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Our goal
Track the position and movement of an object across 
a video sequence
• Multiple video frames
• Usually small delay between each frame
• In many cases the computational complexity 

matters! (aim for real-time solutions)
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Motion field

What we would like to estimate is the 2D vector field 
of velocities of the image points induced by the 
relative motion between the viewing camera and the 
observed objects

This motion is the projection of the 3D velocity field 
onto the image plane

... But the motion field cannot be really observed with 
a single camera...
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Optical Flow

What we observe in an image sequence is the 
temporal variation of the intensity level of each pixel. 

We call Optical Flow the observed 2D 
displacements of brightness patterns in the 
image.

Optical Flow is the only thing we can aim to estimate 
from the image... So what is the relation wrt the MF?
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Optical Flow

Let’s model our  frame sequence as a function                
that we assume to be continuous and differentiable 
(as many times as needed) in both the spatial and 
the temporal domain.
Consider a scene point moving through the image sequence:

Assumption: The apparent brightness (or color) will 
remain constant during the movement
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Brightness constancy 
equation

Assumption: The apparent brightness (or color) will 
remain constant during the movement
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Taking derivative wrt. t

Using the chain rule



Brightness constancy 
equation

The spatial gradient of each image (can be computed 
via convolution)
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Brightness constancy 
equation

The optical flow                                          we want to 
estimate
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Brightness constancy 
equation

The image derivative across frames (essentially the 
difference between consecutive frames)
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Brightness constancy 
equation

In vector form:

How many unknowns and equations per pixel? 
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Brightness constancy 
equation

In vector form:

How many unknowns and equations per pixel? 
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3 known coefficients



Brightness constancy 
equation

In vector form:

How many unknowns and equations per pixel? 
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2 unknowns, one equation... of a line!



The aperture problem
The component of the optical flow orthogonal to the 
spatial image gradient is not constrained by the 
image brightness constancy equation
In other terms, only the flow in the gradient 
direction (normal flow) can be determined
Ex:
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The aperture problem

Here Ey = 0
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The aperture problem
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ObjectImage
frame

This implies that any additional vertical movement of 
the object produces a valid solution!



The aperture problem
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The aperture problem
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The aperture problem
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Optical Flow vs. Motion Field

The optical flow is the approximation of the motion 
field under the assumptions of:
• Lambertian surfaces

• Point-wise light source at infinity
• No photometric distortion
The error is:

• Small at points with high spatial gradient
• Exactly zero if the brightness gradient is parallel to 

the object motion
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Computing the OF

Differential techniques
• Based on the spatial and temporal variations of 

the image brightness at all pixels

• Used to compute dense flow
• Ex: Lukas-Kanade flow

Matching techniques
• OF is estimated by feature matching only on a 

sparse subset of image points
• Used to compute sparse flow

• Ex: KLT tracker
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Differential techniques
They are based on solving systems of partial 
differential equations, usually requiring the 
computation of second and high-order derivatives of 
the image brightness.

The most simple differential technique for flow 
estimation was proposed by B.D. Lukas and T. 
Kanade and is based on a least-squares fitting of the 
flow parameters:
• Is not iterative, therefore is fast and less biased by 

possible discontinuities of the motion field
• Involve only first-order derivatives: less sensitive 

to noise
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Lukas-Kanade flow

One equation per pixel is not enough... So we make 

an additional assumption:

The optical flow is well approximated by a constant 
vector within any small patch of the image plane

Suppose that we use a patch Q with size NxN (ex. 

5x5). If we suppose that (u,v) is constant for every 

pixel in Q we obtain a system of 25 equation in 2 

unknowns
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Lukas-Kanade flow

Or, in matrix form:
where
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Lukas-Kanade flow

Solving the least-squares problem depends by 
inverting the matrix                    :
• should be invertible (ie.                    )
• should be well conditioned:

large         and           not too large (ie. both large) 
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Lukas-Kanade flow

is exactly the structure tensor used in the Harris 
corner detector!
• Corners are places in which both            are big, 

and this also is the case in which the LK flow 
works best

• Aperture problem disappear at corners!
Corners are a good place to compute optical flow
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Feature-based techniques

Feature-based techniques estimate the optical flow at 
feature points only to obtain a sparse field

General idea:
• Find corners in the first image
• Search for corresponding intensity patches in the 

second image
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KLT Algorithm
Algorithm born from the combined work of: 
Lukas-Kanade (goal: how should we track patches from 
frame to frame?) and Tomasi-Kanade (goal: how should 
we select good features?)

Algorithm:

1. Extract corners 
2. For each corner, compute the displacement using 

Lukas-Kanade method

3. Store the displacement of each corner and update the 
corner position

4. Add more corners
5. Repeat step 2-4

6. Return long trajectories for each corner point
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Correlation-based techniques

Some techniques, instead of using LK to find the 
displacement, simply compute normalized correlation 
between patches centered around features of each 
image.
Assumption: In small period of times (or small 
motions), corners tend to remain corners 

Ex:
D. Nister, O. Naroditsky, J. Bergen, “Visual 
Odometry”, CVPR 2004
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Visual Odometry technique

• Extract corners in first and second image
• Extract image patches around each corner
• Find matching pairs (a,b) where:

– a is a corner patch from the first image
– b is a corner patch from the second image
– b is the best match for a (according to normalized 

correlation)
– a is the best match for b

The last condition was proven to be a good heuristic 
to get an approximate result of the linear assignment 
problem
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Linear assignment problem

We have N agents and N tasks. Any agent can be 
assigned to perform any task, incurring 
some cost that may vary depending on the agent-
task assignment.
Goal: assign exactly one agent to each task and 
exactly one task to each agent in such a way that 
the total cost of the assignment is minimized

An optimal solution exists but is computationally too 
intensive for tracking. 
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Linear assignment problem

Approximate solution:
• Each agent rank the tasks in order of cost
• Each task rank the agents in order of cost
Agents and tasks can pair up only if each is the best 
match for the other, and viceversa

NOTE: this will eliminate many potential good 
matches, but overall we obtain a close to optimal 
solution. 
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Data association

So far we have seen the matching/tracking problem 
between two frames.
In a frame sequence we also have the problem to 
mantain a continuity of identity and generate 
trajectories
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How to determine which new observation 
should be added to each track?



Data association

Main idea:
• Predict the next tposition and take the observation

closest to that prediction
• ...or at least restrict the search to a gating region
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Tracking as inference problem

The interesting properties of a feature (like position, 
velocity, etc) are modelled as a discrete time random 
variable. (for example, let Xi model the position of a 
feature at time i.)

The “true” position at each frame x1, x2, x3 … is not
directly observable, but it can be inferred by a 
sequence of noisy measurements y1, y2, y3 … also 
modelled as a random variable Yi.

With this setting, the tracking is divided in 3 steps…
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Tracking as inference problem

Prediction: Suppose that we have seen y0, y1, … yi-1. 
What can we expect for the internal state of the 

system at time i? In other words, we would like to 

obtain P(Xi|Y0=y0, … Yi-1 = yi-1)

Data association: What are the measurements 

obtained in the i-th frame that can be used to obtain a 

better estimate of the current state Xi?

Correction (update): When we identified the set of 

relevant measurements yi for this frame, how to 

update Xi? In other words, we would like to obtain 

P(Xi|Y0=y0, … Yi-1 = yi-1, Yi = yi)35



Tracking as inference problem

We will also pose the following useful simplifications:
1. Only the last frame matters:

P(Xi | X1, X2,…,Xi-1) = P(Xi | Xi-1 ). The transition distribution 
P(Xi | Xi-1 )  defines the system model and its uncertainties 
as a Markov sequence

2. Measurements depends only on the current state:
This dependence is modeled by specifying the distribution of 
the measurement given the state P(Yi | Xi ). This define the 
measurement model

With the above simplifications, the problem is tractable as a
Bayes inference problem. Different system and 
measurement models result in problems that can be more or 
less computationally expensive to solve
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Linear Kalman Filter

The simplest scenario is when:
• System and measurement models are linear
• Noise is assumed to be zero-mean Gaussian
• Pdfs are all Gaussian

System model:

Measurement model:
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System model

State vector at time k
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State transition matrix (the 
model is linear!). Note that 
the matrix can change 
among the steps

Vector that account for noise in the 
system model (ie. The model is an 
approximation of the real one)

Noise PDF is fully defined by 
its covariance matrix 



Measurement model
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Matrix mapping the current 
state xk to the measurements

Vector that accounts for noise in 
the measurements

Measurement noise PDF is 
fully defined by its covariance 
matrix 



Linear Kalman Filter
We assume to have an initial state, Normally 
distributed with mean       and covariance          
Prediction step:

Update step:
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Linear Kalman Filter
We assume to have an initial state, Normally 
distributed with mean       and covariance          
Prediction step:

Update step:
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Predicted state

Predicted state 
covariance

Measurement residual

Measurement residual 
covariance

Kalman gain

Updated state estimate

Updated state covariance



Example

Suppose that we track a single feature.
Hidden state vector:
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Example

Suppose that we track a single feature.
Hidden state vector:

State transition matrix:
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Example

Suppose that we track a single feature.
Hidden state vector:

State transition matrix:                Measurement matrix:
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Tracking

Usually we check the Mahalanobis distance

between a new measurement y and the predicted 
state mapped in measurement space 45



Tracking

We set a threshold G, and accept a measurement if

Such formula defines an ellipsoidal gating region 
depending on the measurement residual covariance S

46



Global Nearest Neighbor

We could have multiple possible observations 
(features) to be incorporated into track.
GNN: Take the feature maximizing a “score” against 
the track. The score can be based on Mahalanobis
distance between the feature and the predicted 
location (like           ) or similarity of appearance. 

47



Global Nearest Neighbor

Problem: If we do GNN for each track we can have a 
contention for the same observation...

48



Linear assignment problem, 
again...

M tracks, N features to assign
We build a MxN matrix of matching scores:

Goal: Chose one number from each row and one 
number for each column such that the sum of the 
chosen numbers is maximized.
How many possible combinations?
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Linear assignment problem

Possible solutions:
• Simplex method (but it has an exponential worst-

case complexity)
• See the problem as maximal matching in a 

weighted bipartite graph (solved via max-flow 
algorithms like Ford-Fulkerson)

• Use approximate solutions like:
J. Kosowsky and A. Yuille. The invisible hand algorithm: 
Solving the assignment problem with statistical physics, 
Neural Networks, 7:477-490, 1994
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