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Corners

Edge detectors perform poorly at corners.

Corners provide repeatable points for matching,
so are worth detecting!



Corners

How to find a corner? General idea:
• Exactly at a corner, gradient is ill defined.
• However, in the region around a corner, gradient 
has two or more different well-defined vectors.



Corners and gradient

Similarly to edges, a corner point exhibit strong rapid 
changes in the image intensities.

For a small region around a point x0, we can consider 
the Taylor expansion of the image function I(x,y) and 
express the change of intensity as function of the 
image gradient and a displacement vector h:



Corners and gradient

We are not interested to the sign of this variation 
(gradient can have any orientation) but only to its 
magnitude. So we can compute the square of it:



Corners and gradient

To be more resilient to noise, we can compute this 
intensity difference by averaging over a region  
centered at x0:

this is usually a Gaussian windowing 
function



Corners and gradient

Considering the Taylor expansion we have seen 
before, we have:

Since h does not depend to x, we can move it out from 
the summation



Corners and gradient

E(x0) can then be written as:

And the summation can be moved inside the matrix:

Since h does not depend to x, we can move it out from 
the summation



Second moment matrix

C form the second-moment matrix (we discard the 
weights for clarity)

1. Depends on the first-order derivatives
2. Symmetric
3. Each element is obtained as a sum over a small 

region around a point x0



Simple case

First, consider the following ideal case:

Image intensity changes either in x or y direction, but 
not both



Simple case

When x0 is at a flat region, we expect           



Simple case

When x0 is at an horizontal edge, we expect           



Simple case

When x0 is at a vertical edge, we expect           



Simple case

When x0 is at a corner, we expect both                and

              be large (ie.              far from zero)



General case

So we can detect a corner if both                are far 
from zero.

What about the general case in which                  are 
not zero?

Since C is symmetric, it can be decomposed via SVD: 

Where R is a rotation matrix and               are the 
singular values  of C (ie. the square-root of the 
eigenvalues of         )



General case

Since the rotations do not change the magnitude of h, 
examining the singular values of C can tell us if x0 is 
in a flat region, an edge or a corner



Harris corner detector

Analyzing the singular values of C requires the 
computation of SVD at each image pixel
> This is computationally expensive in practice

Harris proposed to use the following function as a 
corner response:

Where k is a constant that has to be tuned for the 
specific application



Harris corner detector

It can be shown that:

Therefore, R(x0) >> 0 if we are on a corner, and 
R(x0)<<0 if we are on an edge



Harris corner detector

Algorithm:

• Compute the image gradient
• Compute the matrix C for each pixel

– 3 convolutions needed: 
– Convolution kernel K is usually gaussian and determine 

the scale of the corner

• Compute the Harris response for each pixel
• Threshold the result and (optionally) perform 

non-maxima suppression 



Harris corner detector

Image Gradient



Harris corner detector

Eigenvalues plotted as ellipse axes



Harris corner detector

Harris response (R)

Input image



Harris corner detector

|R|<1E4
(flat regions)

Input image



Harris corner detector

R<-1E4
(edges)

Input image



Harris corner detector

R>1E4
(corners)

Input image



More advanced features

Harris corner detector works well in practice but is 
not invariant to scale
• The convolution window size affects the scale of 

the corner detected

To solve complex high-level computer vision 
problems we need more invariances and a way to 
distinguish and identify features



A typical problem

In this picture:Find this:



SIFT

David G. Lowe, Distinctive image features from 
scale-invariant keypoints, International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110.

… changed the way we approach many computer 
vision problems!

