
Filippo Bergamasco (filippo.bergamasco@unive.it)
http://www.dais.unive.it/~bergamasco
DAIS, Ca’ Foscari University of Venice

Academic year 2017/2018

Computer Vision

Point features

mailto:filippo.bergamasco@unive.it
http://www.dais.unive.it/~bergamasco

Corners

Edge detectors perform poorly at corners.

Corners provide repeatable points for matching,
so are worth detecting!

Corners

How to find a corner? General idea:
• Exactly at a corner, gradient is ill defined.
• However, in the region around a corner, gradient
has two or more different well-defined vectors.

Corners and gradient

Similarly to edges, a corner point exhibit strong rapid
changes in the image intensities.

For a small region around a point x0, we can consider
the Taylor expansion of the image function I(x,y) and
express the change of intensity as function of the
image gradient and a displacement vector h:

Corners and gradient

We are not interested to the sign of this variation
(gradient can have any orientation) but only to its
magnitude. So we can compute the square of it:

Corners and gradient

To be more resilient to noise, we can compute this
intensity difference by averaging over a region
centered at x0:

this is usually a Gaussian windowing
function

Corners and gradient

Considering the Taylor expansion we have seen
before, we have:

Since h does not depend to x, we can move it out from
the summation

Corners and gradient

E(x0) can then be written as:

And the summation can be moved inside the matrix:

Since h does not depend to x, we can move it out from
the summation

Second moment matrix

C form the second-moment matrix (we discard the
weights for clarity)

1. Depends on the first-order derivatives
2. Symmetric
3. Each element is obtained as a sum over a small

region around a point x0

Simple case

First, consider the following ideal case:

Image intensity changes either in x or y direction, but
not both

Simple case

When x0 is at a flat region, we expect

Simple case

When x0 is at an horizontal edge, we expect

Simple case

When x0 is at a vertical edge, we expect

Simple case

When x0 is at a corner, we expect both and

 be large (ie. far from zero)

General case

So we can detect a corner if both are far
from zero.

What about the general case in which are
not zero?

Since C is symmetric, it can be decomposed via SVD:

Where R is a rotation matrix and are the
singular values of C (ie. the square-root of the
eigenvalues of)

General case

Since the rotations do not change the magnitude of h,
examining the singular values of C can tell us if x0 is
in a flat region, an edge or a corner

Harris corner detector

Analyzing the singular values of C requires the
computation of SVD at each image pixel
> This is computationally expensive in practice

Harris proposed to use the following function as a
corner response:

Where k is a constant that has to be tuned for the
specific application

Harris corner detector

It can be shown that:

Therefore, R(x0) >> 0 if we are on a corner, and
R(x0)<<0 if we are on an edge

Harris corner detector

Algorithm:

• Compute the image gradient
• Compute the matrix C for each pixel

– 3 convolutions needed:
– Convolution kernel K is usually gaussian and determine

the scale of the corner

• Compute the Harris response for each pixel
• Threshold the result and (optionally) perform

non-maxima suppression

Harris corner detector

Image Gradient

Harris corner detector

Eigenvalues plotted as ellipse axes

Harris corner detector

Harris response (R)

Input image

Harris corner detector

|R|<1E4
(flat regions)

Input image

Harris corner detector

R<-1E4
(edges)

Input image

Harris corner detector

R>1E4
(corners)

Input image

More advanced features

Harris corner detector works well in practice but is
not invariant to scale
• The convolution window size affects the scale of

the corner detected

To solve complex high-level computer vision
problems we need more invariances and a way to
distinguish and identify features

A typical problem

In this picture:Find this:

SIFT

David G. Lowe, Distinctive image features from
scale-invariant keypoints, International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110.

… changed the way we approach many computer
vision problems!

