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Why Python

Python is a high-level, general-purpose interpreted
programming language that is widely used in 
scientific computing and engineering.
• Known for clean and easy-to-read code syntax 
• Was not designed for numerical computing… but it 

is well suited for this task

The struggle of computational problem-solving:
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Low-level languages High-level languages
Needed to obtain the best 
performance out of the 
hardware that runs the code

Reduced development time, 
more flexible code, fast 
turnaround to test various ideas

VS



Trade-off between low and high 
level languages

3

A solution to overcome the tradeoff is use a high-level 
language to interface libraries and packages written in low-
level language. 
Python excels at this type of integration



Python ecosystem

As a consequence of this “multi-language” model, 
Python for scientific and technical computing involves 
an entire ecosystem of software and libraries:

• Python interpreter (python2 / python3)

• Development tools and environments (Jupyter, 
VSC, Ipython, PyCharm, etc)

• Python packages (numpy, scipy, matplotlib)
• System libraries (os, blas, lapack, etc.)
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Package managers

To have a complete ecosystem up and running, we 
must manage to:

• Install a python interpreter (problem: choose the 
correct version)

• Install all the required packages

• Compile/Install the low-level libraries required by 
the packages

• Optional: install an IDE or an interactive 
environment

To ease the process, there exist a number of 
prepackaged Python environments with automated 
installers (package managers)
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Conda / Miniconda

“Conda is an open source package management 
system and environment management system that 
runs on Windows, macOS and Linux.”

https://conda.io

It was created for Python but can now manage 
different languages.
With conda you can install the Anaconda 
distribution (a set of hundreds of packages including 
numpy, scipy, ipython, etc)
Miniconda is a smaller alternative containing just the 
required packages to run conda
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Install miniconda

Go to https://conda.io/en/latest/miniconda.html

And download the package for your system.

After the installation, the “conda” package manager 
can be used in different ways:

• By opening the “Anaconda Prompt” in Windows

• By opening a terminal in OSX or Linux (please 

ensure that miniconda/bin directory is in your 
PATH)

Let’s start by updating conda itself:

$ conda update conda
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Virtual environments

The software ecosystem consist in multiple libraries 
and independent projects
Often, new releases of some libraries are not 
backward-compatible, complicating the problem of 
creating a stable and reproducible environment over 
in the long term and for different users.
Conda allows you to to create separate 
environments containing files, packages and 
their dependencies that will not interact with 
other environments.

We will create a new environment for our vision-
related projects8



Creating a new environment

Add conda-forge channel
$ conda config --add channels conda-
forge

$ conda create --name cv python=3.6

To activate the environment:
$ conda activate cv

9



Installing some stuff

$ conda install jupyterlab
qtconsole ipywidgets

$ conda install numpy matplotlib

$ conda install opencv
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Working with Python 

You can use Python in two ways:
• Run the program directly through the Python 

interpreter

• Use an enhanced command-line REPL 
environment (IPython) by either:
– Invoking ipython from a shell $ ipython
– Using a local qt-based console $ jupyter qtconsole

– Using a web-based environment (jupyter lab or jupyter
notebook)

Jupyter is a powerful way to experiment new 
algorithms before programming a standalone python 
application
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Jupyter lab
To use Jupyter lab run the command

$ jupyter lab
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Jupyter lab
Jupyter is a web interface based on a client-server 
architecture:
• A «notebook» represent a front-end to the user in which the 

python code can be grouped in different cells

• Each notebook is backed by a python process (called 
kernel) in which the cells are executed

• A kernel, unless manually restarted, remains active 
between different code executions (ie. variables declared in 
one cell are visible to the others after execution)

• An interactive console can refer to the same kernel used by 
a notebook to evaluate code on-the-fly

• A jupyter notebook can be converted back to a python file 
with:  $ jupyter nbconvert --to python 
Notebook.ipynb13



Working with data

Python stores data in several different ways, but the 
most popular methods are

• Lists
[1, [2, 'three'], 4.5] , list(range(10))
• Dictionaries
{'food': 'spam', 'taste': 'yum'} , dict(hours=10)

