
Filippo Bergamasco (filippo.bergamasco@unive.it)
http://www.dais.unive.it/~bergamasco
DAIS, Ca’ Foscari University of Venice

Academic year 2018/2019

Computer Vision

Python / Numpy / OpenCV

mailto:filippo.bergamasco@unive.it
http://www.dais.unive.it/~bergamasco

Why Python

Python is a high-level, general-purpose interpreted
programming language that is widely used in
scientific computing and engineering.
• Known for clean and easy-to-read code syntax
• Was not designed for numerical computing… but it

is well suited for this task

The struggle of computational problem-solving:

2

Low-level languages High-level languages
Needed to obtain the best
performance out of the
hardware that runs the code

Reduced development time,
more flexible code, fast
turnaround to test various ideas

VS

Trade-off between low and high
level languages

3

A solution to overcome the tradeoff is use a high-level
language to interface libraries and packages written in low-
level language.
Python excels at this type of integration

Python ecosystem

As a consequence of this “multi-language” model,
Python for scientific and technical computing involves
an entire ecosystem of software and libraries:

• Python interpreter (python2 / python3)

• Development tools and environments (Jupyter,
VSC, Ipython, PyCharm, etc)

• Python packages (numpy, scipy, matplotlib)
• System libraries (os, blas, lapack, etc.)

4

Package managers

To have a complete ecosystem up and running, we
must manage to:

• Install a python interpreter (problem: choose the
correct version)

• Install all the required packages

• Compile/Install the low-level libraries required by
the packages

• Optional: install an IDE or an interactive
environment

To ease the process, there exist a number of
prepackaged Python environments with automated
installers (package managers)

5

Conda / Miniconda

“Conda is an open source package management
system and environment management system that
runs on Windows, macOS and Linux.”

https://conda.io

It was created for Python but can now manage
different languages.
With conda you can install the Anaconda
distribution (a set of hundreds of packages including
numpy, scipy, ipython, etc)
Miniconda is a smaller alternative containing just the
required packages to run conda

6

https://conda.io/

Install miniconda

Go to https://conda.io/en/latest/miniconda.html

And download the package for your system.

After the installation, the “conda” package manager
can be used in different ways:

• By opening the “Anaconda Prompt” in Windows

• By opening a terminal in OSX or Linux (please

ensure that miniconda/bin directory is in your
PATH)

Let’s start by updating conda itself:

$ conda update conda
7

https://conda.io/en/latest/miniconda.html

Virtual environments

The software ecosystem consist in multiple libraries
and independent projects
Often, new releases of some libraries are not
backward-compatible, complicating the problem of
creating a stable and reproducible environment over
in the long term and for different users.
Conda allows you to to create separate
environments containing files, packages and
their dependencies that will not interact with
other environments.

We will create a new environment for our vision-
related projects8

Creating a new environment

Add conda-forge channel
$ conda config --add channels conda-
forge

$ conda create --name cv python=3.6

To activate the environment:
$ conda activate cv

9

Installing some stuff

$ conda install jupyterlab
qtconsole ipywidgets

$ conda install numpy matplotlib

$ conda install opencv

10

Working with Python

You can use Python in two ways:
• Run the program directly through the Python

interpreter

• Use an enhanced command-line REPL
environment (IPython) by either:
– Invoking ipython from a shell $ ipython
– Using a local qt-based console $ jupyter qtconsole

– Using a web-based environment (jupyter lab or jupyter
notebook)

Jupyter is a powerful way to experiment new
algorithms before programming a standalone python
application

11

Jupyter lab
To use Jupyter lab run the command

$ jupyter lab

12

Jupyter lab
Jupyter is a web interface based on a client-server
architecture:
• A «notebook» represent a front-end to the user in which the

python code can be grouped in different cells

• Each notebook is backed by a python process (called
kernel) in which the cells are executed

• A kernel, unless manually restarted, remains active
between different code executions (ie. variables declared in
one cell are visible to the others after execution)

• An interactive console can refer to the same kernel used by
a notebook to evaluate code on-the-fly

• A jupyter notebook can be converted back to a python file
with: $ jupyter nbconvert --to python
Notebook.ipynb13

