
TOWARDS PERFORMANCE EVALUATION OF MOBILE
SYSTEMS IN UML

Simonetta Balsamo
Moreno Marzolla

Dipartimento di Informatica
Universit̀a Ca’ Foscari di Venezia

via Torino 155, 30172 Mestre (VE), Italy
e-mail:{balsamo|marzolla }@dsi.unive.it

Keywords

Process Oriented Simulation, Software Architectures, Uni-
fied Modeling Language (UML), Performance Evaluation,
Mobile Systems.

Abstract

The current generation of network-centric applications ex-
hibits an increasingly higher degree of mobility. Wireless
networks allow devices to move from one location to another
without loosing connectivity. Also, new software technolo-
gies allow code fragments or entire running applications to
migrate from one host to another. Performance modeling of
such complex systems is a difficult task, which should be
carried out during the early design stages of system devel-
opment. However, the integration of performance modeling
analysis with software system specification for mobile sys-
tems is still an open problem, since there is no unique widely
accepted notation for describing mobile systems. Moreover
performance modeling is usually developed separately from
high-level system description. This is not only time con-
suming, but the separation of performance model and system
specification makes more difficult the feedback process of re-
porting the performance analysis results at the system design
level, and modifying system model to analyze design alter-
natives. In this paper we address the problem of integrating
system performance modeling and analysis with a specifica-
tion of mobile software system based on UML. In particular
we introduce a unified UML notation for high-level descrip-
tion and performance modeling of mobile systems. The no-
tation allows inclusion of quantitative information, which are
used to build a process-oriented simulation model of the sys-
tem. The simulation model is executed, and the results are
reported back in the UML notation. We describe a prototype
tool for translating annotated UML models into simulation
programs and we present a simple case study.

1 INTRODUCTION

The current generation of network-centric applications ex-
hibits an increasingly higher degree of mobility. From one
side, wireless networks allow devices to move from one loca-

tion to another without loosing connectivity. From the other
side, new software technologies allow code fragments or en-
tire running applications to migrate from one host to another.
In this direction, design approaches based on location aware-
ness and code mobility have been proposed where the ap-
plication components can move to different locations during
their execution. This should improve system quality, allow-
ing a higher degree of flexibility and increasing its perfor-
mance. Indeed, from the performance viewpoint, moving
application components in a distributed environment could
lead to transforming remote interactions into local ones. We
consider software mobile system at a high level of abstrac-
tion and we refer to Software Architecture (SA) to describe
system structure and behavior (Bass et al., 1998; Shaw and
Garlan, 1996). In particular, one can define mobile SA with
various mobility styles, whose definition depends on whether
they require copies creation of components at new locations,
or local change of components preserve their identity (mobile
agent). In the former case we can further distinguish sys-
tems where the copy is created at the location of the compo-
nent that starts the interaction (code on demand), or systems
where it is a created at the location of the component that ac-
cept the interaction (remote evaluation). Many formalisms to
represent mobile software systems and reasoning about mo-
bility have been proposed (De Nicola et al., 1998; Milner,
1999; Nottegar et al., 2001; Picco et al., 2001). However,
most of them cannot be considered architectural description
languages (ADL), since they do not explicitly model compo-
nents and interactions as first class entity.

Several models of SA have been proposed based on
formal ADL with precise semantics and syntax (Medvi-
dovic and Taylor, 2000). On the other side, due to the
difficulties in integrating formal ADL in the design prac-
tice, other approaches consider semi-formal widely used
modeling languages such as the Unified Modeling Lan-
guage (UML) (Medvidovic et al., 2002; Object Management
Group, 2001; Rumbaugh et al., 1999).

In this paper we consider mobile software systems at the
SA level, and an UML-based system specification. Perfor-
mance modeling of mobile software systems is a difficult
task, which should be carried out from the early design stages
of system development. The integration of quantitative per-
formance analysis with software system specification has
been recognized to be a critical issue in system design. Per-

mailto:balsamo@dsi.unive.it
mailto:marzolla@dsi.unive.it


formance is one of the most influential factors that drive sys-
tem design choices. Several approaches have been proposed
to integrate performance evaluation tools in the early stages
of the software development life cycle (Balsamo et al., 2002;
Smith and Williams, 2002). However, few of them consider
mobile systems (Cortellessa and Grassi, 2002) and there is
still a lack of tools for performance analysis that support the
system designer in the selection of SA of mobile software
systems to meet given performance requirements.