Both can store nearly any type of Python object as
an element. But operating on the elements in a list 
can only be done through iterative loops, which is 
computationally inefficient in Python
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numpy
Numpy package provide the ndarray data object 
representing a multidimensional array of 
homogeneous data (same type) 
[mathematically known as tensor]

ndarray contains also metadata about the array:
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Attribute Description

ndim Number of dimensions (axes)

shape A tuple that contains the number of elements (the 
length) for each dimension (axis) of the array.

size Total number of elements in the array

nbytes Total number of bytes used by the array

dtype Data type of the array elements



numpy
Basic numerical data types supported:
• int8, int16, int32, int64
• uint8, uint16, uint32, uint64
• Bool
• float16, float32, float64, float128
• complex64, complex128, complex256

Once created, the dtype of an array cannot be 
changed. The method astype(dtype) can be used to 
get a copy of the original array with a different 
datatype.
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numpy

Multidimensional arrays are stored as contiguous 
data in memory. There is a freedom of choice in how 
to arrange the elements in the array memory 
segment
Example: 2-dimensional array
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1 2 3 4

5 6 7 8

9 10 11 12

1 4 7 10

2 5 8 11

3 6 9 12

Row-major format Column-major format



Strides
Row-major and column-major ordering are special 
cases of strategies (2D case) for mapping the index
used to address an element, to the offset for the 
element in the array’s memory

In the general case, such mapping is defined by the 
strides attribute:
A tuple of the same length as the number of axes of 
the array. Each value is the factor by which the index 
for the corresponding axis is multiplied when 
calculating the memory offset (in bytes) for a given 
index expression.
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Strides example

19

1 2 3 4

5 6 7 8

9 10 11 12

A.shape = (3,4)

A.dtype = uint32

A.strides = (16,4)

Each increment of m in A[n,m] increase the memory offset by 4 bytes

Each increment of n in A[n,m] increase the memory offset by 16 bytes

A.shape = (3,4)

A.dtype = uint32

A.strides = (4,16)

Each increment of m in A[n,m] increase the memory offset by 16 
bytes

Each increment of n in A[n,m] increase the memory offset by 4 bytes

1 4 7 10

2 5 8 11

3 6 9 12



Strides and views
Strides is a smart way to implement reshaping 
operations like the transpose without moving data in 
memory (numpy just changes the stride attribute)

Operations that only require changing the strides 
attribute result in new ndarray object that refer to 
the same data as the original array. Such arrays 
are called views.
• Modifying data on a view modifies data in the 

original array
• Data may not be contiguous in memory (important 

when interfacing with C libraries)
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Creating arrays
import numpy as np
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Function Description

np.array Creates an array for which the elements are given by an array-like 
object (ie. python list, a tuple, an iterable sequence, or another ndarray
instance)

np.zeros Creates an array filled with zeros

np.ones Creates an array filled with ones

np.diag Creates a diagonal array with specified values along the diagonal

np.linspace Creates an array with evenly spaced values between specified start and
end values, using a specified number of elements.

np.meshgrid Generates coordinate matrices (and higher-dimensional coordinate 
arrays) from one-dimensional coordinate vectors

np.loadtxt Creates an array from a text file (for example a CSV file)

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html



Indexing and slicing

• Integers are used to select single elements
• Slices are used to select ranges and sequences 

of elements (m:n:s notation selects elements from 
m to n-1 with stride s). 

• Positive integers are used to index elements 
from the beginning of the array (index starts at 0)

• Negative integers are used to index elements 
from the end of the array, where the last element 
is indexed with –1

Slices create a view on a specified array, not a copy!
22



Slicing examples
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Expression Description

A[m] Selects an alement at index m

A[-m] Select the mth element from the end of the list.

A[m:n] Select elements with index starting at m and ending at n−1

A[:] Select all elements (in the given axis)

A[:n] Select elements starting with index 0 and going up to index n − 1

A[m:] Select elements starting with index m and going up to the last element in 
the array.

A[m:n:p] Select elements with index m through n (exclusive), with increment p

A[::-1] Select all the elements, in reverse order.

