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What causes the water to move?
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Universita Surface current is, intuitively, caused by the wind. What
Ca’ Foscari about the bottom layers?
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> Introduction

Thermohaline circulation

Problem

formulation In the deep ocean, sea water movements are driven by
Oetip =t temperature and salinity variations which, in turn,
Experiments cause differences in density.

» Lighter water masses float over denser ones

The measurement of sea water density is one of the basic
tools to study the ocean circulation that affects the earth
climate.
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How do we measure sea water density?

Direct measurement is highly impractical to be
performed on the field.

Most of the time it is calculated from in situ sparse
measurements of Temperature and Salinity.

D(t,s) =

As + Bs3/? + Cs?
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An instrument called CTD is
deployed on water given a sparse
set of measurements within an

area




How do we interpolate the data samples?

To study the water stratification, the collected sparse samples
must be interpolated to a 2D or 3D field
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Two common approaches:

1. Statistical methods interpolate T and S independently,
exploiting spatial properties of the data (No phisical
constraints!)

2. Model based approaches based on accurate physical

simulations (Difficult initialization and boundary
conditions!)




Our general goal
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Universita Interpolate temperature and salinity field in a simple
Ca’' Foscari manner without using an accurate phisical model
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» But... enforce some basic physical constraint to
improve the interpolation
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Experiments

» Sea water field is stationary (not changing over
time)

What must be satisfied?

» Less-dense water must be above denser water
(hydrostatic equilibrium)
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Problem formulation

We suppose to have:

» A discrete vertical 2D temperature T(i,;) and
salinity field S(i, ), defined over a regular grid of
M x N points.

» A sparse set of N, < M x N temperature and
salinity measurements taken at certain grid points.

Specifically, let Ty4(1)... Ty(Nm) be the temperature
measurements taken at grid coordinates

(if,j1) - (i§,>dn, ) and Sg(1) ... S4(Npy) be the salinity
measurements taken at grid coordinates

(iF541) -+ (iR J)-

» A function D(Tj;, Sjj) mapping T(i,j) and S(i,j) to
the empirical sea water density at 1 Atm.



Problem formulation

Universita We pose the temperature and salinity interpolation

Ca’ Foscari problem as the following constrained minimization:
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subject to  D(Tj;, Sj) > D(Ti-1j, Si-1}),
Vi<i<M 1<j<N
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Problem formulation

Our goal is to recover T and S given the sparse
measurements T4 and Sy by simultaneously:

» Minimizing the fitting error at the data points.
Intuitively, T(/,j) should be almost equal to Ty4(i,)
for each (7,j) = (if,j§). (The same principle is
applied to salinity as well)

» Enforcing the hydrostatic equilibrium so that the
associated density field gradient is orented
downward (ie. the higher grid row, higher the
density)

» Minimizing the total squared curvature of T and S
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Let’s see the energy function again...

, L 2
ar%_n;ln 0422’21(7_(//2];)_ Ta(k))™ +

BN (S(ig,Jg) — Sa(k))® +
P Y (AT, ) +
ps i3 (AS(i, )2

subject to  D(Tj;, Sij) > D(Ti-1j, Si-1}),
Vi<i<M 1<j<N

v

Essentially a non linear least squares

» Energy constraints let the optimization difficult to
optimize in practice



Convex relaxation

We introduce a new scalar field D,,, and solve the new
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Isotonic Regression
Why we did that simplification?
£ There exists an efficient O(n) solution for the problem
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Numerical solution

To numerically solve the optimization, we iterate

UmVerSité. between the following two minimizations:
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argDmin PD i D) (D(Tj, Sij) — Dn(i, j))?

subject to Dy(i,j) = Dn(i —1,J),
Vi<i<M 1<j<N




Density linearization
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Problem (1) is still non-linear due to the function D.
Two ways to overcome the problem:

» Directly optimize (1) via Levenberg-Marquardt
Introduction (SlOW)

froplem » Linearize D and take an iterative approach (very
fast and effective in this case)
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Solving problem (1)
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Until max(]T" — T"1|) and max(|S" — S"1|) are
below a threshold




Minimizing the whole problem

MO ¥

Universita

Ca’' Foscari
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o interpolation method)
orablem 2. Compute D, = D(Tj, Sjj)
TYZ:::Z;EO” 3. SoIveSprobIem (1) to obtain a new estimate of T
and

Experiments
4. Solve problem (2) via isotonic regression to obtain a
new estimate of D,

5. Return to step 3 until convergence
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A simple test with just 3 points




Some toy examples

Salinity (TSD interpolated) Temperature (TSD interpolated)
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Some toy examples

Salinity (TSD interpolated) Density (TSD interpolated)

Interpolated salinity and density fields
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Some toy examples

Salinity (No hydrostatic equilibrium) Density (No hydrostatic equilibrium)
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Interpolated result without hydrostatic constraint



Case study: Data from an UAV
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» REMUS was deployed (Feb 2014) near Isonzo river.

> It acquired data spanning different lat/lon/depth planes




Case study: Data from an UAV
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Case study: Data from an UAV
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Case study: Data from an UAV

ISONZO-140202-plane1 - CTD Temperature data

R

200 1000 -800 -600 -400 20

0 200
[m]

Temperature and salinity

400 600

ISONZO-140202-plane1 - CTD Salinity data




Case study: Data from an UAV

ISONZO-140202-plane1 - CTD Interpolated Temperature (TSD) ISONZO-140202-plane1 - CTD Interpolated Salinity (TSD)
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Case study: Data from an UAV

ISONZO-140202-plane1 - CTD Interpolated Temperature (TSD) 07 ISONZO-140202-plane1 - CTD Interpolated Density (TSD)
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Case study: Data from an UAV

ISONZO-140202-plane1 - CTD Interpolated Temperature (Triscatter)

ISONZO-140202-plane1 - CTD Interpolated Density (Triscatter)
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Conclusions

Universita » We developed a simple yet powerful interpolation method
Ca' Foscari for sea temperature and salinity
Venezia » By enforcing hydrostatic equilibrium we both ensure
some physical properties of the field and improve the
Introduction interpolation even with few data
Problem
formulation > Preliminary synthetic tests demonstrate the potentials of
Optimization such approach
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For the future?
» Give an estimate of the interpolation error over the field
» 3D interpolation

» Consider the temporal extent of the data to introduce
additional constraints on the velocity fields
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Thank you for your attention
http://dsi.unive.it/~bergamasco
filippo.bergamasco®@unive.it
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