We focus on the integration of performance modeling
analysis with software system specification for mobile sys-
tems. To this aim we observe that there is not a unique widely
accepted notation for describing mobile systems. Moreover
performance modeling is often developed separately from
high-level system description. This is not only time con-
suming, but the separation of performance model and sys-
tem specification makes more difficult the feedback process
of reporting the performance analysis results at the system
design level, and modifying system model to analyze design
alternatives.

In this paper we address the problem of integrating sys-
tem performance modeling and analysis with a specification
of mobile software system based on UML. In particular we
propose an integrated approach to modeling and performance
evaluation of mobile systems at the architectural level based
on simulation. We consider both physical mobility (devices
which physically change their locations) and code mobility
(code fragments which migrate from one execution host to
another).

The main advantage of using a simulation approach is that
it allows a high degree of model flexibility, a direct repre-
sentation of system components and makes it easy to report
performance results back at the SA design level. Indeed,
various approaches based on simulation models of software
systems have been recently proposed to evaluate SA per-
formance (Arief and Speirs, 1999, 2000; De Miguel et al.,
2000). Simulation greatly simplifies the derivation of the
performance model from the software system specification,
with respect to other approaches based on analytical mod-
els. However, code mobility has not been considered in these
proposals.

We introduce a unified UML notation for high-level de-
scription and performance modeling of mobile systems. The
software system description based on the standard UML no-
tation is integrated with performance-oriented parameters,
which are described with the UML extension mechanisms
(namely stereotypes and tagged values). The notation allows
users to include quantitative information, which are used to
build a process-oriented simulation model of the system. We
use a subset of the annotations proposed in the UML Per-
formance Profile (Object Management Group, 2002a). Then,
the annotated UML diagrams are converted into a process-
oriented simulation model. The simulation model is executed
to evaluate the performance of the mobile system, and sim-
ulation results are reported back the original UML diagrams
as tagged values. We describe a prototype tool for translat-
ing annotated UML models into simulation programs and we
present a case study.

This paper is organized as follows. Section 2 introduces

the proposed approach to mobility modeling with UML Use
Case, Activity and Deployment diagrams. Section 3 de-
scribes the annotations used for performance modeling of
UML specifications. Section 4 presents a simple case study
of the proposed methodology. Conclusions and open re-
search are discussed in Section 5.

2 UML MOBILITY MODELING

We consider mobile software systems at the SA level, and an
UML-based system specification. UML is a standard graph-
ical notation for modeling object-oriented software, and it
has been widely applied in the software development pro-
cess (Object Management Group, 2001; Rumbaugh et al.,
1999). The graphical notation provides several types of dia-
grams that represent different system views of the system.
UML provides extension mechanisms that include stereo-
types and tagged values, to integrate the need of specific do-
mains, We observe that currently there is no standard way
for expressing mobility in UML, although different propos-
als exist in the literature.

2.1 Previous work

Baumeister et al. propose in (Baumeister et al., 2003) an
extension of UML Class and Activity diagrams to represent
mobility. They define new stereotypes for identifying mo-
bile objects and locations. Stereotypes are also defined for
moving and cloning activities. Mobile systems are then rep-
resented by Activity diagrams using either a “responsibility
centered notation”, which focuses on who is performing ac-
tions, and a “location centered notation” which focuses on
where actions are being executed and how activities change
their location. While this approach has the advantage of re-
quiring only minor extensions to UML, a possible shortcom-
ing is that it represents in the same Activity diagram both the
mobility model (how objects change their location) and the
computation model (what kind of computations the objects
perform). For large models this could render the diagrams
difficult to understand.

