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Fitting

Often, we have to work with unstructured environments 
in which all we have is an edge image and no 
knowledge about where objects of interest might be.



Fitting

Fitting is the process to decompose an image or a set 
of tokens (ie. pixels, isolated points, sets of edge 
points, etc.) into components that belong to one or 
another simple family (ie. circles, lines, etc)

A line A circle



Why fitting curves?

As part of the segmentation
process, because it uses a
model to produce compact
representations that emphasize
the relevant image structures.

To analyze and make
measurements of man
made or geometrical
objects



The general view

Generally, fitting involves determining what possible 
curves could have given rise to a set of tokens 
observed in an image.



The general view

Generally, fitting involves determining what possible 
curves could have given rise to a set of tokens 
observed in an image.

Subproblems:
Parameter estimation: we already know the 
association between tokens and curves. We need to 
recover the parameter of each curve



The general view

Generally, fitting involves determining what possible 
curves could have given rise to a set of tokens 
observed in an image.

Subproblems:
Token-curve association: we assume to know only 
how many curves are present but not which token 
came from which curve. The association must be 
solved together with parameter estimation



The general view

Generally, fitting involves determining what possible 
curves could have given rise to a set of tokens 
observed in an image.

Subproblems:
counting: we have no prior knowledge on the data, 
so we must figure out (i) how many curves are 
present, (ii) the association between tokens and 
curves and (iii) curve parameters



Parameter estimation
We assume to have observed a set of points 
generated by a certain curve model with unknown 
parameters.
Goal: find the best set of parameters that justify 
the observations
Two approaches:
• Minimize a loss function accounting for the 

distances between each point and the curve
• Describe the curve as a generative model and find 

the best parameters maximizing the probability of 
generating the observed data 

In some cases (like 2D lines) the two approaches yield to 
the same result



Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that     is independent from xi and 
across observations



Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that     is independent from xi and 
across observations

Y is a random variable 
depending by x (which can 
or can not be a random 
variable) and an additive 
Gaussian noise 



Super-simple line model
N observed data points (x1,y1), (x2,y2) … (xn,yn)
Model:

We also assume that     is independent from xi and 
across observations

This means that only the y-
coordinate of each 
measurement is affected by 
noise, which is why it is a rather 
dubious model. 



Observations PDF

Since the noise model is Gaussian, it is quite simple 
to write the PDF of observing a certain yi given xi and 
the model parameters

Note: recall that if
Then  



Observations PDF

Since Y is independent across observations, the 
probability to observe the whole set of data points 
given the model parameters is:



Maximum Likelihood

When we see the data, we do not know the true 
parameters              , but any guess at them gives us 
the likelihood function:

In the method of Maximum Likelihood, we pick the 
best values of               so that                   is 
maximized.



Log Likelihood

Maximizing the Likelihood is equivalent to maximize 
the logarithm of the Likelihood



Log Likelihood

Maximizing the Likelihood is equivalent to maximize 
the logarithm of the Likelihood

Linear least squares



Closed-form solution

A closed-form minimizer of:

Is given by:



Linear least squares

In our case:
Let:

We get
for which a closed-form solution exists:



Limitation of this simple line 
model

• We account only vertical offsets from points to the 
line in our error model, this imply that the the 
measurement error is dependent on the reference 
frame

• What happens if we try to estimate the parameters 
of quasi-vertical lines?



A better model

Let’s parametrize our line as the locus of points for 
which the equation                                  holds.
Without loss of generality, let’s assume that

The perpendicular distance of a point xi, yi to the line 
is given by:



A better model

We now assume that our measurements are 
generated by choosing a point (u,v) along the line, 
and then perturbing it perpendicular to the line using 
Gaussian noise. 



A better model

We have sequence of N measurements (xi, yi) 
generated by the model 

Where
The log Likelihood is now:

Where C is a constant (independent from a,b,c) and 
with the additional constraint of 



Optimizing the model

The optimization problem 

lead (via the method of Lagrange multipliers) to the 
Eigenvalue problem:  

… usually solved numerically



Fitting curves

The problem of fitting general curves is similar 
conceptually to the one of fitting lines:

We usually assume that data points are generated 
uniformly at random on the curve, and then perturbed 
by Gaussian noise normal to the curve 

Problem: in many cases is very hard to give an exact 
formulation for the point-curve distance (hence we 
often approximate this distance)



Implicit curves

Note that not all the possible curves are guaranteed for having 
any real points on them (ex. x2 + y2 +1 = 0)



Curve distance

Let’s assume that our curve is expressed implicitly as 

Given a data point (dx dy), to find the closest point on 
a curve we must first enumerate all the pairs of (u,v) 
such that:
• (u,v) is a point on the curve (ie.                  )
• is normal to the curve.

Then, we take the (u,v) for which       is minimum



Curve distance

We must find all the (u,v) for which:



A difficult problem!

Even for simple cases, it can be impossible to obtain 
a simple closed form solution.
Ex.
Consider the ellipse

The nearest point on the curve to (dx,dy) must satisfy 
the equations:

Which can result in 2 or 4 solutions depending on the 
data point



A difficult problem!



