
Filippo Bergamasco (filippo.bergamasco@unive.it)
http://www.dais.unive.it/~bergamasco
DAIS, Ca’ Foscari University of Venice

Academic year 2016/2017

Computer Vision

Geometric primitives and 
transformations

mailto:filippo.bergamasco@unive.it
http://www.dais.unive.it/~bergamasco
http://www.dais.unive.it/~bergamasco


Geometric primitives

Geometric primitives form the basic building blocks 
used to describe 2D and 3D shapes.

We will study the basic geometric primitives (points, 
lines, conics) and the transformations that can be 
defined between them

The framework of projective geometry allow us to 
describe such transformations in a powerful generic 
way.



Points

Points lying on an Euclidean 2D plane (like the image 
plane) are usually described as vectors:

This is a common way to reason about points but has 
some limitations. For example, we cannot describe 
points at infinity…
...Other alternatives are possible! 



2D Projective space

Since the imaging apparatus usually behaves like a 
pinhole camera model, many of the transformations 
that may happen can be described as projective 
transformations.

> This offer a general and powerful way to work 
with points, lines and conics

The 2D projective space is simply defined as:



Homogeneous coordinates
A point in Euclidean plane can be described in 

homogeneous coordinates (2D projective space) as 
follows:

This implies that:

• There are infinitely many ways to describe a point x
• points in euclidean space are represented by all the 

equivalence classes of three dimensional vectors 
where two elements are in the same class if they 
differ by a non zero scale factor.



Homogeneous coordinates

From Euclidean to homogeneous:

Just add 1 to the last component

From homogeneous to Euclidean:

Divide by the last component (if not zero)



Homogeneous coordinates

All the points

are called ideal points or points at infinity and do 
not have an equivalent inhomogeneous representation 
(in Euclidean plane).



2D Lines

A line in the Euclidean plane can be described as the 
locus of points p=(x,y) so that: 

In projective space, the same line can be 
represented as:



2D Lines

in P2 points and lines are described in the same way!

This leads to a simple expression to find the 
intersection x of two lines u and u’ using the cross 
product:

This represent each 
point on the line This represent the line 

itself



2D Lines intersection

What happens if the lines are parallel?



Line and points

Similarly, the line l joining two points p1 and p2 can 
be written as



2D Lines

We can normalize a line

So that 



With a normalized line, 

• The vector (n1 n2)
T is the line normal and d is the 

line distance to the origin

• The point-line distance d from a line l and a point x 
can be computed as 

2D Lines



Conics

Conics that can be represented by second degree 
polynomials in the form ax2+bxy+cy2+dx+ey+f =0

In homogeneous coordinates the conic can be 
represented by a matrix

Such that, for each point x=(x y 1)T, it holds that



Conics

Depending on the parameters, we can obtain different 
conics:

• Circles
• Ellipses
• Parabolae
• Hyperbolae

Any projectivity transforming the projective space P2 in which 
the conic lie will result in a (possible different) type of conic. 

Ellipses present in a scene are interesting geometric primitives 
since they remain ellipses after being projected into the image 
plane.



2D projectivities

A planar projective transformation is a linear 
transformation in P2 that can be represented by any 
non-singular 3x3 matrix H:

Any projective transformation transform lines in 
lines and preserve the incidence.



2D Translation

Dof: 2
Preserves: Orientation



2D Rotation

Dof: 1
Preserves: Lengths



2D Rigid motion

Combination of a rotation R and a translation T
Dof: 3
Preserves: Lengths



2D Similarity

Where a, b are scale factors. Scale+Rotation+Transl.

Dof: 4
Preserves: Angles between lines



2D Affine transformation

  Dof: 6
Preserves: Parallellism of lines



2D Projective transformation

Projective transformation is also called homography. 
Since we work in P2, H is defined up to scale
Dof: 8 (not 9! Because any scale define the same 
transformation)
Preserves: Straight lines 



Transformations table



Spatial transformations

The projective transformations discussed so far can 
be applied to the image domain to transform the 
geometry of the image plane

Given an image

And a transformation function

A spatial transformation changes the image as 
following:

NOTE: Different from intensity transformations



Spatial transformations

Example: image rotation



Forward warp

How to perform the transformation? One simple way 
is via forward warping:

A pixel f(x) is copied to its corresponding location 
x’=s(x) in image g(x’).



Forward warp

Problem: x’ usually has a non-integer value, and g(x’) 
is not defined in that case

Solution1:

Round the value and copy the pixel there (Create 
cracks and holes)

Solution2:

Distribute the value among its n-neighbours in a 
weighted fashion (Cause aliasing and blur)



Forward warp



Inverse warp

A preferable solution is to use inverse warping: 

each pixel in the destination image g(x’) is sampled 
from the original image at x = s-1(x’)



Inverse warp

Advantages:
• No holes since s-1(x’) is defined for all values of x’ 

(in all the g(x’) domain)

Problems:
• The transformation function must be invertible (not 

really a problem)
• Point sampling may still occur at non integer 

locations
– This is a well studied problem: Image interpolation



Nearest-neighbour 
interpolation

Interpolation: estimate the values using the 
information from nearby samples

Nearest-neighbour:

Use the image value at the closest integer location



Nearest-neighbour 
interpolation

NN-interpolation is very fast but creates artefacts 
(blocks) especially if the transformation changes the 
scale (ie.zooming)



Bilinear interpolation

Use the four points around s-1(x’) to get a better 
estimation:



Bilinear interpolation



Bilinear interpolation

Bilinear

interpolation
NN-interpolation