Some UML notation mechanisms can be used to represent
mobile SA, as discussed in (Rumbaugh et al., 1999). They
are based on the tagged valuelocation to express a com-
ponent location, and the stereotypescopy andbecome to
express the location change of a component. They can be
used in Collaboration diagrams to model location changes of
mobile components. Grassi and Mirandola (Grassi and Mi-
randola, 2001) suggest an extension to UML to represent mo-
bility using Collaboration diagrams. Collaboration diagrams
contain alocation tagged value representing the physi-
cal location of each component. They define themoveTo
stereotype, which can be applied to messages in the Collab-
oration diagram. When themoveTo stereotype is present,
it indicates that the source component moves to the loca-
tion of the destination component before interacting with it.
Sequence diagrams are used to describe the interactions be-
tween components, regardless of their mobility pattern.

Kosiuczenko (Kosiuczenko, 2002) proposes a graphical



notation for modeling mobile objects based on UML Se-
quence diagrams. Mobile objects are modeled using an ex-
tended version of lifelines. Each lifeline is represented as
a box that can contain other objects (lifelines). Stereotyped
messages are used to represent various actions such as cre-
ating or destroying an object, or entering and leaving an ob-
ject. This approach has the drawback of requiring a change
in the standard notation of UML Sequence diagrams, that is,
lifelines should be represented as boxes, with possibly other
Sequence diagrams inside. Existing graphical UML editors
and processors need to be modified in order to support the
new notation.

2.2 The approach

We model a mobile system as a collection of devices, which
can be either processors or communication links. A compu-
tation on the system is modeled as a set of activities carried
out on the devices. A configuration of the system is a spe-
cific allocation of activities on processors. So, while a mo-
bile entity travels through the system, it activates a sequence
of configurations, each representing a specific system state.
Mobile entities may be both physical devices traveling in the
real space, or software components which migrate from one
processor to another. Once a configuration is activated, the
mobile entity starts an interaction with the system. This typ-
ically includes requesting service to the devices (processors)
or performing communications, which we also model as re-
questing service to network devices. We assume that while a
mobile entity is interacting with the system, it cannot move,
i.e., the system configuration cannot change. Further move-
ments are possible when the interaction is completed.

Behavior 1

Behavior 2

Conf 1 Conf 2 Conf 3

Behavior modeling

Sequence of configurations

Interaction between components

Figure 1: Overview of the mobility modeling methodology

The proposed approach to mobile system modeling in-
volves three main steps, which are depicted in Fig. 1

1. Enumerate the various mobility strategies of the mobile
entities.

2. Model the sequence of configurations which are trig-
gered in each mobility strategy.

3. Model the interactions performed by the mobile entities
in each configuration.

The first step deals with identifying the mobility pattern
of the entities. For example, users of the system may ex-
hibit a bigger or smaller probability to change their location,
hence they may exhibit different degrees of mobility. Also,

users may move through the system with different preferen-
tial patterns. We define amobility behavioras the sequence
of different configurations which are executed while the user
moves. Such mobility behaviors need to be identified, and
further described in the next steps. Mobility behaviors are
represented by UML Use Case diagrams. Also, the set of
resources (processors) which are present in the system are
described using Deployment diagrams.

The next step involves the description of the sequence of
configurations which are triggered while the mobile entities
travel through the system. Such description can be easily
expressed as a state transition diagram. We use Activity di-
agrams for this purpose. Each activity represents a particu-
lar configuration of the system. Transitions describe the or-
der in which configurations are triggered as the user moves.
We will refer to these diagrams as “high level” Activity dia-
grams.

The last step involves detailing what happens while the
system is in each configuration. This means specifying what
are the interactions between the components while each con-
figuration is active. This is done again using Activity dia-
grams. Each Action state is associated to the Deployment
node instance on which the activity takes place. Each node
of the Activity diagrams defined in the previous step is ex-
panded as an interaction. This can be readily expressed us-
ing standard UML notation as Activity diagrams have a hier-
archical structure, that is, each action state may be exploded
into another diagram. We will refer to these diagrams as “low
level” Activity diagrams.

