
Filippo Bergamasco (filippo.bergamasco@unive.it)
http://www.dais.unive.it/~bergamasco
DAIS, Ca’ Foscari University of Venice

Academic year 2018/2019

Computer Vision

Finding curves

mailto:filippo.bergamasco@unive.it
http://www.dais.unive.it/~bergamasco

Fitting

Often, we have to work with unstructured environments
in which all we have is an edge image and no
knowledge about where objects of interest might be.

Fitting

Fitting is the process to decompose an image or a set
of tokens (ie. pixels, isolated points, sets of edge
points, etc.) into components that belong to one or
another simple family (ie. circles, lines, etc)

A line A circle

Why fitting curves?

As part of the segmentation
process, because it uses a
model to produce compact
representations that emphasize
the relevant image structures.

To analyze and make
measurements of man
made or geometrical
objects

The general view

Generally, fitting involves determining what possible
curves could have given rise to a set of tokens
observed in an image.

The general view

Generally, fitting involves determining what possible
curves could have given rise to a set of tokens
observed in an image.

Subproblems:
Parameter estimation: we already know the
association between tokens and curves. We need to
recover the parameter of each curve

The general view

Generally, fitting involves determining what possible
curves could have given rise to a set of tokens
observed in an image.

Subproblems:
Token-curve association: we assume to know only
how many curves are present but not which token
came from which curve. The association must be
solved together with parameter estimation

The general view

Generally, fitting involves determining what possible
curves could have given rise to a set of tokens
observed in an image.

Subproblems:
counting: we have no prior knowledge on the data,
so we must figure out (i) how many curves are
present, (ii) the association between tokens and
curves and (iii) curve parameters

Parameter estimation
We assume to have observed a set of points
generated by a certain curve model with unknown
parameters.
Goal: find the best set of parameters that justify
the observations
Two approaches:
• Minimize a loss function accounting for the

distances between each point and the curve
• Describe the curve as a generative model and find

the best parameters maximizing the probability of
generating the observed data

In some cases (like 2D lines) the two approaches yield to
the same result

Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that is independent from xi and
across observations

Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that is independent from xi and
across observations

Y is a random variable
depending by x (which can
or can not be a random
variable) and an additive
Gaussian noise

Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that is independent from xi and
across observations

This means that only the y-
coordinate of each
measurement is affected by
noise, which is why it is a rather
dubious model.

Observations PDF

Since the noise model is Gaussian, it is quite simple
to write the PDF of observing a certain yi given xi and
the model parameters

Note: recall that if
Then

Observations PDF

Since Y is independent across observations, the
probability to observe the whole set of data points
given the model parameters is:

Maximum Likelihood

When we see the data, we do not know the true
parameters , but any guess at them gives us
the likelihood function:

In the method of Maximum Likelihood, we pick the
best values of so that is
maximized.

Log Likelihood

Maximizing the Likelihood is equivalent to maximize
the logarithm of the Likelihood

Log Likelihood

Maximizing the Likelihood is equivalent to maximize
the logarithm of the Likelihood

Linear least squares

Closed-form solution

A closed-form minimizer of:

Is given by:

Linear least squares

In our case:
Let:

We get
for which a closed-form solution exists:

Limitation of this simple line
model

• We account only vertical offsets from points to the
line in our error model, this imply that the the
measurement error is dependent on the reference
frame

• What happens if we try to estimate the parameters
of quasi-vertical lines?

A better model

Let’s parametrize our line as the locus of points for
which the equation holds.
Without loss of generality, let’s assume that

The perpendicular distance of a point xi, yi to the line
is given by:

A better model

We now assume that our measurements are
generated by choosing a point (u,v) along the line,
and then perturbing it perpendicular to the line using
Gaussian noise.

A better model

We have sequence of N measurements (xi, yi)
generated by the model

Where
The log Likelihood is now:

Where C is a constant (independent from a,b,c) and
with the additional constraint of

Optimizing the model

The optimization problem

lead (via the method of Lagrange multipliers) to the
Eigenvalue problem:

… usually solved numerically

Fitting curves

The problem of fitting general curves is similar
conceptually to the one of fitting lines:

We usually assume that data points are generated
uniformly at random on the curve, and then perturbed
by Gaussian noise normal to the curve

Problem: in many cases is very hard to give an exact
formulation for the point-curve distance (hence we
often approximate this distance)

Implicit curves

Note that not all the possible curves are guaranteed for having
any real points on them (ex. x2 + y2 +1 = 0)

Curve distance

Let’s assume that our curve is expressed implicitly as

Given a data point (dx dy), to find the closest point on
a curve we must first enumerate all the pairs of (u,v)
such that:
• (u,v) is a point on the curve (ie.)
• is normal to the curve.

Then, we take the (u,v) for which is minimum

Curve distance

We must find all the (u,v) for which:

A difficult problem!

Even for simple cases, it can be impossible to obtain
a simple closed form solution.
Ex.
Consider the ellipse

The nearest point on the curve to (dx,dy) must satisfy
the equations:

Which can result in 2 or 4 solutions depending on the
data point

A difficult problem!