With multidimensional arrays, element selections can be 
applied on each axis. 

Ex: A[:3,:3] is the upper-half diagonal block matrix of size 3



Fancy and boolean indexing

An array can be indexed with another NumPy array, 
a Python list, or a sequence of integers, whose
values select elements in the indexed array

In Boolean indexing, each element (with values True 
or False) indicates whether or not to select the
element from the list with the corresponding index

Arrays returned using fancy indexing and 
Boolean-valued indexing are not views but rather 
new independent arrays

24



Reshaping and Resizing
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Function Description

np.reshape Reshape an N-dimensional array creating a view. The total 
number of elements must remain the same.

np.flatten Creates a copy of an N-dimensional array, and reinterpret it as a
one-dimensional array (i.e., all dimensions are collapsed into 
one)

np.ravel Create a view (if possible, otherwise a copy) of an N-dimensional 
array in which it is interpreted as a one-dimensional array.

np.squeeze Removes axes with length 1.

np.expand_dims Add a new axis of length 1 to an array

np.hstack Stacks a list of arrays horizontally (along axis 1)

np.vstack Stacks a list of arrays vertically (along axis 0)

np.concatenate Creates a new array by appending arrays after each other, along 
a given axis.

np.resize Resizes an array. Creates a new copy of the original array, with 
the requested size. If necessary, the original array will be 
repeated to fill up the new array.



Vectorized expressions and 
broadcasting

NumPy implements functions and vectorized 
operations corresponding to most fundamental 
mathematical functions and operators
https://docs.scipy.org/doc/numpy/reference/routines.math.html

• Most of these functions and operations act on 
arrays on an elementwise basis

In [132]: x = np.array([[1, 2], [3, 4]])

In [133]: y = np.array([[5, 6], [7, 8]])

In [134]: x + y

Out[134]: array([[ 6,  8], [10, 12]])
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Vectorized expressions and 
broadcasting

What if the input arrays have different shape? 
Two arrays are called broadcastable if one of the 
following is true:
1. The arrays all have exactly the same shape.
2. The arrays have the same number of dimensions, and 

the length of each dimensions is either a common 
length or 1.

3. The arrays that have too few dimensions can have 
their shapes prepended with a dimension of length 1 to 
satisfy property 2.

27



Vectorized expressions and 
broadcasting

How broadcasting works:
• If the number of axes of the two arrays is not 

equal, the array with fewer axes is padded with 
new axes of length 1 from the left until the 
numbers of dimensions of the two arrays agree.

• If an input has a dimension size of 1 in its shape, 
the first data entry in that dimension will be used 
for all calculations along that dimension. In other 
words, the stride will be 0 for that dimension and 
the numbers are hence repeated.

• Operations are then performed element-wise
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Broadcasting examples
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1 2 3

4 5 6

7 8 9

1 2 5

3 2 1

7 1 3

1 4 15

12 10 6

49 8 27

(3,3) (3,3) (3,3)

=*



Broadcasting examples
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1 2 3

4 5 6

7 8 9

1

3

7

1 2 3

12 15 18

49 56 63

(3,3) (3,1)

(3,3)

=

*

1 1 1

3 3 3

7 7 7

(3,3)



Broadcasting examples
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1 2 3

4 5 6

7 8 9

1 4 15

4 10 30

7 16 45

(3,3) (3) -> prepended with a new 
axis to have (1,3)

(3,3)

=

*

1 2 5

1 2 5

1 2 5

(3,3)

1 2 5



Broadcasting examples
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1 2 3

4 5 6

7 8 9

2 4 6

8 10 12

14 16 18

(3,3) (1) -> prepended with a new 
axis to have (1,1)

(3,3)

=

*

2 2 2

2 2 2

2 2 2

(3,3)

2



Broadcasting examples
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1 2 3

4 5 6

7 8 9

(3,3)

* 1 2 ?=



Broadcasting examples
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1 2 3

4 5 6

7 8 9

(3,3)

* 1 2 X=

The two arrays are not broadcastable!



Matrices

• All the common mathematical operations work in 
an element-wise fashon, even for 2D arrays.