In order to illustrate the proposed approach we introduce
an application example of software mobile system. Let us
consider the example of software system illustrated in Fig. 2.
There is a mobile user that is connected to a PC using a PDA
with a wireless network card. The user is viewing a video
stream, which is generated by a video server residing on the
PC.

Three different Local Area Networks (LAN1, LAN2 and
LAN3) are connected through the Internet. Each LAN al-
lows wireless connections as well as wired ones. The PC is
connected to LAN3 and does not move, while the user with
the PDA travels through the different LAN. In the configu-
rationC1 of Fig. 2(a) the communication between the PDA
and the PC travels through the path LAN1–Internet–LAN3.
In the configurationC2 of Fig. 2(b) the communication is
routed through the path LAN2–Internet–LAN3, and in the
configurationC3 of Fig. 2(c) the communication between the
PC and the PDA is routed through LAN3 only.

2.3 Modeling the choice of Mobility

As the very first step, it is necessary to provide the physical
structure of the system. This can be done by using UML De-
ployment diagrams, which describe the processing resources
available on the system. Such resources include both CPUs
and also communication links. The Deployment diagram de-
scribing the system in the example is illustrated in Fig. 3.

In the example above, we suppose that the mobile user
can behave in two different ways. In behaviorB1 he joins the



LAN1 LAN2 LAN3

PDA PC

Internet

(a) ConfigurationC1

LAN1 LAN2 LAN3

PCPDA

Internet

(b) ConfigurationC2

LAN1 LAN2 LAN3

PCPDA

Internet

(c) ConfigurationC3

Figure 2: A mobile user travels through three different LAN

LAN1 LAN2 LAN3

PDA PC

Internet

Figure 3: Deployment diagram for the example

system in LAN1, then travel to LAN2 and finally to LAN3
and leaves the system. In behaviorB2 the user joins the sys-
tem in LAN2, travel to LAN1 and leaves the system. We
model these behaviors with the Use Case diagram in Fig. 4.

Figure 4: UML representation of different mobility possibil-
ities

The diagram shows an Actor (mobile entity) that can per-
form one of the associated Use Cases, each representing one

possible mobility behavior. An Actor represents each class of
mobile entity. The Use Cases associated with that Actor rep-
resent the different ways in which entities of the associated
mobile entity class may interact with the system. Note that
this is perfectly consistent with the UML semantics of Use
Case diagrams (Object Management Group, 2001), as they
are used to specify the behavior of an entity without specify-
ing its internal structure.

2.4 Modeling Mobility Behaviors

The next step is to describe the order in which configurations
are activated in each behavior. To do that, we associate an
Activity diagram to each Use Case; each activity of the Ac-
tivity diagram represents a configuration of the system. If the
mobile user triggers the configurationCj immediately after
the configurationCi, then in the Activity diagram there will
be a transition between the activity representingCi and the
one representingCj . Considering our example, the two be-
haviorsB1 andB2 are represented as the Activity diagrams
of Fig. 5.

(a) Activity diagram associated toB1

(b) Activity diagram associated
to B2

Figure 5: Activity diagrams associated to the mobility behav-
iors

Note that in this way it is possible to represent non-
determinism that is a behavior can have multiple successors.
Fig. 6(a) illustrates an example where the mobile entity starts
by activating configuration A. Then it may proceed by acti-
vating one of configuration B and C. After that, configuration
D is activated. It is important to observe that the Activity
diagrams associated to behaviors do not need to be acyclic.
Thus, it is also possible to model situations in which the user
triggers the same sequence of configurations for a number of
times. Moreover, using fork and join nodes of Activity dia-
grams it is possible to represent the concurrent execution of
different configurations. This can be used to model situations
in which the mobile entity generates copies of itself, each
one traveling independently through the system. Fig. 6(b)
shows an example where a mobile entity starts by entering
configuration A. Next, it splits in two copies, one executing
configuration B and the other executing configuration C in
parallel. This means that the two copies of the mobile entity
can move to different locations and perform different interac-
tions with the system. After that, the two copies synchronize
and collapse into one instance, which proceeds by executing
configuration D.



