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Mechanics of spatial filtering

A spatial filter consists of

1. A neighborhood (typically a small rectangle)
2. A predefined operation that is performed on the 

image pixels encompassed by the neighborhood



Mechanics of spatial filtering

Filtering creates a new pixel with coordinates equal to 
the center of the neighborhood and whose value is the 
result of the filtering operation



Linear filters

If the operation performed is linear the filter is called 
linear spatial filter.

Filter is defined in terms of a coefficient matrix W

The operation performed is the sum of products of 
the filter coefficients and the image pixels 
encompassed by the filter



Linear filters

Example of a filter 
acting on a 3x3 
neighborhood:



Linear filters

Observations:

• w(0,0) is aligned with the pixel at location (x,y)
• For a neighborhood of M x N we assume that 

M=2a+1 and N=2b+1. 
– Hence we assume filters with odd size (centered at x,y) 

with the smallest size being 3x3

Vector representation:

Image intensities encompassed by the filterFilter coefficients



Correlation and Convolution

Linear spatial filtering can be described in terms of 
correlation and convolution

Correlation:
The process of moving a filter mask over a signal 
(the image in our case) and computing the sum of 
products at each location

Convolution:
Similar to correlation but the filter mask is first rotated 
by 180°



Correlation example

Suppose that we want to compute the correlation of 
the 1D signal:

f(x) = 0 0 0 1 0 0 0 0

With the mask:

w(x) = 1 2 3 2 8



Correlation example

            0 0 0 1 0 0 0 0

1 2 3 2 8

When moving the mask over all the possible values 
of the function, there are part of the two that do not 
overlap. The first step is to pad the function with 0 so 
that the filter can shift along the whole original signal



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8

Zero padding added to the signal



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8

Result:

0

After 0 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

   1 2 3 2 8

Result:

0 0

After 1 shift



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

      1 2 3 2 8

Result:

0 0 0

After 2 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

         1 2 3 2 8

Result:

0 0 0 8

After 3 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

            1 2 3 2 8

Result:

0 0 0 8 2

After 4 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

               1 2 3 2 8

Result:

0 0 0 8 2 3

After 5 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                  1 2 3 2 8

Result:

0 0 0 8 2 3 2

After 6 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                     1 2 3 2 8

Result:

0 0 0 8 2 3 2 1

After 7 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                        1 2 3 2 8

Result:

0 0 0 8 2 3 2 1 0

After 8 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                           1 2 3 2 8

Result:

0 0 0 8 2 3 2 1 0 0

After 9 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                              1 2 3 2 8

Result:

0 0 0 8 2 3 2 1 0 0 0

After 10 shifts



Correlation example

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

                                 1 2 3 2 8

Result:

0 0 0 8 2 3 2 1 0 0 0 0

After 11 shifts



Correlation example
Result:

0 8 2 3 2 1 0 0

We remove the padding so that the result has the 
same size as the input.
Important things to notice:
• Correlation is a function of displacement of the filter. 

The first value of correlation corresponds to zero 
displacement, the second corresponds to one unit 
displacement, and so on

• Correlating a filter w with a function that contains all 0s 
and a single 1 yields a result that is a copy of w, but 
rotated by 180°



Convolution

Convolution works exactly the same way, but the 
filter is rotated by 180° before the shift operations.

A fundamental property of convolution is that 
convolving a function with a unit impulse yields a 
copy of the mask at the location
of the impulse



2D Correlation/Convolution
In case of 2D functions, like images, the correlation 
works in a similar manner

For a filter of size MxN we first pad the image with a 
minimum of:
• M-1 rows at top and M-1 rows at bottom (filled with 0s)
• N-1 cols at left and N-1 cols at right (filled with 0s)

We shift the filter at each vertical and horizontal shift to perform 
the correlation/convolution operation:



2D Correlation/Convolution



Convolution properties

Commutative

Associative

Linearity



Template matching

What happens if the filter is a copy of a portion of the image?



Smoothing spatial filters

Smoothing filters are used for blurring / noise 
reduction
The output (response) of a smoothing, linear spatial 
filter is simply the average of the pixels contained in 
the neighborhood of the filter mask.

