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Introduction

During the past century, and especially in the past 50 
years, entire industries and academic disciplines 
have flourished as a result of Fourier’s ideas. 

The “discovery” of a fast Fourier transform (FFT) 
algorithm in the early 1960s revolutionized the field 
of signal processing.

The goal of this lesson is to give a working 
knowledge of how the Fourier transform and the 
frequency domain can be used for image filtering



Complex numbers

A complex number C is defined as

Where R and I are real numbers, and j is an 
imaginary number so that
R is called real part and I is called imaginary part
 



Complex numbers

A complex number can be represented in polar 
coordinates:

Euler formula:



Fourier’s basic idea

Any periodic function (with period T) can be 
expressed as the sum of sines and cosines of different 
frequencies, each multiplied by a different coefficient

> Fourier serie



Fourier’s basic idea

Functions that are not periodic (but whose area under 
the curve is finite) can be expressed as the integral of 
sines and cosines multiplied by a weighting function 



Continuous Fourier transform

Fourier transform:

Even if f(x) is real, its transform in general is a 
complex function.
The domain of the fourier transform is called the 
frequency domain



Continuous Fourier transform

Expressed in polar form,

Where: 

Is called the Fourier spectrum, and

Is the phase angle.



Continuous Fourier transform

Fourier transform:

Inverse Fourier transform:



Continuous Fourier transform

Suppose that we want to compute the Fourier 
transform of the following function:



Continuous Fourier transform



DFT

In practice we work with finite functions (assumed to 
be periodic) composed by a finite number of M 
discrete samples

Discrete Fourier transform:

Discrete Inverse Fourier transform:



DFT

In terms of sines and cosines, the DFT can be 
expressed as:

Fourier transform is essentially a change of basis 
from a spatial domain to the frequency domain



DFT

Rows and columns of the Fourier matrix are 
orthogonal and the Fourier DFT matrix form an 
orthogonal basis over the set of N-dimensional 
complex vectors.



Periodicity

When we compute the DFT of a real function, the 
Fourier transform is periodic over the interval.
The Fourier spectrum in the interval from 0 to M-1 
consists of two back-to-back half periods meeting at 
point M/2.



Symmetry
The DFT of a real function is conjugate symmetric with 
respect to the origin. Also true the opposite: the iDFT of a 
conjugate symmetric function gives a real function



2D DFT

DFT can be computed for any-dimensional input 
function. In particular, the 2D DFT is useful when 
working with images 

2D Discrete Fourier transform:

Discrete Inverse Fourier transform:



Periodicity

Also in the 2D case we have periodicity both in u and 
v direction



Spectrum and phase angle
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Spectrum and phase angle
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DFT Spectrum

Translating f(x, y) do not change the Fourier 
spectrum but only the phase angle.



DFT Spectrum

Rotating f(x, y) by an angle theta rotates F(u, v) by 
the same angle, vice-versa



DFT Spectrum and Phases

The components of the DFT spectrum determine the 
amplitudes of the sinusoids that combine to form 
the resulting image

> determine the intensities in the image

The phase is a measure of displacement of the 
various sinusoids with respect to their origin.

> carry much of the information about where 
discernable objects are located



DFT Spectrum and Phases

Phase angle Reconstruction with 
phase angle only



DFT Spectrum and Phases

Phase angle Reconstruction with 
spectrum only



DFT Spectrum and Phases

Reconstruction with 
woman phase and 
rectangle spectrum



2D Convolution theorem



Frequency domain filtering

Filtering in the frequency domain consists of 
modifying the Fourier transform of an image and 
then computing the inverse transform to obtain the 
processed result.

Inverse Fourier 
transform

Filter function
DFT of the input 
image



Low-pass, high-pass

low frequencies in the transform are related to 
slowly varying intensity components in an image

high frequencies are caused by sharp transitions in 
intensity, such as edges and noise

A filter H(u, v) that attenuates high frequencies while 
passing low frequencies (low-pass filter) blurs an 
image
A high-pass filter (which attenuates low 
frequencies) enhances sharp detail, but cause a 
reduction in contrast in the image.