• The ndarray class is intended to be a general-
purpose n-dimensional array for many kinds of 
numerical computing, while matrix is intended to 
facilitate linear algebra computations 
specifically

Matrix class is now deprecated since is less general 
with respect to ndarrays, even for linear algebra
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Linear algebra with arrays
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Function Description

A * B
Or
multiply()

Element-wise multiplication

A @ B
Or 
dot()

Matrix multiplication
You can treat one-dimensional arrays as either row or column 
vectors. A @ v treats v as a column vector, while v @ A treats v 
as a row vector (useful to avoid transpose operations)

A.T Gives the transpose of a 2D array. Conjugate transpose can be 
done with A.conj().T

linalg.solve( A, b) Solve a linear matrix equation, or system of linear scalar 
equations



OpenCV Basics

OpenCV (3.4.5) library documentation:
https://docs.opencv.org/3.4.5/

Composed by different modules:
core
imgproc
calib3d
features2d
highgui
… and many others

https://docs.opencv.org/3.4.5/


OpenCV Basics

You can find useful examples for common computer 
vision topics in the python tutorials page:
https://docs.opencv.org/3.4.5/d6/d00/tutorial_py_root.html

https://docs.opencv.org/3.4.5/d6/d00/tutorial_py_root.html


cv::Mat

The cv::Mat is probably the most important data type 
in OpenCV
http://docs.opencv.org/3.4.5/d3/d63/classcv_1_1Mat.html

The class Mat represents an n-dimensional dense 
numerical single-channel or multi-channel array. It 
can be used to store real or complex-valued vectors 
and matrices, grayscale or color images, voxel 
volumes, vector fields, and so on
When working with python, a numpy ndarray can 
be used instead!

http://docs.opencv.org/3.4.0/d3/d63/classcv_1_1Mat.html


Loading/Saving images
The imgcodecs module contains two useful functions 
cv::imread and cv::imwrite to save and load images 
respectively

Imgcodecs documentation:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html

imread function:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html#ga288b8b3da089
2bd651fce07b3bbd3a56

imwrite function:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edf
aa87772f1202d67e0ce

http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html


Other useful functions

Color-space conversion:
http://docs.opencv.org/3.4.5/d7/d1b/group__imgproc__misc.html#ga397ae87
e1288a81d2363b61574eb8cab

Thresholding:
https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a1
46d1ca78c626a53577199e9c57

Histogram:
https://docs.opencv.org/3.4.0/d6/dc7/group__imgproc__hist.html#ga4b2b5fd7
5503ff9e6844cc4dcdaed35d

http://docs.opencv.org/3.4.5/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4.0/d6/dc7/group__imgproc__hist.html


Displaying images

Images can also be displayed interactively with the 
function imshow implemented in the highgui module

highgui documentation:
http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html

imshow function:
http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html#ga453d42fe4cb60e57
23281a89973ee563

NOTE: The function should be followed by waitKey function which displays the 
image for specified milliseconds. Otherwise, it won't display the image.

http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html
http://docs.opencv.org/3.4.0/d7/dfc/group__highgui.html


Images in Jupyter

When working with Jupyter, images and plots can be 
displayed with the matplotlib library:
https://matplotlib.org/

General usage:
import matplotlib.pyplot as plt

plt.figure()

plt.imshow( I )

plt.title(“My image”)
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https://matplotlib.org/


Interactive plots

Jupyter supports widgets to automatically create user 
interface (UI) controls for exploring code and data 
interactively.

Install extension first:
$ jupyter lab clean

$ jupyter labextension install
@jupyter-widgets/jupyterlab-manager

Then use the interact() function provided by 
ipywidgets
https://ipywidgets.readthedocs.io/en/st
able/examples/Using%20Interact.html
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Interactive plots

from ipywidgets import interact, widgets

import numpy as np

def plot_func(freq):

x = np.linspace(0, 
2*np.pi,int(100*freq))

y = np.sin(x * freq)

plt.plot(x, y)

interact(plot_func, freq = (1.0,10.0,0.5))
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