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Abstract
We are interested in studying the performance of software system in early stages of development.
We investigate how queueing networks with finite capacity and blocking can be applied as
performance models of software architectures.
The starting point of our analysis is a software system high-level description whose dynamic
behavior results in a finite state model or, as recently proposed, is described in terms of Message
Sequence Charts. We use the queuing theory to obtain a performance model of the software
component behaviour from the behavioral description. Our approach is to automatically derive a
queuing network from a Software Architecture description. More precisely, we represent a software
component or a set of components with a simple server or complex server. A complex server
represents the service given by the associated components, where the associated service time is the
summation of the single service time associated to each component. For particular behavioral
patterns we use also multiclass server that represents a server that can provide multiple service but
only one at a time. In the examples we considered this class of queuing network models was not
sufficiently expressive. In fact by using only service centers with infinite capacities we cannot model
systems where there are concurrent components that can communicate synchronously. Hence, by
observing the need of a more accurate definition of the performance models of software
architectures to capture some features of the communication systems, we consider queueing
networks with finite capacity and blocking to represent some synchronization constraints.
To model synchronous communication among concurrent system components, we assigns distinct
service centers to the communicating components in order to model their independence. We
associate to the receiver component a service center with a zero capacity buffer and impose a
blocking mechanism to the sender component in order to model synchronization. In particular we
choose the Blocking After Service (BAS) blocking mechanism. Thanks to this kind of modeling we
can describe more complex contexts where the components are simultaneously active but also
situations in which a component C1 attempts to communicate with another component C2, when the
latter is still working. Indeed, the BAS mechanism permits to block component C1 waiting for C2 to
complete its service. In the paper we will discuss our experience in using queueing network models
and their adequacy for the problem at hand in terms both of modeling and of its evaluation.

1. Introduction

Queueing network models have been extensively applied in the last decades as a powerful tool for
modelling and performance evaluation and prediction of computer and systems, as well as
production and manufacturing systems [Kl76, La82, LZGS84, Ka92]. Queueing network models
with finite capacity queues and blocking have been introduced and applied as more realistic models
of systems with finite capacity resources and population constraints [AP89, Ba94, On90, On93,
Pe89, Pe94].
More recently, there is growing interest in integrating performance evaluation tools in early stages
of software development life cycle and queueing network models have been used for quantitative
analysis of software systems. Several approaches have been proposed, notably the software
performance engineering method introduced by Smith as an integration of software engineering
and performance management [Sm90, SW93, Wo98].
Software Architectures (SA) describe software system structures at a high level of abstraction [SG96]
and they have been devised as the appropriate design level to carry out quantitative analysis
[BCK98, HNS99, Wo98]. They represent at an early stage of development the phase in which basic
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choices of components and interactions among components are made. This choice is driven by
several non-functional issues, which include important factors such as system performance and
reliability. We are interested in studying and evaluating the expected performance of software
architectures. We have proposed a methodology for software performance evaluation at the SA level
that derives a performance evaluation model, based on a queueing network model, from a SA
specification formally described in Chemical Abstract Machine formalism [BIM98, ABI00]. From
this description we derive a finite state model of the global system behavior whose analysis lead to
the definition of queuing network model. More recently we have proposed a new approach based
on Message Sequence Charts as the software system high-level description from which we derive the
performance model [AABI00]. This approach tries to overcome a drawback of the previous one,
that is the state space explosion problem of the finite state model of the SA description.
We use queueing networks to obtain a performance model of the software component behaviour
from the behavioral description. From our perspective of software architectures, queueing network
models provide a powerful tool that can be defined, parameterized and evaluated at a low cost and
with a level of abstraction that allows a faithful modeling,

In the paper we will discuss our experience in using queueing network models and their adequacy
for the problem at hand in terms both of modeling and of its evaluation. Specifically, we observe the
need of a more accurate definition of the performance models of software architectures to capture
some features of the communication systems. We consider queueing networks with finite capacity
and blocking to represent some synchronization constraints.
First we have considered queueing network models with infinite capacity queues to obtain simple
product form BCMP networks that can be efficiently analyzed [Kl76, La82, LZGS84, Ka92]. In
particular queueing networks with infinite capacity can model SA in the two following cases: (i)
sequential components with synchronous communication, (ii) concurrent components with
asynchronous communication through buffers.
More precisely, we represent a software component or a set of components with a simple server or
complex server. A complex server represents the service given by the associated components, where
the associated service time is the summation of the single service time associated to each component.
In the examples we considered, the class of queuing network models with infinite capacity queues
was not sufficiently expressive. In fact by using only service centers with infinite capacities we
cannot model systems with concurrent components that can communicate synchronously.
Hence we investigate the application of queueing networks with blocking as performance models of
software architectures with concurrent components and synchronous communication.

The paper is organized as follows. Section 2 introduces the definition and analysis of queueing
network models with finite capacity queues and the blocking type definition. Section 3 briefly
summarizes the approach of software performance analysis based on queueing network models
derived by Message Sequence Charts as SA description. Section 4 presents the application of
queueing network models with finite capacity to model synchronous communications between
software components. An application example is illustrated in Section 5 and conclusions are
presented in Section 6.