(a) Nondeterministic behavior

(b) Concurrent agent execution

Figure 6: Modeling nondeterministic mobility behavior and
mobile concurrent execution of multiple agent instances

2.5 Modeling Component Interactions

The final step is describing the activities carried out in each
configuration. To do that, we use the hierarchical structure of
the Activity diagrams to associate the interactions to each ac-
tion state identified in the previous step. Namely, we expand
each action step representing a configuration into the Activ-
ity graph describing the sequence of actions which are taken
during the interaction between the mobile entity and the sys-
tem. It is necessary to specify where the actions are exe-
cuted. To do so it is possible to use “swimlanes”, which are
a means for specifying responsibility for actions. The name
of the swimlanes denotes the Deployment node instance on
which the actions execute. As some graphical UML editors
do not support swimlanes, it is possible to tag each action
with thePAhost tagged value, whose value is the name of
the node instance of the Deployment diagram correspond-
ing to the host where the action is executed. Fig. 7 shows
the interactions performed while the considered system is in
configurationC1 andC3 using the swimlane-based notation.

The interaction between the PDA and the PC is very sim-
ple. Basically, first the PDA computes which frames it needs.
Then a suitable request is encoded and sent through the com-
munication networks to the PC. The request is unmarshaled,
and the requested frames are encoded and packed into a re-
ply message. This message is sent back through the network
to the PDA, which finally displays the frames. Note that in
Fig. 7 we omitted the description of the interaction in con-
figurationC2, as this is basically the same as inC1, with the
only difference that LAN2 is used instead of LAN1.

2.6 Summary of the Methodology

The proposed mobility modeling methodology can be sum-
marized in the following steps:

1. Identify the processing resources (processors or net-
works) available in the system. Each resource is rep-
resented by a node instance in the UML Deployment
diagram.

2. Identify the classes of users of the system. Users rep-
resent workloads applied to the system. Each class of

(a) Interaction in configurationC1

(b) Interaction in configurationC3

Figure 7: UML description of the interactions

users is represented as an Actor in the Use Case dia-
gram. Actor may represent either a fixed population of
users (closed workload) or an unlimited stream of users
(open workload).

3. Identify the mobility behaviors. For each class of users
it is necessary to identify the different pattern of mobil-
ity they may exhibit. Each of such mobility patterns is
represented by a Use Case associated to the Actor rep-
resenting the class of users.

4. Provide a high level description of the mobility behav-
iors. An Activity diagram is association to each of the
Use Cases identified in the previous step. Such Ac-
tivity diagram represents the sequence of configuration
changes which happens in the system while the mobile
user moves.

5. Describe the interactions occurring in each system con-
figuration. Each Action states defined in the previous
step are expanded into a low-level Activity diagram de-
scribing the interactions between system entities. Each
Action of the low-level diagram represents a service re-
quested to a specific processing resource. Code mobility



is represented by associated Activities in the low-level
diagram to different hosts. Physical mobility is repre-
sented by a possibly different interaction pattern associ-
ated to nodes of the high-level Activity diagram.

Quantitative informations required by the simulator can
be associated to UML elements as described in the following.

3 UML PERFORMANCE MODEL-
ING

We shall now summarize the proposed approach to integrate
performance modeling with UML specifications for software
mobile SA. The approach derives the performance model di-
rectly from annotated UML specifications extended to in-
clude mobility as described in the previous Section. We
consider the performance model and the annotations based
on those proposed in the UML Performance Profile (Object
Management Group, 2002a). The profile has been defined
using standard UML extension mechanisms, and provides
the modeler with a set of packages. Each package defines the
mapping between specific domain models (schedulability,
time and performance characteristics) to UML stereotypes
and tagged values definitions, which represent the UML
viewpoint.

We consider SA described in terms of Use Case, Activ-
ity and Deployment diagrams. We derive a process oriented
simulation model of the software system that is then executed
to derive performance indices. Finally, simulation results are
reported back into the UML diagrams as tagged values, so
they are readily available at the software designer, integrated
in the UML system specification.

