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Introduction

One of the core topics of phisical oceanography is to
study the movement of sea water masses around the
globe.
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What causes the water to move?

Surface current is, intuitively, caused by the wind. What
about the bottom layers?

Thermohaline circulation
In the deep ocean, sea water movements are driven by
temperature and salinity variations which, in turn,
cause differences in density.

I Lighter water masses float over denser ones

The measurement of sea water density is one of the basic
tools to study the ocean circulation that affects the earth
climate.
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How do we measure sea water density?
Direct measurement is highly impractical to be
performed on the field.

Most of the time it is calculated from in situ sparse
measurements of Temperature and Salinity.

D(t, s) = As + Bs3/2 + Cs2

A = 8.24 · 10−1 − 4.08 · 10−3t + 7.64 · 10−5t2

−8.24 · 10−7t3 + 5.38 · 10−9t4

B = −5.72 · 10−3 + 1.022 · 10−4t1.654 · 10−6t2

C = 4.8314 · 10−4

An instrument called CTD is
deployed on water given a sparse
set of measurements within an
area
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How do we interpolate the data samples?
To study the water stratification, the collected sparse samples
must be interpolated to a 2D or 3D field

Two common approaches:
1. Statistical methods interpolate T and S independently,

exploiting spatial properties of the data (No phisical
constraints!)

2. Model based approaches based on accurate physical
simulations (Difficult initialization and boundary
conditions!)
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Our general goal

Interpolate temperature and salinity field in a simple
manner without using an accurate phisical model

I But... enforce some basic physical constraint to
improve the interpolation

What we suppose?
I All the samples are taken "at the same time"
I Sea water field is stationary (not changing over

time)

What must be satisfied?
I Less-dense water must be above denser water

(hydrostatic equilibrium)
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Problem formulation

We suppose to have:

I A discrete vertical 2D temperature T (i , j) and
salinity field S(i , j), defined over a regular grid of
M × N points.

I A sparse set of Nm � M × N temperature and
salinity measurements taken at certain grid points.

Specifically, let Td (1) . . .Td (Nm) be the temperature
measurements taken at grid coordinates
(i t

1, jt
1) . . . (i t

Nm
, jt

Nm
) and Sd (1) . . . Sd (Nm) be the salinity

measurements taken at grid coordinates
(i s

1 , js
1) . . . (i s

Nm
, js

Nm
).

I A function D(Tij ,Sij) mapping T (i , j) and S(i , j) to
the empirical sea water density at 1 Atm.
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Problem formulation

We pose the temperature and salinity interpolation
problem as the following constrained minimization:

argmin
T ,S

α
∑Nm

k=1
(
T (i t

k , j t
k)− Td (k)

)2
+

β
∑Nm

k=1
(
S(i s

k , js
k)− Sd (k)

)2
+

ρT
∑

i
∑

j
(
∆T (i , j))2 +

ρS
∑

i
∑

j
(
∆S(i , j))2

subject to D(Tij ,Sij) ≥ D(Ti−1 j , Si−1 j),

∀ 1 < i ≤ M, 1 ≤ j ≤ N
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Problem formulation

Our goal is to recover T and S given the sparse
measurements Td and Sd by simultaneously:

I Minimizing the fitting error at the data points.
Intuitively, T (i , j) should be almost equal to Td (i , j)
for each (i , j) = (i t

k , jt
k). (The same principle is

applied to salinity as well)
I Enforcing the hydrostatic equilibrium so that the

associated density field gradient is orented
downward (ie. the higher grid row, higher the
density)

I Minimizing the total squared curvature of T and S
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Let’s see the energy function again...

argmin
T ,S

α
∑Nm

k=1
(
T (i t

k , j t
k)− Td (k)

)2
+

β
∑Nm

k=1
(
S(i s

k , js
k)− Sd (k)

)2
+

ρT
∑

i
∑

j
(
∆T (i , j))2 +

ρS
∑

i
∑

j
(
∆S(i , j))2

subject to D(Tij ,Sij) ≥ D(Ti−1 j , Si−1 j),

∀ 1 < i ≤ M, 1 ≤ j ≤ N

I Essentially a non linear least squares
I Energy constraints let the optimization difficult to

optimize in practice
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Convex relaxation

We introduce a new scalar field Dn, and solve the new
problem:

argmin
T ,S,Dn

α
∑Nm

k=1
(
T (i t

k , j t
k)− Td (k)

)2
+

β
∑Nm

k=1
(
S(i s

k , js
k)− Sd (k)