Working with data

Python stores data in several different ways, but the
most popular methods are

• Lists
[1, [2, 'three'], 4.5] , list(range(10))
• Dictionaries
{'food': 'spam', 'taste': 'yum'} , dict(hours=10)

Both can store nearly any type of Python object as
an element. But operating on the elements in a list
can only be done through iterative loops, which is
computationally inefficient in Python

14

numpy
Numpy package provide the ndarray data object
representing a multidimensional array of
homogeneous data (same type)
[mathematically known as tensor]

ndarray contains also metadata about the array:

15

Attribute Description

ndim Number of dimensions (axes)

shape A tuple that contains the number of elements (the
length) for each dimension (axis) of the array.

size Total number of elements in the array

nbytes Total number of bytes used by the array

dtype Data type of the array elements

numpy
Basic numerical data types supported:
• int8, int16, int32, int64
• uint8, uint16, uint32, uint64
• Bool
• float16, float32, float64, float128
• complex64, complex128, complex256

Once created, the dtype of an array cannot be
changed. The method astype(dtype) can be used to
get a copy of the original array with a different
datatype.

16

numpy

Multidimensional arrays are stored as contiguous
data in memory. There is a freedom of choice in how
to arrange the elements in the array memory
segment
Example: 2-dimensional array

17

1 2 3 4

5 6 7 8

9 10 11 12

1 4 7 10

2 5 8 11

3 6 9 12

Row-major format Column-major format

Strides
Row-major and column-major ordering are special
cases of strategies (2D case) for mapping the index
used to address an element, to the offset for the
element in the array’s memory

In the general case, such mapping is defined by the
strides attribute:
A tuple of the same length as the number of axes of
the array. Each value is the factor by which the index
for the corresponding axis is multiplied when
calculating the memory offset (in bytes) for a given
index expression.

18

Strides example

19

1 2 3 4

5 6 7 8

9 10 11 12

A.shape = (3,4)

A.dtype = uint32

A.strides = (16,4)

Each increment of m in A[n,m] increase the memory offset by 4 bytes

Each increment of n in A[n,m] increase the memory offset by 16 bytes

A.shape = (3,4)

A.dtype = uint32

A.strides = (4,16)

Each increment of m in A[n,m] increase the memory offset by 16
bytes

Each increment of n in A[n,m] increase the memory offset by 4 bytes

1 4 7 10

2 5 8 11

3 6 9 12

Strides and views
Strides is a smart way to implement reshaping
operations like the transpose without moving data in
memory (numpy just changes the stride attribute)

Operations that only require changing the strides
attribute result in new ndarray object that refer to
the same data as the original array. Such arrays
are called views.
• Modifying data on a view modifies data in the

original array
• Data may not be contiguous in memory (important

when interfacing with C libraries)

20

Creating arrays
import numpy as np

21

Function Description

np.array Creates an array for which the elements are given by an array-like
object (ie. python list, a tuple, an iterable sequence, or another ndarray
instance)

np.zeros Creates an array filled with zeros

np.ones Creates an array filled with ones

np.diag Creates a diagonal array with specified values along the diagonal

np.linspace Creates an array with evenly spaced values between specified start and
end values, using a specified number of elements.

np.meshgrid Generates coordinate matrices (and higher-dimensional coordinate
arrays) from one-dimensional coordinate vectors

np.loadtxt Creates an array from a text file (for example a CSV file)

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

Indexing and slicing

• Integers are used to select single elements
• Slices are used to select ranges and sequences

of elements (m:n:s notation selects elements from
m to n-1 with stride s).

• Positive integers are used to index elements
from the beginning of the array (index starts at 0)

• Negative integers are used to index elements
from the end of the array, where the last element
is indexed with –1

Slices create a view on a specified array, not a copy!
22

Slicing examples

23

Expression Description

A[m] Selects an alement at index m

A[-m] Select the mth element from the end of the list.

A[m:n] Select elements with index starting at m and ending at n−1

A[:] Select all elements (in the given axis)

A[:n] Select elements starting with index 0 and going up to index n − 1

A[m:] Select elements starting with index m and going up to the last element in
the array.

