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Presentation Outline
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I Calibration
Filippo Bergamasco, Andrea Albarelli, Emanuele Rodola, Andrea
Torsello
Can a Fully Unconstrained Imaging Model Be Applied Effectively to Central
Cameras?
IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp.
1391-1398, CVPR, 2013.

I Rays interpolation
Andrea Albarelli, Cosmo Luca, Filippo Bergamasco, Andrea
Torsello
High-Coverage 3D Scanning through Online Structured Light Calibration
22nd International Conference on Pattern Recognition, pp.4080-4085, ICPR,
2014.

I Central model with unconstrained distortion
Filippo Bergamasco, Luca Cosmo, Andrea Gasparetto, Andrea
Albarelli, Andrea Torsello
Non-Parametric Lens Distortion Estimation for Central Cameras
UNDER REVIEW, CVPR, 2015.

I Simultaneous Flow and Dichromatic model recovery
Filippo Bergamasco, Antonio Robles-Kelly, Andrea Torsello
Dichromatic Parameter Recovery from Two Views via Total Variation Hyper-priors
UNDER REVIEW, CVPR, 2015.
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Additional topics covered in the thesis

I Fiducial markers
Filippo Bergamasco, Andrea Albarelli, Andrea Torsello
Pi-Tag: a fast image-space marker design based on projective invariants
Machine Vision and Applications (ISSN:0932-8092), pp. 1295- 1310, MVA, 2013.

I Calibration with circular features
Filippo Bergamasco, Andrea Albarelli, Luca Cosmo, Emanuele RodolÃă,
Andrea Torsello
RUNE-TAG: an Accurate and Robust Artificial Marker based on Cyclic Codes
UNDER REVIEW, PAMI, 2013.

I Multi-View 3D Ellipse estimation
Filippo Bergamasco, Luca Cosmo, Andrea Albarelli , Andrea Torsello
A Robust Multi-Camera 3D Ellipse Fitting for Contactless Measurements
2nd Joint 3DIM/3DPVT Conference 3D Imaging, Modeling, Processing, Visualization,
Transmission, IEEE, pp. 168- 175., 2012.
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Unconstrained imaging model
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Unconstrained imaging model
Introduction

Pinhole model (with distortion) is widely adopted
I Approximates well the behaviour of common

cameras
I Excellent trade-off between the number parameters

to estimate and its accuracy
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Unconstrained imaging model
Introduction

Different optical setups exist demanding ad-hoc camera
models
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Unconstrained imaging model
Introduction
In the most general case, we can think of a
Fully-unconstrained imaging model

I Each pixel (basic light sensor) is associated to a 3D
straight line (ray)

I Each ray is independent with respect to the others

Pixeli

ri=(di,pi)

x

y

z

image sensor imaging rays

o

4 dof for each ray, assuming ~dT
i ~pi = 0, ‖~d‖ = 1
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Unconstrained imaging model
Introduction
Many advantages:

I No constraints on optical path geometry
I Can accommodate very complex lens setups

Key problem
Comprises literary millions of free parameters to estimate

I Common calibration targets fail to provide enough data
I Optimization procedure too slow
I Methods exist in literature comprising complicated

calibration setups

Question:
What if we try to use such model on a quasi-pinhole camera?
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Unconstrained imaging model
For pinhole cameras?
At first sight, it seems a nonsense! But. . .

I Are we sure that radial distortion can describe properly
the lens inner working?

I Is the camera really pinhole?
I It would be interesting to have a single general model to

describe a broad range of different cameras

Key contributions/novelties:

1. We propose an effective technique to calibrate an
unconstrained camera model

2. We show that such model can achieve better results
than the pinhole

3. We propose a technique to interpolate camera rays
4. We propose a variation of the method to obtain a

central model with unconstrained distortion
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Unconstrained imaging model
Calibration
Standard point-based calibration targets simply cannot provide
enough data to estimate the huge number of parameters

We solve this problem by providing a dense localization of the
target obtained via structured-light patterns shown on a
normal LCD display

I Phase coding with the number-theoretical phase
unwrapping approach

I We encode horizontal and vertical pixel coordinates of
each pixel

I High precision sub-pixel localization of the target
coordinates of each ray
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Unconstrained imaging model
Calibration

Target is acquired in s different poses Θs = (Rs ,~ts),
Rs = (~us~vs~ns).
For each pose and ray, we have

I The observed code Cos
i ∈ IR2

I The expected code
Ce(~ri |Θs) = (~us~vs)T

(
~nT

s (~ts−~pi )

~nT
s ~di

~di + (~pi −~ts)

)
We express the calibration process as a generalized least
squares problem

(~̂r , Θ̂) = argmin
~r ,Θ

∑
i ,s

(εs
i )T (Σs

i )−1εs
i

where εs
i = Cos

i − Ce(~ri |Θs) are the code residuals and
Σs

i is the (conditional) error covariance matrix under the
given pixel-pose combination.
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Unconstrained imaging model
Calibration

Main Result
The generalized least squares formulation with respect
to the target coordinates corresponds to the standard
linear least squares with respect to the 3D points
associated with each ray (details in the thesis).