Invariances:

• Scaling
• Rotation
• Illumination

While still providing very good localization

SIFT: General idea

Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT: Advantages

Locality: features are local, so robust to occlusion
and clutter (no prior segmentation)
Distinctiveness: individual features can be matched
to a large database of objects
Quantity: many features can be generated for even
small objects
Efficiency: close to real-time performance
Extensibility: can easily be extended to wide range
of differing feature types, with each adding
robustness

SIFT Algorithm

Keypoint Localization:
1. Enforce invariance to scale: Compute difference

of Gaussian for may different scales;
non-maximum suppression, find local maxima:
keypoint candidates

2. Localize corners: For each maximum, fit
quadratic function. Compute center with sub-pixel
accuracy by setting first derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues,
drop keypoints for which this ratio is larger than a
threshold.

SIFT Algorithm

Signature computation:
4. Enforce invariance to orientation: Compute
orientation by finding the strongest gradient direction
in the smoothed image (possibly multiple orientations).
Rotate patch so that orientation points upward.
5. Compute feature signature (descriptor):
Compute a "gradient histogram" of the local image
region in a 4x4 pixel region. Do this for 4x4 regions of
that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector
with 128 values (15 fields, 8 gradients).

SIFT Algorithm

6. Enforce invariance to illumination change and
camera saturation:
Normalize the descriptor to unit length to increase
invariance to illumination. Then, threshold all
gradients, to become invariant to camera saturation.

SIFT - Step 1
Enforce invariance to scale: Compute difference of Gaussian for
may different scales; non-maximum suppression, find local
maxima: keypoint candidates

Main idea: Find corners as in Harris, but achieve
scale invariance

Method:
• Convolve with Difference of Gaussians (DoG) to

identify interesting image pixels
• DoG is performed at multiple resolutions and the

local maximum (in space and scale is selected)

Difference of Gaussians

Essentially an High-pass filter which approximates
well the LoG.

Why use that? We can efficiently compute the DoG
at different scales using image pyramid

- =

DoG & Image Pyramid

Image is
scaled
several times
(size is
halved), each
scale is
called an
octave

DoG & Image Pyramid

For each
octave of
scale space,
the initial
image is
repeatedly
convolved
with
Gaussians

DoG & Image Pyramid

Adjacent
Gaussian
images are
subtracted to
produce the
difference-of-
Gaussian
images

Keypoint localization

Once the DoG pyramids are built, the local-maxima
are extracted considering both current-scale and
adjacent scales

Local-maximum is
checked against
9+8+9=26
neighbours

SIFT - Step 2 & 3

2. Localize corners: For each maximum fit a
quadratic function. Compute center with sub-pixel
accuracy by setting first derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues,
drop keypoints for which this ratio is larger than a
threshold.

Threshold on value at DoG peak and on ratio of
principal curvatures (similar to Harris approach)

SIFT - Step 4

4. Enforce invariance to orientation
By assigning a consistent orientation to each key point
based on local image properties we can achieve
invariance to image rotation.

Suppose that we
want to assign an
orientation to this
detected keypoint:

SIFT - Step 4

Gradient magnitude and orientation is calculated for
each pixel in the keypoint region (region size depends
on the detected scale)

SIFT - Step 4

And an orientation histogram is formed with these
orientations and magnitudes

The maximum value of the histogram gives the
orientation of the detected keypoint

SIFT - Step 4

After the step 4, each detected keypoint is
characterized by:
• A coordinate in the image space (x,y)
• A scale
• An orientation

Steps 5 and 6 aims to create a signature (or
descriptor) that can be used to uniquely identify the
features with respect to the others

SIFT - Step 5

To create the descriptor we look at the gradient
vectors in a 16x16 window around each keypoint
(window is rotated with respect to the keypoint
orientation)

SIFT - Step 5

• The 16x16 window is divided into 16 4x4 windows.
• For each 4x4 window, an 8-bins (45° steps)

histogram of gradient orientation is formed
• Histograms are concatenated all together to

produce a 16x8=128-values feature vector

SIFT - Step 6

To reduce the effect of illumination change, feature
vectors (descriptor) are normalized to have unitary
length.