Low-pass



Ideal Low-pass filter

An ideal low-pass filter ILPF is defined by:

The point of transition between H(u, v) = 1 and H(u, 
v)= 0 is called the cutoff frequency



ILPF

ILPF with cutoff 
frequency =60



ILPF

ILPF with cutoff 
frequency =30



ILPF
The blurring and ringing properties of ILPFs can be 
explained using the convolution theorem:

Because a cross section of the ILPF in the frequency 
domain looks like a box filter, a cross section of the 
corresponding spatial filter has the shape of a sinc.

Convolving a sinc with an impulse copies the sinc at 
the location of the impulse. The sinc center lobe 
causes the blurring, while the outer lobes are 
responsible for ringing.



Butterworth Low-pass filter

A Butterworth low-pass filter (BLPF) of order n, and 
with cutoff frequency at a distance D0 from the origin, 
is defined as



BLPF

BLPF of order 2 and 
cutoff frequency =60



BLPF

BLPF of order 2 and 
cutoff frequency =30



BLPF
Unlike the ILPF, the BLPF transfer function does not 
have a sharp discontinuity that gives a clear cutoff 
between passed and filtered frequencies.

Order 1 Order 2 Order 5 Order 20

Low ringing
Low smoothing

High ringing
High smoothing



Gaussian Low-pass filter

A Gaussian low-pass filter (GLPF) is defined as



GLPF

GLPF cutoff 
frequency =60



GLPF

GLPF cutoff 
frequency =30



High-pass



Ideal High-pass filter

An ideal high-pass filter IHPF is defined by:

IHPF is the opposite of an ILPF



IHPF

IHPF with cutoff 
frequency =60



IHPF

IHPF with cutoff 
frequency =30



Butterworth High-pass filter

A Butterworth high-pass filter (BHPF) of order n, and 
with cutoff frequency at a distance D0 from the origin, 
is defined as



BHPF

BLPF of order 2 and 
cutoff frequency =60



BHPF

BHPF of order 2 and 
cutoff frequency =30



Laplacian

It can be shown that the Laplacian is implemented in 
the frequency domain with the filter:

The laplacian of an image can then be computed as:

Laplacian filtering:



Notch Filters

A notch filter rejects (or passes) frequencies in a 
predefined neighborhood about the center of the 
frequency rectangle.

Must be conjugate symmetric about the origin, so a 
notch with center at (u0, v0) must have a 
corresponding notch at location (-u0, -v0)

> Otherwise the filter is not zero-phase-shift and 
the resulting image will be complex

Products of high-pass filters whose centers have been 
translated to the centers of the notches.



Notch Filters

High-pass filter 
centered at (uk,vk)

High-pass filter 
centered at (-uk,-vk)



Notch Filters

Newspaper image 
showing moiré 
pattern composed by 
the combination of 
different sinusoids

The Fourier transform 
of a pure sine is a 
pair of conjugate 
symmetric impulses.



Notch Filters

Fourier spectrum 
showing clear 
symmetric impulses 
bursts as a result of 
the near periodicity of 
the moiré pattern.



Notch Filters

A Butterworth notch 
reject is applied to 
each burst

(and acting 
simultaneously on the 
conjugate symmetric 
impulses) 



Notch Filters

Original image After notch filter



Image restoration

The degradation process is often modeled as a 
degradation function that, together with an additive 
noise term, operates on an input image f(x, y) to 
produce a degraded image g(x, y).

If H is a linear, position-invariant process, then the 
degraded image is given in the spatial domain by:

Or, in frequency domain:



Image restoration

In the trivial case in which the noise is absent and we 
know perfectly the degradation function, an estimate 
of the original image can be obtained by inverse 
filtering:

With noise the process is very unstable, especially 
when H(u,v) has zero or very small values



Wiener filtering

The method is based on considering images and 
noise as random variables.
The objective is to find an estimate     of the 
uncorrupted image f such that the mean square error 
between them is minimized.

Assumptions:

• noise and the image are uncorrelated
• noise or the image has zero mean 
• the intensity levels in the estimate are a linear 

function of the levels in the degraded image.



Wiener filtering

Noise 
power-spectrum

Undegraded 
image 
power-spectrum

Power spectrum of 
the degradation 
function 

Noise to signal ratio