We take advantage by the independence between rays
and poses

Two step optimization process

I Each ray is optimized by considering the poses fixed (lls)
I Each pose is optimized by considering the rays fixed

(Point-line ICP)
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Unconstrained imaging model
Optimization results
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Unconstrained imaging model
Using the model
One reason that makes pinhole model effective is that
exists a continuous mapping between any point (u, v)
and the corresponding ray exiting the camera.

I 3D point triangulation performed by searching
correspondences

I Epipolar geometry is available
I Dense stereo, etc.

In the unconstrained model we just have a sparse
bundle of rays in space.

Problem:
To triangulate rays and perform 3D reconstruction we
need an interpolation function to estimate the ray
associated to a given point in the image plane

I We assume some sort of smoothness in the bundle
indexed by the image lattice
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Unconstrained imaging model
Rays interpolation
Let Rd = {~ri} a set of n known camera rays, and
~w = (w1, . . . ,wn) ∈ Rn,

∑n
i=1 wi = 1 a convex

combination of weights.

Given two rays ~ra,~rb, we define the best rigid motion
interpolant Kab as the combination of:

1. The rotation RK around the axis
~da × ~db with angle acos(~dT

a
~db)

2. The translation TK = ~sb −~sa, with
~sa and ~sb being the two rays
nearest points

By describing each motion Kab in terms of a screw
motion represented via dual-quaternions, we pose rays
interpolation in terms of rigid motions blending
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Unconstrained imaging model
Rays interpolation algorithm
Initailize the interpolated ray ~r` = (~d`, ~p`) as a weighted
linear combination followed by a reprojection on the rays
manifold:
~d` =

∑n
i=1 wi~di

||
∑n

i=1 wi~di ||
, ~p` =

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||
− ~d`

(
~dT
`

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||

)

1. Compute K`,i=1...n as the screw
motion between ~r` and ~ri
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Unconstrained imaging model
Rays interpolation algorithm
Initailize the interpolated ray ~r` = (~d`, ~p`) as a weighted
linear combination followed by a reprojection on the rays
manifold:
~d` =

∑n
i=1 wi~di

||
∑n

i=1 wi~di ||
, ~p` =

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||
− ~d`

(
~dT
`

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||

)

1. Compute K`,i=1...n as the screw
motion between ~r` and ~ri

2. Perform Dual-quaternion Iterative
Blending algorithm to obtain Kavg
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Unconstrained imaging model
Rays interpolation algorithm
Initailize the interpolated ray ~r` = (~d`, ~p`) as a weighted
linear combination followed by a reprojection on the rays
manifold:
~d` =

∑n
i=1 wi~di

||
∑n

i=1 wi~di ||
, ~p` =

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||
− ~d`

(
~dT
`

∑n
i=1 wi~pi

||
∑n

i=1 wi~di ||

)

1. Compute K`,i=1...n as the screw
motion between ~r` and ~ri

2. Perform Dual-quaternion Iterative
Blending algorithm to obtain Kavg

3. Apply Kavg to ~r`
4. Return to step 1 and iterate until

convergence
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Unconstrained imaging model
Stereo triangulation experiment
We tested the performance of the unconstrained model for
stereo triangulation.

I Stereo RT computed via the same point-rays ICP
I As interpolation weights we used the inverse of the

squared distances of 8 neighbours
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Pinhole model with unconstrained distortion
Introduction

I We demonstrated the effectiveness of the
unconstrained model even for quasi pinhole cameras

I Many classical computer vision techniques heavly
rely on the epipolar geometry given by central
projection

I We believe that most of the improvements exhibited
by the unconstrained model are due to a better lens
distortion accommodation

Proposed tradeoff:
Fall-back to a central model but allowing a complete
unconstrained distortion
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Pinhole model with unconstrained distortion
Calibration process

The calibration process starts from estimate the bundle
of camera rays

I Alternating optimization of rays assuming fixed
poses, viceversa

I Pose estimation step exactly as before
I Rays optimization step slightly more complicated as

it must estimate the common optical center o

Since rays are all forced to pass trough o, they are
parametrized just by a vector di ∈ IR3, ‖d‖ = 1

(~̂d , Θ̂, ô) = argmin
~d ,o,Θ

∑
i ,s

(εs
i )T (Σs

i )−1εs
i
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Pinhole model with unconstrained distortion
Rays and optical center calibration step

Let xs
(u,v) = RTs

(
Cos

(u,v) 0 1
)T

be the 3D
coordinates of the observed code Cos

(u,v) transformed
trough the pose RTs .