A[m:n:p] Select elements with index m through n (exclusive), with increment p

A[::-1] Select all the elements, in reverse order.

With multidimensional arrays, element selections can be
applied on each axis.

Ex: A[:3,:3] is the upper-half diagonal block matrix of size 3

Fancy and boolean indexing

An array can be indexed with another NumPy array,
a Python list, or a sequence of integers, whose
values select elements in the indexed array

In Boolean indexing, each element (with values True
or False) indicates whether or not to select the
element from the list with the corresponding index

Arrays returned using fancy indexing and
Boolean-valued indexing are not views but rather
new independent arrays

24

Reshaping and Resizing

25

Function Description

np.reshape Reshape an N-dimensional array creating a view. The total
number of elements must remain the same.

np.flatten Creates a copy of an N-dimensional array, and reinterpret it as a
one-dimensional array (i.e., all dimensions are collapsed into
one)

np.ravel Create a view (if possible, otherwise a copy) of an N-dimensional
array in which it is interpreted as a one-dimensional array.

np.squeeze Removes axes with length 1.

np.expand_dims Add a new axis of length 1 to an array

np.hstack Stacks a list of arrays horizontally (along axis 1)

np.vstack Stacks a list of arrays vertically (along axis 0)

np.concatenate Creates a new array by appending arrays after each other, along
a given axis.

np.resize Resizes an array. Creates a new copy of the original array, with
the requested size. If necessary, the original array will be
repeated to fill up the new array.

Vectorized expressions and
broadcasting

NumPy implements functions and vectorized
operations corresponding to most fundamental
mathematical functions and operators
https://docs.scipy.org/doc/numpy/reference/routines.math.html

• Most of these functions and operations act on
arrays on an elementwise basis

In [132]: x = np.array([[1, 2], [3, 4]])

In [133]: y = np.array([[5, 6], [7, 8]])

In [134]: x + y

Out[134]: array([[6, 8], [10, 12]])

26

Vectorized expressions and
broadcasting

What if the input arrays have different shape?
Two arrays are called broadcastable if one of the
following is true:
1. The arrays all have exactly the same shape.
2. The arrays have the same number of dimensions, and

the length of each dimensions is either a common
length or 1.

3. The arrays that have too few dimensions can have
their shapes prepended with a dimension of length 1 to
satisfy property 2.

27

Vectorized expressions and
broadcasting

How broadcasting works:
• If the number of axes of the two arrays is not

equal, the array with fewer axes is padded with
new axes of length 1 from the left until the
numbers of dimensions of the two arrays agree.

• If an input has a dimension size of 1 in its shape,
the first data entry in that dimension will be used
for all calculations along that dimension. In other
words, the stride will be 0 for that dimension and
the numbers are hence repeated.

• Operations are then performed element-wise

28

Broadcasting examples

29

1 2 3

4 5 6

7 8 9

1 2 5

3 2 1

7 1 3

1 4 15

12 10 6

49 8 27

(3,3) (3,3) (3,3)

=*

Broadcasting examples

30

1 2 3

4 5 6

7 8 9

1

3

7

1 2 3

12 15 18

49 56 63

(3,3) (3,1)

(3,3)

=

*

1 1 1

3 3 3

7 7 7

(3,3)

Broadcasting examples

31

1 2 3

4 5 6

7 8 9

1 4 15

4 10 30

7 16 45

(3,3) (3) -> prepended with a new
axis to have (1,3)

(3,3)

=

*

1 2 5

1 2 5

1 2 5

(3,3)

1 2 5

Broadcasting examples

32

1 2 3

4 5 6

7 8 9

2 4 6

8 10 12

14 16 18

(3,3) (1) -> prepended with a new
axis to have (1,1)

(3,3)

=

*

2 2 2

2 2 2

2 2 2

(3,3)

2

Broadcasting examples

33

1 2 3

4 5 6

7 8 9

(3,3)

* 1 2 ?=

Broadcasting examples

34

1 2 3

4 5 6

7 8 9

(3,3)

* 1 2 X=

The two arrays are not broadcastable!

Matrices

• All the common mathematical operations work in
an element-wise fashon, even for 2D arrays.