We now briefly sketch how the performance model is de-
rived; a more detailed description of the derivation of the
simulation model from UML diagrams for systems without
mobility can be found in (Balsamo and Marzolla, 2003a,b).
In the following we show how the methodology can be di-
rectly applied to modeling code and physical mobility of the
application described by the SA.

Fig. 8 illustrates the structure of the performance simula-
tion model derived from the UML diagrams. The basic ob-
ject of the simulation model is aPerformanceContext .
This object contains the other elements of the model, namely
Workloads, Scenarios and Resources. Hence there are three
types of simulation processes derived from the UML dia-
grams that are Workload, Scenarios and Resource processes.

Workloads can be open or closed, depending on whether
the number of users accessing the system is unbounded or
fixed. Each Workload actually drives one or more Scenarios.
Each time a new user belonging to a Workload requests ser-
vice to the system, one of the Scenarios associated with that
workload is selected. Selection is done randomly, according
to the probability associated to each scenario.

A Scenario is a set of abstract scenario steps, represented
by the AbsStep class. Abstract scenario steps can either
be composite steps (described by thePScenario class), or
atomic steps of different kinds. Scenarios are collections of

steps; exactly one of these steps is marked as the root step
(starting step) of the scenario. Atomic steps can be of type
PStep fork for nodes representing the creation of multiple
execution threads,PStep join for nodes representing syn-
chronization points between different threads, andPStep
for normal atomic steps.

Each Scenario step executes on a single processor, to
which it requires service. Processors are modeled by ob-
jects of typeAbsPRhost . A processor is characterized,
among other things, by a scheduling policy which can be one
of “FIFO” (first come first served), “LIFO” (last come first
served) or “PS” (processor sharing). The simulation model
defines some classes derived fromAbsPRhost which im-
plement a specific scheduling policy.

Each UML model element (Actor, Use Case, Activity
state, Node instance) can be tagged with additional quantita-
tive information, which is necessary to derive the parameters
of the simulation model. Examples of such parameters are
the interarrival time of users, the service demand of action
steps, the speed factor of each processor.

Concerning mobility modeling, each Use Case are tagged
with the probability of its occurrence, that is, the probability
that the associated Actor (motile entity) will execute that Use
Case (mobility behavior) upon arriving to the system. Action
states of the high-level Activity diagram associated to each
Use Case are annotated with the probability of occurrence,
the number of times they are repeated and the delay between
repetitions. As each action state represents a configuration,
the annotations allow the specify (nondeterministically) the
pattern of mobility and how long the system remains in each
configuration. When the simulator “executes” a configura-
tion, it basically executes all the activities of the low-level
Activity diagram embedded in the configurations.

A mobile code fragment moving from hostH1 to hostH2

is represented as follows. LetC1 be the configuration where
the code executes inH1 andC2 the configuration where the
code executed inH2. The low level Activity diagram describ-
ing C1 andC2 will contain an action state (or a whole subdi-
agram) corresponding to the computation. Such action state
or subdiagram will be tagged with thePAhost tagged value,
which describes the location where the activity is executed.
In C1 we setPAhost =H1, and inC2 we setPAhost =H2.

Physical mobility is modeled in a similar way. If a mo-
bile device travels through the system, as in our example,
probably it will interact with different other nodes for com-
municating. Depending on the situation, it may even choose
a different communication pattern, and hence a different in-
teraction style with other entities. Such interaction styles will
be represented by (possibly different different) structures of
the low level Activity diagrams.

The derivation of the performance model from the UML
specification works as follows. Each actor of the Use Case di-
agrams is translated into anOpenWorkload or Closed-
Workload simulation process, depending on its associated
stereotype. Note that to represent mobility, each Actor repre-
sents a class of mobile entity.

Then, each Use Case associated with the Actor is exam-
ined and translated into aPScenario simulation process.



Figure 8: Structure of the simulation performance model

To define the content (sequence of steps) of the scenario, the
high level Activity Diagram associated with the Use Case is
examined. The structure of such diagram is translated into
a network ofPScenario simulation processes. The inter-
nal behavior of such processes is modeled by the low level
Activity diagram contained in the high level action stated.