We can formulate the estimation of o as:

argmin
o

∑
u,v

min
d(u,v)

∑
s
‖(hs

(u,v))T (I − d(u,v)dT
(u,v))‖2

Where hs
(u,v) = (xs

(u,v) − o).

Key result
Under the assumption that the distance between each
ray and its expected code is small, this can be
transformed in term of the point clouds generated by
the intersection of a ray and each target pose
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Pinhole model with unconstrained distortion
Rays and optical center calibration step

argmax
o

∑
u,v

N(u,v)

h̄T
(u,v)S(u,v)h̄(u,v)

‖h̄(u,v)‖2

I S(u,v) Covariance of the point cloud
I N(u,v) number of points in the cloud
I h̄(u,v) is the vector connecting o and the cloud

centroid

The functional is further rewritten to be solved as a fixed
point iteration
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Pinhole model with unconstrained distortion
Estimating a new virtual pinhole
After ray bundle recovery we create a virtual pinhole
camera. We need to estimate:

I Image plane orientation and distance
I The undistortion mapping to obtain a regular grid

y

x

v℘

z

I plane orientation
minimizing the variance
of distances between each
plane-ray intersection
point

I points topology inherited
by image lattice

I points resampled in a
uniform grid to compute
the undistortion function

I value at each grid point
as function of 4 neigh.
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Pinhole model with unconstrained distortion
Results
Better radial distortion correction:
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An unified model for mono and stereo cameras
Stereo cameras can be seen as a unique bundle of rays
with an undistortion function that rectifies epopolar lines
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Pinhole model with unconstrained distortion
Results

Better and fast 3D reconstruction trough dense stereo

OpenCV Undistort+Rectify Proposed method



Unconstrained
Imaging Model
Calibration

Rays interpolation

> Central + Model-free
distortion

Flow and
Dichromatic
model recovery
Problem formulation

TV regularizer

Results

Filippo Bergamasco (27/48)

Conclusions

I We proposed an effective calibration technique for a
fully unconstrained camera model

I We demonstrated its advantages even for quasi
pinhole cameras

I We proposed a method to create virtual pinhole
cameras with model-free distortion functions

I Very effective also for stereo rigs
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Simultaneous Optical Flow and Dichromatic
Parameters Recovery



Unconstrained
Imaging Model
Calibration

Rays interpolation

Central + Model-free
distortion

> Flow and
Dichromatic
model recovery
Problem formulation

TV regularizer

Results

Filippo Bergamasco (29/48)

Flow and Dichromatic parameters recovery
Introduction

I We usually see cameras as a grid of simple photons
collectors disposed in a grid.

I When we start discriminating on light frequency, we
enter the field of Multi-Spectral imaging

I RGB camera is a multi-spectral device with just 3
bands

I Data cube
representation

I Multi-spectral data
leverage the analysis
to physical
properties of
materials
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Flow and Dichromatic parameters recovery
Introduction

We assume a uniform illuminant spectrum

Dichromatic Model
Expresses the image radiance I(u, λ) at pixel location
u = (u1, u2) and wavelength λ as:

I(u, λ) = g(u)L(λ)S(u, λ) + k(u)L(λ)

I I is the “cube” measured by the camera
I g is the shading. Depends by geometry
I S is the reflectance. Depends by material
I L is the illuminant
I k is a specular factor
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Flow and Dichromatic parameters recovery
Introduction

In literature there exist different approaches to factorize
S, L, g and k given a single radiance image I.