• The ndarray class is intended to be a general-
purpose n-dimensional array for many kinds of
numerical computing, while matrix is intended to
facilitate linear algebra computations
specifically

Matrix class is now deprecated since is less general
with respect to ndarrays, even for linear algebra

35

Linear algebra with arrays

36

Function Description

A * B
Or
multiply()

Element-wise multiplication

A @ B
Or
dot()

Matrix multiplication
You can treat one-dimensional arrays as either row or column
vectors. A @ v treats v as a column vector, while v @ A treats v
as a row vector (useful to avoid transpose operations)

A.T Gives the transpose of a 2D array. Conjugate transpose can be
done with A.conj().T

linalg.solve(A, b) Solve a linear matrix equation, or system of linear scalar
equations

OpenCV Basics

OpenCV (3.4.5) library documentation:
https://docs.opencv.org/3.4.5/

Composed by different modules:
core
imgproc
calib3d
features2d
highgui
… and many others

https://docs.opencv.org/3.4.5/

OpenCV Basics

You can find useful examples for common computer
vision topics in the python tutorials page:
https://docs.opencv.org/3.4.5/d6/d00/tutorial_py_root.html

https://docs.opencv.org/3.4.5/d6/d00/tutorial_py_root.html

cv::Mat

The cv::Mat is probably the most important data type
in OpenCV
http://docs.opencv.org/3.4.5/d3/d63/classcv_1_1Mat.html

The class Mat represents an n-dimensional dense
numerical single-channel or multi-channel array. It
can be used to store real or complex-valued vectors
and matrices, grayscale or color images, voxel
volumes, vector fields, and so on
When working with python, a numpy ndarray can
be used instead!

http://docs.opencv.org/3.4.0/d3/d63/classcv_1_1Mat.html

Loading/Saving images
The imgcodecs module contains two useful functions
cv::imread and cv::imwrite to save and load images
respectively

Imgcodecs documentation:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html

imread function:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html#ga288b8b3da089
2bd651fce07b3bbd3a56

imwrite function:
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edf
aa87772f1202d67e0ce

http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html
http://docs.opencv.org/3.4.5/d4/da8/group__imgcodecs.html

Other useful functions

Color-space conversion:
http://docs.opencv.org/3.4.5/d7/d1b/group__imgproc__misc.html#ga397ae87
e1288a81d2363b61574eb8cab

Thresholding:
https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a1
46d1ca78c626a53577199e9c57

Histogram:
https://docs.opencv.org/3.4.0/d6/dc7/group__imgproc__hist.html#ga4b2b5fd7
5503ff9e6844cc4dcdaed35d

http://docs.opencv.org/3.4.5/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4.0/d6/dc7/group__imgproc__hist.html

Displaying images

Images can also be displayed interactively with the
function imshow implemented in the highgui module

highgui documentation:
http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html

imshow function:
http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html#ga453d42fe4cb60e57
23281a89973ee563

NOTE: The function should be followed by waitKey function which displays the
image for specified milliseconds. Otherwise, it won't display the image.

http://docs.opencv.org/3.4.5/d7/dfc/group__highgui.html
http://docs.opencv.org/3.4.0/d7/dfc/group__highgui.html

Images in Jupyter

When working with Jupyter, images and plots can be
displayed with the matplotlib library:
https://matplotlib.org/

General usage:
import matplotlib.pyplot as plt

plt.figure()

plt.imshow(I)

plt.title(“My image”)

43

https://matplotlib.org/

Interactive plots

Jupyter supports widgets to automatically create user
interface (UI) controls for exploring code and data
interactively.

Install extension first:
$ jupyter lab clean

$ jupyter labextension install
@jupyter-widgets/jupyterlab-manager

Then use the interact() function provided by
ipywidgets
https://ipywidgets.readthedocs.io/en/st
able/examples/Using%20Interact.html

44

Interactive plots

from ipywidgets import interact, widgets

import numpy as np

def plot_func(freq):

x = np.linspace(0,
2*np.pi,int(100*freq))

y = np.sin(x * freq)

plt.plot(x, y)

interact(plot_func, freq = (1.0,10.0,0.5))

45