All the activities are translated into the appropriate kind
of step (that is,PStep , PStep fork or PStep join ) de-
pending on the type of the UML element. The transforma-
tion is applied recursively if an activity is indeed composite
of a sub-activity diagram. Each object derived from theAb-
sStep class is associated with an object representing the
physical resource on which it executes. The mapping be-
tween actions and the resources where they execute can be
derived by examining thePRhost tagged value, or the name
of the swimlane containing the activity.

Finally, each node instance in the Deployment Diagrams
is translated into a simulation process of typeAbsPRhost .

We developed UML-Ψ (UML Performance SImulator),
a prototype performance evaluation tool, which processes
an XMI (Object Management Group, 2002b) description of
UML Use Case and Activity diagrams. The UML SA has to
be annotated using a simplified subset of the UML Perfor-
mance Profile.

The simulation model is process oriented and its objects
are derived by the analysis of the UML diagrams annotated
with performance specification of the software system com-
ponents, and with the extension to describe mobility, as de-
scriber in the previous Section. The simulation model is im-
plemented as a discrete-event simulation program written in
C++, whose execution provides results for a set of perfor-
mance indices. We evaluate through simulation the mean re-
sponse time associated with the execution of each scenario
(Use Case) and each scenario step (Activity). Simulation re-
sults, i.e., the performance measures of the software compo-
nents are inserted back into the original UML SA as tagged
values to provide feedback to the system designer.

4 CASE STUDY

The case study illustrated in the previous sections has been
simulated using the parameters reported on Table 1. A sin-
gle user interacts with the system (closed workload), and
the probabilityp that the user triggers the behaviorB1 (see
Fig. 5) has been set top = 0.3, while the probability that the
user triggers the behaviorB2 has been set to1− p.

Parameter Value
(Un)Marshalling Requests Const.0.1s
(Un)Marshalling Responses Expon. mean=5.0s
Request Transmission Times Exp. mean=1.0s
Response Transmission TimesExp. mean=10.0s
Request Computation Exp. mean=0.1s
Frame Encoding Time Exp. mean=20.0s
Display time on the PDA Exp. mean=20.0s
PDA Speedup factor 0.2
PC Speedup factor 10.0
Processors Sched. Policies FIFO

Table 1: Simulation Parameters. “Exp.” means exponentially
distributed with the given mean. “Const.” means constant.

The simulation results are shown in Table 2. They are the
steady-state mean values computed at 90% confidence level;
for simplicity only the central value of the confidence inter-
val is shown. Such results are automatically inserted into
the UML diagram as tagged values associated to the rele-
vant UML elements, as described in (Balsamo and Marzolla,
2003a,b). In this way it is very easy to get immediate feed-
back on the model performances.

5 CONCLUSIONS

In this paper we introduced an integrated methodology for
UML-based modeling and performance evaluation of mobile
systems. Only minimal extensions to the semantics of UML
are requested in order to apply the methodology. The per-
formance modeling is based on a subset of the UML Perfor-



Internet utilization 0.039
LAN1 utilization 0.010
LAN2 utilization 0.028
LAN3 utilization 0.072
PDA utilization 0.832
PC utilization 0.015
BehaviorB1 response time 445s
BehaviorB2 response time 312s

Table 2: Simulation Results.

mance Profile. We depicted the structure of the simulation
performance model which is automatically derived from the
annotated UML diagrams. Using a simple case study, we
showed the approach can be applied.

Our current research involves the development of a more
compact ways to describe the UML diagrams used in the pro-
posed approach. In fact, we note that many of the low level
activity diagrams have the same structure, with only mini-
mal differences mostly related to the location of the activ-
ities. Describing such diagrams in some “parametric” way
would greatly alleviate the work of the modeler.

ACKNOWLEDGMENTS This work has been partially
supported by MURST Research Project Sahara and by MIUR
Research Project FIRB “Performance Evaluation of Complex
Systems: Techniques, Methodologies and Tools”.

REFERENCES

L. B. Arief and N. A. Speirs. Automatic generation of dis-
tributed system simulations from UML. InProc. of ESM
’99, 13th European Simulation Multiconference, pages
85–91, Warsaw, Poland, June 1999.

