
Filippo Bergamasco (filippo.bergamasco@unive.it)
http://www.dais.unive.it/~bergamasco
DAIS, Ca’ Foscari University of Venice

Academic year 2017/2018

Computer Vision

Finding curves

mailto:filippo.bergamasco@unive.it
http://www.dais.unive.it/~bergamasco


Finding Curves

Often, we have to work with unstructured environments 
in which all we have is an edge image and no 
knowledge about where objects of interest might be.

A line
A circle



Finding lines

For example, suppose that we want to detect street 
lanes to develop an autonomous vehicle

Option 1: We can limit the analysis to a specific 
region and do a least-squares fitting of a line
Bad idea! Why?



Finding lines

For example, suppose that we want to detect street 
lanes to develop an autonomous vehicle

Option 2: We can search for lines at every possible 
position/orientation
Computationally very expensive



Finding lines

For example, suppose that we want to detect street 
lanes to develop an autonomous vehicle

Option 3: We can use a consensus-based approach:

RANSAC



Finding lines

For example, suppose that we want to detect street 
lanes to develop an autonomous vehicle

Option 4: We can use a voting scheme:

Hough Transform



RANSAC

The RANSAC algorithm is a learning technique to 
estimate parameters of a model by random sampling 
of observed data.
Given a dataset whose data elements contain both 
inliers and outliers, RANSAC uses a consensus 
scheme to find the optimal fitting result.



RANSAC

Assumptions:

1. Data consists of inliers (i.e., data whose 
distribution can be explained by some set of model 
parameters, though may be subject to noise) and 
outliers which are data that do not fit the model

2. Given a (usually small) set of inliers, there exists a 
procedure which can estimate the parameters of a 
model that optimally explains or fits this data
> For example given a set of 2 points we can compute a line 
model that optimally explains the set



RANSAC

Algorithm:
1. Select a random subset of the original data. Call 

this subset the hypothetical inliers.
2. Fit the model to the hypothetical inliers
3. Test all other data against the model and mark 

points either as inliers or outliers according to 
some loss function. The inliers are called 
“consensus set”

4. Return to step 1 until a predefined number of 
iterations is reached

5. The model that produced the largest consensus 
set is returned



Hough transform

The basic idea is to map points from the image 
space to the parameter space of the model (for 
example the m-q space for lines parameterized as 
y=mx + q)

For an image point (x,y) can pass infinite lines all 
satisfying the equation y=mx+q. The equation can be 
rewritten as q=-mx+y which corresponds to a line in 
the m-q space 

x

y

m

q



Hough transform

The principal lines in the image plane could be found by 
identifying points in parameter space where large numbers 
of parameter-space lines intersect

The parameter space is used as an accumulator of votes 

x

y

m

q



Hough transform

The classical slope-intercept parameterization of the 
line is not convenient since the slope approach 
infinity when the line approaches vertical direction

Normal representation of the line:

The parameter space is now the r-ᶚ-plane in which 
the range of values are limited



Hough transform

Algorithm:
1. Initialize H[r,ᶚ]=0
2. For each edge point p=(x,y) in the image

a. For ᶚ=0 to pi
i. r = x cos ᶚ + y sin ᶚ

ii. H[r,ᶚ] += 1
3. Find (r,ᶚ) for which H[r,ᶚ] is maximum
4. The detected line is given by r = x cosᶚ + y sinᶚ



Hough Transform

Possible extensions/improvements:

1. Use the image gradient (no need to iterate through 
angles)

2. Give more votes to strongest edges
3. Change the sampling of (r,ᶚ) to trade-off resolution 

with computing time
a. High resolution -> Dispersion of votes
b. Low resolution -> Cannot distinguish similar lines



Hough Transform

Hough transform is applicable to any function of the 
form g(v, c) = 0, where:
• v is a vector of coordinates
• c is a vector of coefficients

For example the Hough Transform can be used to 
extract all circles in the scene:

A 3D accumulator for (c1,c2,c3) is needed