Invariances:

• Scaling
• Rotation
• Illumination

While still providing very good localization



SIFT: General idea

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters



SIFT: Advantages

Locality: features are local, so robust to occlusion 
and clutter (no prior segmentation)
Distinctiveness: individual features can be matched 
to a large database of objects
Quantity: many features can be generated for even 
small objects
Efficiency: close to real-time performance
Extensibility: can easily be extended to wide range 
of differing feature types, with each adding 
robustness



SIFT Algorithm

Keypoint Localization:
1. Enforce invariance to scale: Compute difference 

of Gaussian for may different scales; 
non-maximum suppression, find local maxima: 
keypoint candidates

2. Localize corners: For each maximum, fit 
quadratic function. Compute center with sub-pixel 
accuracy by setting first derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, 
drop keypoints for which this ratio is larger than a 
threshold.



SIFT Algorithm

Signature computation:
4. Enforce invariance to orientation: Compute 
orientation by finding the strongest gradient direction 
in the smoothed image (possibly multiple orientations). 
Rotate patch so that orientation points upward.
5. Compute feature signature (descriptor): 
Compute a "gradient histogram" of the local image 
region in a 4x4 pixel region. Do this for 4x4 regions of 
that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector 
with 128 values (15 fields, 8 gradients).



SIFT Algorithm

6. Enforce invariance to illumination change and 
camera saturation:
Normalize the descriptor to unit length to increase 
invariance to illumination. Then, threshold all 
gradients, to become invariant to camera saturation.



SIFT - Step 1
Enforce invariance to scale: Compute difference of Gaussian for 
may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

Main idea: Find corners as in Harris, but achieve 
scale invariance

Method:
• Convolve with Difference of Gaussians (DoG) to 

identify interesting image pixels
• DoG is performed at multiple resolutions and the 

local maximum (in space and scale is selected)  



Difference of Gaussians

Essentially an High-pass filter which approximates 
well the LoG.

Why use that? We can efficiently compute the DoG 
at different scales using image pyramid

- =



DoG & Image Pyramid

Image is 
scaled 
several times 
(size is 
halved), each 
scale is 
called an 
octave



DoG & Image Pyramid

For each 
octave of 
scale space, 
the initial 
image is 
repeatedly 
convolved 
with 
Gaussians



DoG & Image Pyramid

Adjacent 
Gaussian 
images are 
subtracted to 
produce the 
difference-of-
Gaussian 
images



Keypoint localization

Once the DoG pyramids are built, the local-maxima 
are extracted considering both current-scale and 
adjacent scales

Local-maximum is 
checked against 
9+8+9=26 
neighbours



SIFT - Step 2 & 3

2. Localize corners: For each maximum fit a 
quadratic function. Compute center with sub-pixel 
accuracy by setting first derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, 
drop keypoints for which this ratio is larger than a 
threshold.

Threshold on value at DoG peak and on ratio of 
principal curvatures (similar to Harris approach)



SIFT - Step 4

4. Enforce invariance to orientation
By assigning a consistent orientation to each key point 
based on local image properties we can achieve 
invariance to image rotation.

Suppose that we 
want to assign an 
orientation to this 
detected keypoint:



SIFT - Step 4

Gradient magnitude and orientation is calculated for 
each pixel in the keypoint region (region size depends 
on the detected scale)



SIFT - Step 4

And an orientation histogram is formed with these 
orientations and magnitudes

The maximum value of the histogram gives the 
orientation of the detected keypoint



SIFT - Step 4

After the step 4, each detected keypoint is 
characterized by:
• A coordinate in the image space (x,y)
• A scale 
• An orientation

Steps 5 and 6 aims to create a signature (or 
descriptor) that can be used to uniquely identify the 
features with respect to the others



SIFT - Step 5

To create the descriptor we look at the gradient 
vectors in a 16x16 window around each keypoint 
(window is rotated with respect to the keypoint 
orientation)



SIFT - Step 5

• The 16x16 window is divided into 16 4x4 windows. 
• For each 4x4 window, an 8-bins (45° steps) 

histogram of gradient orientation is formed
• Histograms are concatenated all together to 

produce a 16x8=128-values feature vector



SIFT - Step 6

To reduce the effect of illumination change, feature 
vectors (descriptor) are normalized to have unitary 
length.