L. B. Arief and N. A. Speirs. A UML tool for an auto-
matic generation of simulation programs. In Proceedings
of WOSP 2000 Proceedings of WOSP 2000, pages 71–76.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Soft-
ware performance: state of the art and perspectives. Tech
Rep. TR SAH/04, MIUR Sahara Project, Dec. 2002.

S. Balsamo and M. Marzolla. A simulation-based ap-
proach to software performance modeling. Tech. Rep. TR
SAH/44, MIUR Sahara Project, Mar. 2003a.

S. Balsamo and M. Marzolla. Simulation modeling of UML
software architectures. In D. Al-Dabass, editor,Proc. of
the European Simulation Multiconference, pages 562–567,
Nottingham, June 2003b.

L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison-Wesley, 1998.

H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing.
Extending activity diagrams to model mobile systems. In
M. Aksit, M. Mezini, and R. Unland, editors,NetObject-
Days, volume 2591 ofLecture Notes in Computer Science.
Springer, 2003. ISBN 3-540-00737-7.

V. Cortellessa and V. Grassi. A performance based methodol-
ogy for early evaluate the effectiveness of mobile software
architecture.J. of Logic and Algebraic Programming, 51:
77–100, Apr. 2002.

M. De Miguel, T. Lambolais, M. Hannouz, S. Betgé-Brezetz,
and S. Piekarec. UML extensions for the specifications
and evaluation of latency constraints in architectural mod-
els. In Proceedings of WOSP 2000 Proceedings of WOSP
2000, pages 83–88.

R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri.
KLAIM: a kernel language for agents interaction and mo-
bility. IEEE Trans. on Soft. Eng., 24(5):315–330, 1998.

V. Grassi and R. Mirandola. UML modelling and per-
formance analysis of mobile software architectures. In
M. Gogolla and C. Kobryn, editors,UML, volume 2185 of
Lecture Notes in Computer Science. Springer, 2001. ISBN
3-540-42667-1.

P. Kosiuczenko. Sequence diagrams for mobility. In
J. Krogstie, editor,Proc. of MobIMod workshop, Tampere,
Finland, Oct. 2002. Springer.

N. Medvidovic, D. S. Rosenblum, and D. F. Redmiles. Mod-
eling software architectures in the Unified Modeling Lan-
guage.ACM Trans. on Soft. Eng., 11(1):2–57, 2002.

N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description
languages.IEEE Trans. on Soft. Eng., 26(1):70–93, 2000.

R. Milner. Communicating and Mobile Systems: Theπ-
Calculus. Cambridge University Press, 1999.

C. Nottegar, C. Priami, and P. Degano. Performance eval-
uation of mobile processes via abstract machines.IEEE
Trans. on Soft. Eng., 27(10):338–395, 2001.

Object Management Group. Unified modeling language
(UML), version 1.4, Sept. 2001.

Object Management Group. UML profile for schedulability,
performance and time specification. Final Adopted Speci-
fication ptc/02-03-02, OMG, March 2002a.

Object Management Group. XML Metadata Interchange
(XMI) specification, version 1.2, Jan. 2002b.

G. P. Picco, G.-C. Roman, and P. J. McGann. Reasoning
about code mobility in mobile UNITY.ACM Trans. On
Soft. Eng. and Methodology, 10(3):338–395, 2001.

Proceedings of WOSP 2000. Ottawa, Canada, Sept. 2000.
ACM Press.

J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Model-
ing Language Reference Manual. Addison-Wesley, 1999.

M. Shaw and D. Garlan.Software Architecture: perspectives
on an emerging disciline. Prentice-Hall, 1996.

C. U. Smith and L. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Soft-
ware. Addison–Wesley, 2002.


	INTRODUCTION
	UML MOBILITY MODELING
	Previous work
	The approach
	Modeling the choice of Mobility
	Modeling Mobility Behaviors
	Modeling Component Interactions
	Summary of the Methodology

	UML PERFORMANCE MODELING
	CASE STUDY
	CONCLUSIONS