Filter masks:

Average filter Weighted 
average filter



Smoothing spatial filters

Original image 3x3 average filter



Smoothing spatial filters

Original image 5x5 average filter



Smoothing spatial filters

Original image 9x9 average filter



Smoothing spatial filters

Original image 15x15 average filter



Gaussian filter

A special type of weighted average filter is the 
gaussian filter. 
Each element has the form



Gaussian filter

Example of a gaussian filtered image



Order-statistic filters

Order-statistic filters are non-linear spatial filters 
whose response is based on:

1. ordering the pixels contained in the image area 
encompassed by the filter

2. replacing the value of the center pixel with the 
value determined by the ranking result.

This category of filters is non-linear and cannot be 
performed as a convolution/correlation



Order-statistic filters

Median-filter:
replaces the value of a pixel by the median of the intensity values 
in the neighborhood of that pixel (the original value of the pixel is 
included in the computation of the median)

Max-filter:
Replaces the value of a pixel with the brightest intensity value in 
the neighborhood

Min-filter:
Replaces the value of a pixel with the darkest intensity value in the 
neighborhood



Order-statistic filters

Median-filter:
1. Sort the pixels in the MxN neighborhood of (x,y)
2. Output the (MxN)/2^th value of the sorted list

For example, in in a 3x3 neighborhood the median is the 5th 
largest value, in a 5x5 neighborhood it is the 13th largest value

Neighborhood values:

(10, 20, 20, 20, 15, 20, 20, 25, 100)

Sorted:

(10, 15, 20, 20, 20, 20, 20, 25, 100)

Median



Filter and noise

Smoothing and median filters are particularly useful 
for image denoising

Different noise models:

1. Additive noise

2. Salt & pepper (impulse) noise



Additive noise



Impulse noise



Noise reduction

Which type of filter is better suited for different noise 
models?



Impulse noise reduction

3x3 average filterImage corrupted with 
impulse noise

3x3 median filter



Impulse noise reduction

3x3 average filterImage corrupted 
with impulse noise

3x3 median filter



Additive noise reduction



Additive noise reduction

3x3 average filterImage corrupted with 
additive noise



α-trimmed mean filter

To eliminate both additive and impulse noise use a 
robust estimate of the mean
• Eliminate the top and bottom α/2 values
• Take the average of the remaining pixels



Thresholding and noise

Original noisy image Noisy image histogram Outsu thresholding

5x5 average filter filtered image histogram Otsu thresholding



Sharpening filters

The principal objective of sharpening is to highlight 
transitions in intensity

One simple approach is called unsharp masking 
(or high-boost filtering) and consist of the following:

1. Blur the original image
2. Subtract the blurred image from the the original 

to obtain a mask
3. Add the mask to the original (multiplied by a 

constant for high-boosting)



Unsharp mask



Sharpening filters

In general, sharpening filters are based on the 
concept of differentiation

Image blurring Image sharpening

Averaging pixels in 
a neighborhood:
Integration

Differentiation
(first or second 
order derivatives)

Remove details Enhance details



Derivatives

Derivatives of a digital discrete functions are defined 
in term of differences.

First-order derivative of a one-dimensional function:

Second-order derivative:



First-order derivatives

• Zero in constant-intensity areas
• Non-zero on an intensity step or ramp
• Non-zero along ramps



Second-order derivatives

• Zero in constant-intensity areas
• Non-zero on an onset and end of ramps and steps
• Zero along ramps



Derivatives



Sharpening

For sharpening we want to highlight intensity 
transitions (Edges)

First-order derivative: 
would result in thick edges because the derivative is 
nonzero along a ramp

Second-order derivative:
would produce a double edge one pixel thick, 
separated by zeros
> Enhances fine detail much better than the first 
derivative, and are also easier to implement



Laplacian Filtering

The Laplacian is the simplest isotropic second-order 
derivative operator

In discrete form, the Laplacian can be expressed in term 
of finite differences:



Laplacian Filtering

Since derivatives are linear operators, the laplacian 
is a linear operator and hence can be implemented 
as a convolution with a proper filter mask 

This filter gives an 
isotropic result for 
increments of 90°



Laplacian Filtering

The diagonal directions can be incorporated in the 
definition of the digital Laplacian by adding two more 
terms, one for each of the two diagonal directions.

This filter gives an 
isotropic result for 
increments of 45°



Laplacian Filtering

The Laplacian operator highlights intensity 
discontinuities in an image and deemphasizes regions 
with slowly varying intensity levels

If we add the effect of the laplacian operator to the 
original image we are effectively sharpening the 
details while preserving background slowly-varying 
gradients



Laplacian Filtering