Reflectance is particularly interesting being invariant to
the object geometry and its relative position wrt. the
viewer

I Is preserved across multiple images of the scene

Novelties of the proposed approach

1. The first two-views dichromatic model recovery
method

2. We developed a novel affine hyper-prior combined
with a TV regularizer
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Flow and Dichromatic parameters recovery
Problem formulation
Two input irradiance images of the same scene are given:
I1(u, λ), I2

(
u, λ

)
An optical flow function f (u) = u′ : Ω1 → Ω2 maps
points from the first to the second image

The “constant brightness assumption” is not valid for
highly specular pixels

I Brightness strongly dependent on the relative angle
between the observer and the light

We make use of the multiplicative gating function

W (u) = exp (−τ ||I(u, λ)− P(I(u, λ))||)

where P(I(u, λ)) is the projection of the image radiance
I(u, λ) onto the dichromatic plane.
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Flow and Dichromatic parameters recovery
Problem formulation

We defined two energy terms measuring the coherency of
the recovered dichromatic model and flow with the input
data

EDI1 =

∫
Ω1

W1(u)2
∑
λ

(
I1(u, λ)− L(λ)

(
g1(u)S(u, λ) + k1

(
u
)))2

du

EDI2 =

∫
Ω1

W2
(

u′
)2∑

λ

(
I2
(

u′, λ
)
− L(λ)

(
g2
(

u′
)

S(u, λ) + k2
(

u′
)))2

du

Note
Due to the gating functions, the evaluation is performed
only on non specular areas. Hence, the contribution of
k1 and k2 is negligible
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Flow and Dichromatic parameters recovery
Problem formulation

We pose the problem as the minimization of the energy
functional:

argmin
f ,S,L,g

(µEDI1 + (1− µ)EDI2)

The problem is highly under-determined. The flow
function itself allows many different solutions.

A common approach is to use a regularizer enforcing a
certain degree of smoothness in the solution

I Many different regularizers proposed over the last
decades

I Aim: Preserve edges, possibly implying
physical/meaninful constraints
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Flow and Dichromatic parameters recovery
Total Variation regularizer
Let f be a differentiable function. The Total Variation
(TV) of f is defined as:

TV(f ) =

∫
Ω
||Df (x)||2 dx

Main property
Used as a regularizer, TV privileges piecewise constant
solutions.

Unfortunately, the regularized optimization problem

min
f

E (f ) + TV (f )

is not convex. We switch to the relaxed problem:

min
f ,fTV

E (f ) +

∫
||f − fTV||2

δ
+ TV (fTV)



Unconstrained
Imaging Model
Calibration

Rays interpolation

Central + Model-free
distortion

Flow and
Dichromatic
model recovery
Problem formulation

> TV regularizer

Results

Filippo Bergamasco (36/48)

Flow and Dichromatic parameters recovery
Optical Flow parametrization

Using a TV regularizer is a natural choice for S
I We expect large areas of the same material

However, it does not make sense to impose piecewise
constant flow parametrized as displacements on the
image plane

Key contribution
We use a higher order smoothness prior, where the
displacement is assumed to be locally affine:

f (u) = u+A(u)u =

( u
v
1

)
+

( a1(u) a2(u) a3(u)
a4(u) a5(u) a6(u)
0 0 0

)( u
v
1

)

Approximates view transformation under a weak camera
model of local planar patches.
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Flow and Dichromatic parameters recovery
Optimization

E = α (µEDI1 + (1− µ)EDI2)

+ ρS

(∫
Ω1

||S(u)− STV(u)||2

δS
du +

∫
Ω1

||DSTV(u)||2 du
)
(1)

+ ρf

(∫
Ω1

||A(u)− ATV(u)||22
δf

du +

∫
Ω1

||DATV(u)||2 du
)
(2)

which is minimized over S, f , L, g1, g2, STV, and fTV.

Alternating minimization

1. Minimize with respect to L(λ), g1(u), and g2
(
f (u)

)
,

keeping S(u, λ), f (u), STV(u, λ) and ATV(u) fixed;
2. Update S(u, λ) and f (u) through a gradient descent

step, keeping all other variables fixed;
3. Minimize (1) and (2) to obtain a new estimate of

ATV(u) and STV(u).
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Flow and Dichromatic parameters recovery
Results

I For our tests we used a multi-spectral device delivering 6
channels in visible spectrum and one in the near-infrared

I We compare with the current industrial-grade
state-of-the-art

Our approach shows less std. and better reflectance recovery
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Flow and Dichromatic parameters recovery
Qualitative Results

Input Reflectance
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Conclusions

I We proposed a novel technique to simultaneously
recover the optical flow and dichromatic parameters
from two-views

I Our method encompass the current state-of-the-art
delivering a better factorization of dichromatic
components

I The novel affine hyper-parior combined with a TV
regularizer provides a natural piecewise-rigid
assumption on the motion under a weak camera
model

I The TV regularized for reflectance impose local
patches of uniform material

I We are currently working on a novel homographic
hyper-prior
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Thank you for your attention
http://dsi.unive.it/~bergamasco
filippo.bergamasco@unive.it
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