

# **Computer Vision**

Projective geometry and 3D transformations

Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca' Foscari University of Venice Academic year 2018/2019



Venezia

Università Ca' Foscari **Projective 3-space** 

Similarly to the 2D projective space, a point **x** in  $\mathbb{R}^3$  is represented in homogeneous coordinates as a 4 dimensional vector:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \to \begin{pmatrix} wx \\ wy \\ wz \\ w \end{pmatrix} \in \mathbb{P}^3, w \in \mathbb{R} - \{0\}$$

The points at infinity have 0 in the last component and cannot be transformed back to inhomogeneous coordinates  $\langle x \rangle$ 

$$\begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix}$$



### **3D Planes**

In  $\mathbb{P}^3$  points and planes are dual, similarly of what happens with points and lines in  $\mathbb{P}^2$ .

A plane in 3D Euclidean space can be represented as the locus of points  $\mathbf{p} = (x, y, z)^T \in \mathbb{R}^3$  such that:

$$\pi_1 x + \pi_2 y + \pi_3 z + \pi_4 = 0$$

In homogeneous coordinates, the same relation can be expressed as:

$$\pi^T \mathbf{x} = 0 \quad \text{with} \quad \pi \in \mathbb{P}^3, \mathbf{x} \in \mathbb{P}^3$$



### **3D Planes**

$$\pi = (\pi_1, \pi_2, \pi_3, \pi_4)^T$$

The first 3 components  $N = (\pi_1, \pi_2, \pi_3)$  define the plane normal. If the vector is normalized such that ||N|| = 1 then  $\pi_4$  is the plane distance to the origin.

3 non-collinear points are needed to define a plane. The best way to describe it is by stacking the points in a 3x4 matrix such that:

$$\begin{pmatrix} X_1^T \\ X_2^T \\ X_3^T \end{pmatrix} \pi = 0$$

 $\pi$  is obtained (up to scale, since we are in homogeneous coordinates) as the 1-dimensional right null-space of the matrix.



### **3D Planes**

Since planes and points are dual, it is also true that 3 (non parallel) planes  $\pi_1, \pi_2, \pi_3$  define a point. The intersection point of the 3 planes can be obtained in a similar manner by computing the right null-space of the 3x4 matrix composed by stacking the planes:

$$\begin{pmatrix} \pi_1^T \\ \pi_2^T \\ \pi_3^T \end{pmatrix} X = 0$$



## **Projective transformations**

A projective transformation of 3-space is a linear transformation in  $\mathbb{P}^3$  that can be represented by any non-singular 4x4 matrix:

$$\begin{pmatrix} \mathbf{A} & \mathbf{t} \\ V^T & v \end{pmatrix}$$

Where **A** is a 3x3 invertible matrix,  $V^T$  and **t** are 3D vectors and v is a scalar. Since the transformation is up to scale is subject to **15 dof**.



# **Rigid motion**

The Euclidean transfomation is a projective transformation composed by a rotation around an axis and a translation:

 $\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix}$ 

It is subject to 6 dof. (3 for rotation, 3 for the translation part). It is very important because it preserve the distances, parallelism of planes and lines and the volume. For this reason it is also called **rigid motion**.



### Chasles' Theorem



Any particular translation and rotation is equivalent to a rotation about a screw axis together with a translation along the screw axis. The screw axis is parallel to the rotation axis.



## Hierarchy of transformations

| Group                | Matrix                                                                              | Distortion | Invariant properties                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|
| Projective<br>15 dof | $\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{T} & v \end{bmatrix}$       |            | Intersection and tangency of sur-<br>faces in contact. Sign of Gaussian<br>curvature.                                 |
| Affine<br>12 dof     | $\left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$     |            | Parallelism of planes, volume ra-<br>tios, centroids. The plane at infin-<br>ity, $\pi_{\infty}$ , (see section 3.5). |
| Similarity<br>7 dof  | $\left[\begin{array}{cc} s \mathbf{R} & \mathbf{t} \\ 0^{T} & 1 \end{array}\right]$ |            | The absolute conic, $\Omega_{\infty}$ , (see section 3.6).                                                            |
| Euclidean<br>6 dof   | $\left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$     |            | Volume.                                                                                                               |



# Plane at infinity

In  $\mathbb{P}^3$  we can define the so-called plane at infinity with canonical position  $\pi_{\infty} = (0, 0, 0, 1)^T$ .  $\pi_{\infty}$  contains all the directions (ideal points)  $(D_1, D_2, D_3, 0)^T$ 

- Two planes are parallel if, and only if, their line of intersection is on  $\pi_\infty$
- A line is parallel to another line, or to a plane, if the point of intersection is on  $\pi_{\infty}$



# Plane at infinity

The plane at infinity is important because it remains fixed under an affine transformation but not by a general projective transformation (the behavior is similar to the line at infinity).

The plane at infinity is a fixed plane under the projective transformation H if and only if H is an affinity. Note that:

- The plane is not fixed "point-wise" but it is just mapped to the same plane
- $\pi_{\infty}$  may not be the only fixed plane (for example a plane orthogonal to the rotation axis in a rigid motion is fixed)