organisms find a correspondence in the phylogenesis found in the literature

Organisms

<u> </u>			
Code	Organism	Kingdom	Taxonomic group
hsa	Homo sapiens (human)	Animals	Mammals
ptr	Pan troglodytes (chimpanzee)	Animals	Mammals
nle	Nomascus leucogenys (gibbon)	Animals	Mammals
mcf	Macaca fascicularis	Animals	Mammals
rno	Rattus norvegicus	Animals	Mammals
fca	Felis catus (cat)	Animals	Mammals
gga	Gallus gallus (chicken)	Animals	Birds
cmy	Chelonia mydas (green turtle)	Animals	Reptiles
xla	Xenopus laevis (frog)	Animals	Amphibians
ola	Oryzias latipes	Animals	Fishes
crg	Crassostrea gigas (Pacic oyster)	Animals	Mollusks
fve	Fragaria vesca (strawberry)	Plants	Rose family
pti	Phaeodactylum tricornutum	Chromista	Chromalveolata
eco	Escherichia coli	Bacteria	Proteobacteria

Tool configuration


Pathway: set

Network: undirected

Index: Combined Index

What we expect is that our similarity indexes produces a classification close to the phylogenetic one.

Experiment 3: Results

Code	Organism	Kingdom	Taxonomic group
hsa	Homo sapiens (human)	Animals	Mammals
ptr	Pan troglodytes (chimpanzee)	Animals	Mammals
nle	Nomascus leucogenys (gibbon)	Animals	Mammals
mcf	Macaca fascicularis	Animals	Mammals
rno	Rattus norvegicus	Animals	Mammals
fca	Felis catus (cat)	Animals	Mammals
gga	Gallus gallus (chicken)	Animals	Birds
cmy	Chelonia mydas (green turtle)	Animals	Reptiles
xla	Xenopus laevis (frog)	Animals	Amphibians
ola	Oryzias latipes	Animals	Fishes
crg	Crassostrea gigas (Pacic oyster)	Animals	Mollusks
fve	Fragaria vesca (strawberry)	Plants	Rose family
pti	Phaeodactylum tricornutum	Chromista	Chromalveolata
eco	Escherichia coli	Bacteria	Proteobacteria

Experiment 4: Yeasts and Molds metabolism

Aim

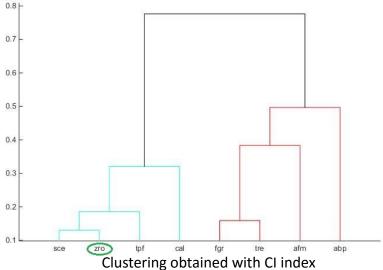
The aim of the experiment is to test the classification of a group of organisms belonging to the same Kingdom.

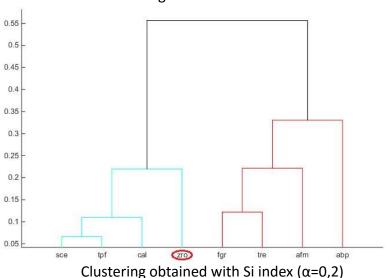
Organisms

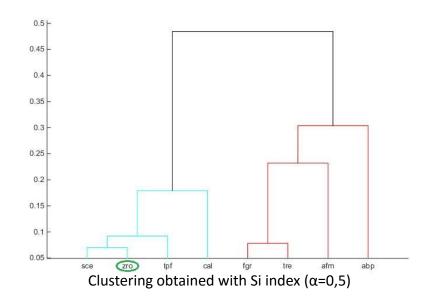
Code	Organism	Kingdom	Taxonomic group
sce	Saccharomyces cerevisiae	Fungi	Saccharomycetes
zro	Zygosaccharomyces rouxii	Fungi	Saccharomycetes
tpf	Tetrapisispora phai	Fungi	Saccharomycetes
cal	Candida albicans	Fungi	Saccharomycetes
fgr	Fusarium graminearum	Fungi	Sordariomycetes
tre	Trichoderma reesei	Fungi	Sordariomycetes
afm	Aspergillus fumigatus	Fungi	Eurotiomycetes
abp	Agaricus bisporus var. burnettii	Fungi	Basidiomycetes

Tool configuration

Pathway: set


Network: undirected


Index: Combined Index, Separated Index


• Alpha: 0.2, 0.5

What we expect is a clear separation between Yeasts and Molds

Experiment 4: Results

Code	Organism	Kingdom	Taxonomic group
sce	Saccharomyces cerevisiae	Fungi	Saccharomycetes
zro	Zygosaccharomyces rouxii	Fungi	Saccharomycetes
tpf	Tetrapisispora phai	Fungi	Saccharomycetes
cal	Candida albicans	Fungi	Saccharomycetes
fgr	Fusarium graminearum	Fungi	Sordariomycetes
tre	Trichoderma reesei	Fungi	Sordariomycetes
afm	Aspergillus fumigatus	Fungi	Eurotiomycetes
abp	Agaricus bisporus var. burnettii	Fungi	Basidiomycetes

Conclusions & further dev.

Benefits:

- ✓ Indipendent levels allow for different comparisons between pathways and networks
- ✓ Avoid the computational problems reducing the size of the metabolic network graph and exploiting the standardized modularization of KEGG data
- ✓ Allows for fast comparison between metabolic pathways
- ✓ Provides a good classification of the organism at pathway and global level

Further developments:

- New refined methods for comparison of both networks and pathways
- New functionality for the selection of one or more pathways
- New functionality for the selection of specif groups of organisms
- Determine a threshold value on the similarity measure for each Kingdom
- Integration of hierarchical clustering algorithm for cluster analysis and the generation of the corresponding phylogenetic trees

References

- Christophe H. Schilling, Stefan Schuster, Bernhard O. Palsson and Reinhart Heinrich.
 Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Postgenomic Era.
- Michael Palmer. In Human Metabolism, chapter: Introduction, pages: 1-2. Department of Chemistry, University of Waterloo, 2015.
- Donald Voet, Charlotte W. Pratt and Judith G. Voet. In Fundamentals of Biochemistry: Life at the Molecular Level, pages: 436-439, 442. John Wiley and Sons, 4° edition, 2012.
- Bernhard O. P. Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, 1° edition, 2006.

Thank you for the attention.