Distance approximations

If is a polynomial with degree k, the closest
point on the corresponding curve would be obtained
by solving two simultaneous polynomial equations
with degree k (up to k2 solutions to consider)

To solve the problem we can:
• Consider specific properties of the curve
• Use an approximation of the distance function

In both the cases tradeoff must be done to consider
numerical stability and computational cost

Algebraic distance

We measure the distance between a curve and a
point by evaluating the polynomial equation at that
point:

Problems:
• Accurate only if the point is very close to the curve
• Since and represent the

same curve, polynomial coefficients should be
normalized in some way before evaluating the
distance

Algebraic distance

In case of first degree polynomials (ie. lines) the
normalization given by a2 + b2 = 1 lets the algebraic
distance and geometric distance coincide
… but it is one of the few lucky situations

Note also that the choice of normalization factor is
important and can lead to the exclusion of possible
good solutions:
Ex:
If we use
with the constraint b=1 we cannot fit circles

Normalizing the distance

Another common approximation is to consider the
following distance:

Advantages:
• Does not require to choose a normalization factor

for the curve
• More accurate than algebraic distance, because it

is normalized by the length of the normal
Can still be numerically inaccurate for points far away
from the curve

Token-curve association

Suppose that we want to detect street lanes to
develop an autonomous vehicle

Option 1: We can limit the analysis to a specific
region and do a parameter fitting of a line
Bad idea if performed in the wild… Why?

Token-curve association

Suppose that we want to detect street lanes to
develop an autonomous vehicle

Option 2: We can search for lines at every possible
position/orientation to find the “best” ones
Computationally very expensive

Token-curve association

Suppose that we want to detect street lanes to
develop an autonomous vehicle

Option 3: We can use a consensus-based approach:
RANSAC

Token-curve association

Suppose that we want to detect street lanes to
develop an autonomous vehicle

Option 4: We can use a voting scheme:
Hough Transform

RANSAC

The RANSAC algorithm is a learning technique to
estimate parameters of a model by random sampling
of observed data.
Given a dataset whose data elements contain both
inliers and outliers, RANSAC uses a consensus
scheme to find the optimal fitting result.

RANSAC

Assumptions:
1. Data consists of inliers (i.e., data whose

distribution can be explained by some set of model
parameters, though may be subject to noise) and
outliers which are data that do not fit the model

1. Given a (usually small) set of inliers, there exists a
procedure which can estimate the parameters of a
model that optimally explains or fits this data
> For example given a set of 2 points we can compute a line
model that optimally explains the set

RANSAC

Algorithm:
1. Select a random subset of the original data. Call

this subset the hypothetical inliers.
2. Fit the model to the hypothetical inliers
3. Test all other data against the model and mark

points either as inliers or outliers according to
some loss function. The inliers are called
“consensus set”

4. Return to step 1 until a predefined number of
iterations N is reached

5. The model that produced the largest consensus
set is returned

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

Probability to have an inlier by choosing one point

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

Probability to have s inliers in a row

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

Probability that one or more points in a sample of
s points is an outlier

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

Probability that in all the N iterations we fitted
models contaminated by outliers

How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the
samples

Probability that, in at least one iteration, we fitted a
model with just inlier points

How many iterations?

Usually we specify p (ie. The probability of success
we expect to have) and compute the corresponding
number of iterations:

Hough transform

The basic idea is to map points from the image
space to the parameter space of the model (for
example the m-q space for lines parameterized as
y=mx + q)

For an image point (x,y) can pass infinite lines all
satisfying the equation y=mx+q. The equation can be
rewritten as q=-mx+y which corresponds to a line in
the m-q space

x

y

m

q

Hough transform

The principal lines in the image plane could be found by
identifying points in parameter space where large numbers
of parameter-space lines intersect

The parameter space is used as an accumulator of votes

x

y

m

q

Hough transform

The classical slope-intercept parameterization of the
line is not convenient since the slope approach
infinity when the line approaches vertical direction

Normal representation of the line:

The parameter space is now the r-!-plane in which
the range of values are limited

Hough transform

Algorithm:
1. Initialize H[r,!]=0

2. For each edge point p=(x,y) in the image

a. For !=0 to pi
i. r = x cos ! + y sin !
ii. H[r,!] += 1

3. Find (r,!) for which H[r,!] is maximum

4. The detected line is given by r = x cos! + y sin!

Hough Transform

Possible extensions/improvements:

1. Use the image gradient (no need to iterate through
angles)

2. Give more votes to strongest edges
3. Change the sampling of (r,!) to trade-off resolution

with computing time
a. High resolution -> Dispersion of votes
b. Low resolution -> Cannot distinguish similar lines

Hough Transform

Hough transform is applicable to any function of the
form g(v, c) = 0, where:
• v is a vector of coordinates
• c is a vector of coefficients

For example the Hough Transform can be used to
extract all circles in the scene:

A 3D accumulator for (c1,c2,c3) is needed