Distance approximations

If              is a polynomial with degree k, the closest 
point on the corresponding curve would be obtained 
by solving two simultaneous polynomial equations 
with degree k (up to k2 solutions to consider)

To solve the problem we can:
• Consider specific properties of the curve
• Use an approximation of the distance function

In both the cases tradeoff must be done to consider 
numerical stability and computational cost



Algebraic distance

We measure the distance between a curve and a 
point by evaluating the polynomial equation at that 
point:

Problems:
• Accurate only if the point is very close to the curve
• Since                      and                    represent the 

same curve, polynomial coefficients should be 
normalized in some way before evaluating the 
distance



Algebraic distance

In case of first degree polynomials (ie. lines) the 
normalization given by a2 + b2 = 1 lets the algebraic 
distance and geometric distance coincide
… but it is one of the few lucky situations

Note also that the choice of normalization factor is 
important and can lead to the exclusion of possible 
good solutions:
Ex:
If we use
with the constraint b=1 we cannot fit circles



Normalizing the distance

Another common approximation is to consider the 
following distance:

Advantages:
• Does not require to choose a normalization factor 

for the curve
• More accurate than algebraic distance, because it 

is normalized by the length of the normal 
Can still be numerically inaccurate for points far away 
from the curve



Token-curve association

Suppose that we want to detect street lanes to 
develop an autonomous vehicle

Option 1: We can limit the analysis to a specific 
region and do a parameter fitting of a line
Bad idea if performed in the wild… Why?



Token-curve association

Suppose that we want to detect street lanes to 
develop an autonomous vehicle

Option 2: We can search for lines at every possible 
position/orientation to find the “best” ones
Computationally very expensive



Token-curve association

Suppose that we want to detect street lanes to 
develop an autonomous vehicle

Option 3: We can use a consensus-based approach:
RANSAC



Token-curve association

Suppose that we want to detect street lanes to 
develop an autonomous vehicle

Option 4: We can use a voting scheme:
Hough Transform



RANSAC

The RANSAC algorithm is a learning technique to 
estimate parameters of a model by random sampling 
of observed data.
Given a dataset whose data elements contain both 
inliers and outliers, RANSAC uses a consensus 
scheme to find the optimal fitting result.



RANSAC

Assumptions:
1. Data consists of inliers (i.e., data whose 

distribution can be explained by some set of model 
parameters, though may be subject to noise) and 
outliers which are data that do not fit the model

1. Given a (usually small) set of inliers, there exists a 
procedure which can estimate the parameters of a 
model that optimally explains or fits this data
> For example given a set of 2 points we can compute a line 
model that optimally explains the set



RANSAC

Algorithm:
1. Select a random subset of the original data. Call 

this subset the hypothetical inliers.
2. Fit the model to the hypothetical inliers
3. Test all other data against the model and mark 

points either as inliers or outliers according to 
some loss function. The inliers are called 
“consensus set”

4. Return to step 1 until a predefined number of 
iterations N is reached

5. The model that produced the largest consensus 
set is returned



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples

Probability to have an inlier by choosing one point



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples

Probability to have s inliers in a row



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples

Probability that one or more points in a sample of 
s points is an outlier



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples

Probability that in all the N iterations we fitted
models contaminated by outliers



How many iterations?

e: probability that a point is an outlier
s: number of points needed to fit a model
N: number of RANSAC interations
p: desired probability to find a good model given the 
samples

Probability that, in at least one iteration, we fitted a 
model with just inlier points



How many iterations?

Usually we specify p (ie. The probability of success 
we expect to have) and compute the corresponding
number of iterations:



Hough transform

The basic idea is to map points from the image 
space to the parameter space of the model (for 
example the m-q space for lines parameterized as 
y=mx + q)

For an image point (x,y) can pass infinite lines all 
satisfying the equation y=mx+q. The equation can be 
rewritten as q=-mx+y which corresponds to a line in 
the m-q space 

x

y

m

q



Hough transform

The principal lines in the image plane could be found by 
identifying points in parameter space where large numbers 
of parameter-space lines intersect

The parameter space is used as an accumulator of votes 

x

y

m

q



Hough transform

The classical slope-intercept parameterization of the 
line is not convenient since the slope approach 
infinity when the line approaches vertical direction

Normal representation of the line:

The parameter space is now the r-!-plane in which 
the range of values are limited



Hough transform

Algorithm:
1. Initialize H[r,!]=0

2. For each edge point p=(x,y) in the image

a. For !=0 to pi
i. r = x cos ! + y sin !
ii. H[r,!] += 1

3. Find (r,!) for which H[r,!] is maximum

4. The detected line is given by r = x cos! + y sin!



Hough Transform

Possible extensions/improvements:

1. Use the image gradient (no need to iterate through 
angles)

2. Give more votes to strongest edges
3. Change the sampling of (r,!) to trade-off resolution 

with computing time
a. High resolution -> Dispersion of votes
b. Low resolution -> Cannot distinguish similar lines



Hough Transform

Hough transform is applicable to any function of the 
form g(v, c) = 0, where:
• v is a vector of coordinates
• c is a vector of coefficients

For example the Hough Transform can be used to 
extract all circles in the scene:

A 3D accumulator for (c1,c2,c3) is needed


