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Why are we interested in sea-waves 3D 
reconstruction?

Spectral properties of wind waves are usually 
inferred from buoys installed at fixed locations 
at sea

> Can acquire elevation time-serie at a single point

However… 

the information of a single time-serie cannot 
describe the complete wave dynamics that 
develops over an area
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Why are we interested in sea-waves 3D 
reconstruction?

Vision-based 3D reconstruction of the sea 
surface have proved to be a game-changer in 
the study of small scale wind waves.

In practice, we are now able to acquire with 
unprecedented accuracy the evolution of the 
wave spectrum in an area over time

(4D space+time data)
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Our contribution

In the past years, we proposed state-of-the-art 
methods in this field, contributing in the 
diffusion of the topic among the oceanographic 
community

In particular, we developed the fastest 
open-source sea-waves reconstruction pipeline:

http://www.dais.unive.it/wass/

4

http://www.dais.unive.it/wass/
http://www.dais.unive.it/wass/


Challenges

• Extrinsic calibration of the stereo rig
• Reliable dense stereo matching in presence 

of sun glares, specular reflections, droplets..
• Alignment of all the reconstructed surface 

to the mean sea plane

if the stereo rig is firmly placed to a non-moving 
support (ie. fixed-platform, lighthouse, etc) the 
alignment process is relatively easy…
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Challenges

For the Gaussian nature of the sea-surface elevations, 
we demonstrated that averaging the estimated sea 
plane over time is a good way to obtain an accurate 
estimation of the “true sea-plane” in the camera 
reference frame.

This implicitly assumes that the stereo rig is not moving 
wrt. the sea

However, this heavily limit the applicability of the 
method as it require a fixed platform
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Sea-plane accuracy from a single frame

We experimentally assessed the reliability of the 
estimated sea-plane from a single 3D reconstruction 
wrt. the sea state condition

Benetazzo, A., Barbariol, F., Bergamasco, F., Torsello, A., Carniel, S., Sclavo, M. 
Stereo wave imaging from moving vessels: Practical use and applications, 2016, 
Coastal Engineering, 109, pp. 114-127. 
DOI: 10.1016/j.coastaleng.2015.12.008
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Sea-plane accuracy from a single frame
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In practice we require at least 16 
spatial waves in the fov to derive a 
realistic estimation of the mean sea 
plane for subsequent statistical 
analysis 



Sea-plane accuracy from a single frame

To analyze interesting (not ridiculously small) 
sea waves from a moving stereo rig we cannot 
simply align each frame independently

Well-known structure-from-motion 
techniques cannot be used due to the intrinsic 
ambiguity between the camera motion and 
the surface evolution over time 
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Moving WASS Approach

Our solution:
Use an IMU to acquire the 6-dof parameters 
(rotation angles / position) of the vessel and 
apply that transformation to each 
reconstructed surface.

> Either directly or after some statistical   
filtering

Problem:

The rigid transformation between IMU and 
the stereo rig must be calibrated a-priori.
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IMU unit 
is placed 
at the 
center of 
gravity

Stereo Camera rig placed at 
highest possible position at port



System Geometry
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Stereo Camera

IMU



Goal
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Derive a model to describe the rigid 
motionBetween Iw and Icam for each frame



Acquired data
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IMU pitch/roll

Distance vector of 
the sea plane in 
camera reference 
frame (via 3D 
reconstruction)

IMU heading & GPS

IMU heave



Acquired data
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IMU pitch/roll

Distance vector of 
the sea plane in 
camera reference 
frame (via 3D 
reconstruction)

IMU heave

IMU heading & GPS
Cannot be inferred by 

stereo vision!
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IMU-Camera 
displacement vector

IMU constant height offset 
wrt. The sea (where is 
mounted on the ship)

IMU-Camera 
relative angles

Unknowns to be estimated



Calibration
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IMU pitch/roll

Distance vector of 
the sea plane in 
camera reference 
frame (via 3D 
reconstruction)

IMU heave

By relating these quantities over multiple
frames we can estimate the unknowns 
In an “optimal” sense.



Kinematic Chain Modelling

Rigid motion T between I
w

 and I
cam

 (passing 
through I

IMU
) is modelled as a CPC kinematic chain 

described by the composition of 8 motions:

T = G * B1 * B2 * B3 * B4 * B5 * B6 * B7

–  G is the 4x4 matrix that translates I
w

 
according to the gps coordinates and aligns 
X

w
 with the geographic north (z-upward)
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Kinematic Chain Modelling

Rigid motion T between I
w

 and I
cam

 (passing 
through I

IMU
) is modelled as a CPC kinematic chain 

described by the composition of 8 motions:

T = G * B1 * B2 * B3 * B4 * B5 * B6 * B7

–  Bi, i=1…7  are 4x4 matrix (chain joints) 
factorized as a product of V

i
 Q

i
 where:

•  Q
i
 describes the joint motion and V

i
 is the rigid 

transformation connecting two joints.
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Kinematic Chain Modelling

A Q
i
 joint can be either:

– Prismatic: pure translation along z-axis with 
length p

i

– Revolution: pure rotation around z-axis with an 
angle of p

i
 radians

Each V
i
 joint is a combination of:

V
i
 = Tr

i
 Rz

i
 Rj

i
, where:

– Tr
i
 is a translation along [lx,ly,lz]T

– Rz
i
 is a rotation around z of a

i
 radians

– Rj
i
 is a rotation depending by [bx,by,bz]T  
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Kinematic Chain Modelling
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Joint Type pi [lx,ly,lz]
T [bx by bz]

T ai

B1 Prismatic IMUheave [0 0 h] [0 0 1] 0

B2 Revolution IMUPitch [0 0 0] [0 1 0] 0

B3 Revolution IMURoll [0 0 0] [1 0 0] 0

B4 Revolution 0 [0 0 0] [-1 0 0] π/2

B5 Revolution Camheading [Lx Ly Lz] [0 0 1] 0

B6 Revolution Campitch [0 0 0 ] [0 1 0] π/2

B7 Revolution Camroll [0 0 0 ] [1 0 0] 0



Kinematic Chain Modelling
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Joint Type pi [lx,ly,lz]
T [bx by bz]

T ai

B1 Prismatic IMUheave [0 0 h] [0 0 1] 0

B2 Revolution IMUPitch [0 0 0] [0 1 0] 0

B3 Revolution IMURoll [0 0 0] [1 0 0] 0

B4 Revolution 0 [0 0 0] [-1 0 0] π/2

B5 Revolution Camheading [Lx Ly Lz] [0 0 1] 0

B6 Revolution Campitch [0 0 0 ] [0 1 0] π/2

B7 Revolution Camroll [0 0 0 ] [1 0 0] 0

Parameters to estimate (unknowns)
p

c 
= (h, Lx, Ly, Lz, Cam

heading
, Cam

pitch
, Cam

roll
) 



Kinematic Chain Calibration
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For each frame k=1…n, we have:

– p
m

K = (IMU
pitch

, IMU
roll

, IMU
heave

)

– vk = (v
x
,v

y
,v

z
) 

We pose the parameters estimation problem as a 
non-linear least squares optimization:



Kinematic Chain Calibration
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Measured distance vector 
transformed to the

world reference frame Iw

Expected distance vector

Optimization is solved via Levenberg-Marquardt



Kinematic Chain Calibration
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KC Calibration with regularizer

If in the calibration sequence we 
observe no significant motion, 
parameter estimation may still be 
under-determined (many local minima).

Possible workaround:

Force the solution to be close enough to 
an empirically estimated imu-camera 
displacement prior
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KC Calibration with regularizer
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IMU-Camera 
displacement prior

Regularization strength



KC Calibration tests
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KC calibration tests with synthetic data. Sea-plane vector v is perturbed with a 
zero-mean gaussian noise with standard deviation sigma and the final KC 
shape variables are compared to the ground truth



KC Calibration tests
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Using the kinematic chain
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Once calibrated, the KC can be directly 
used to align each reconstructed surface 
to the mean sea plane
• Translation applied as-is from the GPS data
• Rotation around plane normal applied as-is 

from the IMU heading

IMU estimation uncertainty may heavily 
affect the alignment accuracy



Using the kinematic chain
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A better approach:

We use a Kalman Smoother to average 
the the sea-plane estimated by the 
stereo cameras with the transformation 
given by the KC

Optical plane estimation helps in the alignment of the 
rig exactly where the IMU is more prone to fail (heave 
and roll angle)



Using the kinematic chain
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Ingredients of a Kalman smoother:

Kalman smoother is an efficient algorithm 
to estimate moments of hidden state 
variables of a dynamical system given a 
series of measurement observed over time

                         X
t
 = f(X

t-1
,v

t-1
)

                         Y
t
 = h(X

t
,n

t
)

Hidden state

Observation

State transition

Observation model

Process noise

Observation noise



Using the kinematic chain

33

In our case, we modelled our system 
considering:

Kalman state: 
X=[pos,heading,heave,pitch,roll]

Measurement vector:

Y=[pos,heading,heave,pitch,roll,v]



Using the kinematic chain
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• Identity function is used as state 
transition function f()

• Observation model function:

Y
t
 = h( X

t
 ) = [X

t
(1..5), T(X

t
(1..5))-1 KCv(X

t
(1..5))]

Pos, heading, 
heave, pitch, roll Plane distance vector (in world 

reference frame) as computed by 
the KC



Motion estimation 
performance
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Effect of the kalman smoother on a real dataset. Plane distance vector 
covariance was set to 10 cm, IMU measurements was set to the standard error 
reported in the manual



Motion estimation 
performance
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Effect of the kalman smoother on a real dataset. Plane distance vector 
covariance was set to 10 cm, IMU measurements was set to the standard error 
reported in the manual



Motion estimation 
performance
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Final sea surface alignment performance on a real dataset with different 
reconstructed area sizes (ie. different number of waves simultaneously 
observed in the scene)



Conclusions

• Sea-waves 3D reconstruction from a 
moving platform must rely to external 
positioning sensors to provide a good 
surface alignment

• We proposed an effective method to:
– Calibrate the relative position between 

the IMU and the stereo rig
– Filter the inaccurate 3D-based plane 

fitting with the IMU data to improve 
the alignment38



Future research directions

• Coupling WASS with a RADAR based 
reconstruction system

• Real-time 3D reconstruction to collect 
extreme wave events statistics

• Multi-view reconstruction of a single 
wave crest over time

39



Thank you and Merry Christmas
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