)2
+

ρT
∑

i
∑

j
(
∆T (i , j))2 +

ρS
∑

i
∑

j
(
∆S(i , j))2

ρD
∑

i
∑

j
(
D(Tij , Sij)− Dn(i , j))2

subject to
Dn(i , j) ≥ Dn(i − 1, j),
∀ 1 < i ≤ M, 1 ≤ j ≤ N
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Isotonic Regression
Why we did that simplification?
There exists an efficient O(n) solution for the problem

argmin
Dn

ρD
∑

i
∑

j
(
D(i , j)− Dn(i , j))2

subject to Dn(i , j) ≥ Dn(i − 1, j),
∀ 1 < i ≤ M, 1 ≤ j ≤ N

via the so-called
Isotonic
Regression



Introduction

Problem
formulation

> Optimization

Experiments

Filippo Bergamasco (13/29)

Numerical solution

To numerically solve the optimization, we iterate
between the following two minimizations:

argmin
T ,S

α
∑Nm

k=1
(
T (i t

k , j t
k)− Td (k)

)2
+ (1)

β
∑Nm

k=1
(
S(i s

k , js
k)− Sd (k)

)2
+

ρT
∑

i
∑

j
(
∆T (i , j))2 +

ρS
∑

i
∑

j
(
∆S(i , j))2

ρD
∑

i
∑

j
(
D(Tij , Sij)− Dn(i , j))2

argmin
Dn

ρD
∑

i
∑

j
(
D(Tij , Sij)− Dn(i , j))2 (2)

subject to Dn(i , j) ≥ Dn(i − 1, j),
∀ 1 < i ≤ M, 1 ≤ j ≤ N
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Density linearization

Problem (1) is still non-linear due to the function D.
Two ways to overcome the problem:

I Directly optimize (1) via Levenberg-Marquardt
(slow)

I Linearize D and take an iterative approach (very
fast and effective in this case)

D̂(T n,Sn) = D(T n−1, Sn−1) +

+ (T n − T n−1)
δ

δT D(T n−1,Sn−1) +

+ (Sn − Sn−1)
δ

δS D(T n−1,Sn−1)
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Solving problem (1)

I Start from an initial interpolation of temperature
and salinity

I Iteratively solve:

argmin
T n,Sn

α
∑Nm

k=1
(
T n(i t

k , j t
k)− Td (k)

)2
+

β
∑Nm

k=1
(
Sn(i s

k , js
k)− Sd (k)

)2
+

ρT
∑

i
∑

j
(
∆T n(i , j))2 +

ρS
∑

i
∑

j
(
∆Sn(i , j))2

ρD
∑

i
∑

j
(
D̂(T n,Sn)− Dn(i , j))2

Until max(|T n − T n−1|) and max(|Sn − Sn−1|) are
below a threshold
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Minimizing the whole problem

1. Compute an initial estimate of T and S (with any
interpolation method)

2. Compute Dn = D(Tij ,Sij)

3. Solve problem (1) to obtain a new estimate of T
and S

4. Solve problem (2) via isotonic regression to obtain a
new estimate of Dn

5. Return to step 3 until convergence



Some toy examples

A simple test with just 3 points



Some toy examples

Interpolated salinity and temperature fields



Some toy examples

Interpolated salinity and density fields



Some toy examples

Interpolated result without hydrostatic constraint



Introduction

Problem
formulation

Optimization

> Experiments

Filippo Bergamasco (21/29)

Case study: Data from an UAV

I REMUS was deployed (Feb 2014) near Isonzo river.
I It acquired data spanning different lat/lon/depth planes
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Case study: Data from an UAV
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Case study: Data from an UAV



Case study: Data from an UAV

Temperature and salinity



Case study: Data from an UAV

Interpolated Temperature and salinity



Case study: Data from an UAV

Interpolated Temperature and Density



Case study: Data from an UAV

Temperature and Density (Matlab Triscatter interp)
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Conclusions

I We developed a simple yet powerful interpolation method
for sea temperature and salinity

I By enforcing hydrostatic equilibrium we both ensure
some physical properties of the field and improve the
interpolation even with few data

I Preliminary synthetic tests demonstrate the potentials of
such approach

For the future?
I Give an estimate of the interpolation error over the field
I 3D interpolation
I Consider the temporal extent of the data to introduce

additional constraints on the velocity fields
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Thank you for your attention
http://dsi.unive.it/~bergamasco
filippo.bergamasco@unive.it


	Introduction
	Problem formulation
	Optimization
	Experiments