2. Queueing network models with finite capacity queues

Queueing networks with finite capacity queues have been introduced to represent systems with
finite capacity resources and population constraints. When a queue reaches its maximum capacity
then the flow of customers into the service center is stopped, both from other service centers and
from external sources in open networks, and the blocking phenomenon arises. Various blocking
mechanisms have been defined and analyzed in the literature to represent distinct behaviors of real
systems with limited resources [AP89, On90, Pe94, VD91a, VD9b]. Performance analysis of
queueing networks with blocking can be exact or approximate. Exact solution algorithms have
been proposed to evaluate both average performance indices, queue length distribution, and
passage time distribution [B94, On90, P94]. Under exponential assumption one can define and
analyze the continuous-time Markov chain underlying the queueing network. In some special
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cases queueing networks with blocking show a product-form solution, under particular
constraints, for various blocking types [BD94].

2.1 The model
Consider a queueing network model formed by M service centers or nodes and a set of
customers. For simplicity we consider single class of customers. Queueing networks can be open
or closed. In a closed network a constant number of customers N circulate into the network. For
an open network we define an exogenous arrival process at each node i, 1≤i≤M, which is usually
assumed to be Poisson. Let λ denote total arrival rate at the network and p0i, 1≤i≤M, the
probability that an exogenous arrival tries to enter node i. Then the Poisson arrival process at
node i has parameter λp0i. Let P=[pij] (1≤i,j≤M) denote the routing matrix where pij is the
probability that a job leaving node i tries to enter node j. For each service center we define the
number of servers, the service time distribution, the queue capacity and the service discipline.
According to Kendall's notation a service center is denoted by A/B/s/c/D, where A and B are
respectively the customer interarrival time and the service time distribution, s the number of
identical servers, c the queue capacity and D the service discipline. Examples of service
distributions are exponential (M), phase-type with n exponential stages (PHn), general (G) and
generalized exponential distribution (GE). Let S i denote the state of node i, which includes the
number of customers in node i, denoted by ni, and other components depending both on the node
type (service discipline and service time distribution) and the blocking type. Let µi denote the
service rate of node i, i.e. 1/µi is the average service time. Arrival rate and service rate can be load
dependent. Let Bi denote the maximum number of customers admitted at node i, that is in the
queue and in the servers (Bi=c+s), 1≤i≤M. Thus the total number of jobs in node i satisfies the
constraint ni≤Bi. When the queue reaches the finite capacity (ni=Bi) the node is said to be full and
blocking arises.

2.2 Blocking types
Various blocking types have been defined to represent different system behaviors. We now recall
three of the most commonly used blocking types [AP89, On90, On93, Pe94].

• Blocking After Service (BAS): if a job attempts to enter a full capacity queue j upon
completion of a service at node i, it is forced to wait in node i server, until the destination
node j can be entered. The server of source node i stops processing jobs (it is blocked) until
destination node j releases a job. Node i service will be resumed as soon as a departure
occurs from node j. At that time the job waiting in node i immediately moves to node j. If
more than one node is blocked by the same node j, then a scheduling discipline must be
considered to define the unblocking order of the blocked nodes when a departure occurs
from node j.

• Blocking Before Service (BBS): a job declares its destination node j before it starts receiving
service at node i. If at that time node j is full, the service at node i does not start and the
server is blocked. If a destination node j becomes full during the service of a job at node i
whose destination is j, node i service is interrupted and the server is blocked. The service of
node i will be resumed as soon as a departure occurs from node j. The destination node of a
blocked customer does not change. Two subcategories distinguish whether the server can be
used as a service center buffer when the node is blocked: BBS-SO (server occupied) and
BBS-SNO (server is not occupied).

• Repetitive Service Blocking (RS): a job upon completion of its service at queue i attempts to
enter destination queue j. If node j is full, the job is looped back into the sending queue i,
where it receives a new independent service according to the service discipline. Two
subcategories have been introduced depending on whether the job, after receiving a new
service, chooses a new destination node independently of the one that it had selected
previously: RS-RD (random destination) and RS-FD (fixed destination).
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Closed queueing networks with finite capacity queues and blocking can deadlock, depending on
the blocking type. Deadlock prevention or detection and resolving techniques must be applied.
Deadlock prevention for blocking types BAS, BBS and RS-FD requires that the overall network
population N is less than the total buffer capacity of the nodes in each possible cycle in the
network, whereas for RS-RD blocking it is sufficient that routing matrix P is irreducible and N is
less than the total buffer capacity of the nodes in the network [On90, Ba94]. Moreover, to avoid
deadlocks for BAS and BBS blocking types we assume pii=0, 1≤i≤M. In the following we shall
consider deadlock-free queueing networks in steady-state conditions.

2.3 Analysis of queueing networks with blocking
Under general assumptions a queueing network model with finite capacity can be represented by a
Markov process. Let S=(S1,…,SM) denote the state of the network and let E be the state space,
i.e. the set of all feasible states. The network model evolution can be represented by a continuous-
time ergodic Markov chain M with discrete state space E and transition rate matrix Q. The
stationary and transient behaviour of the network can be analyzed by the underlying Markov
process. Under the hypothesis of an irreducible routing matrix P, there exists a unique steady-
state queue length probability distribution π  = {π(S ), S∈E}, which can be obtained by solving
the homogeneous linear system of the global balance equations

π  Q = 0 (1)
subject to the normalising condition ΣS∈E π(S ) =1 and where 0  is the all zero vector. The
definition of state space E and transition rate matrix Q depends on the network definition and on
the blocking type of each node [BD94, On90, On93, Pe94, VD91a, VD91b]. From vector π one
can derive π i, the queue length distribution of node i and other average performance indices of
node i, such as throughput (Xi), the average queue length (Li) and the mean response time (Ri).
The numerical solution based of the Markov chain analysis is seriously limited by the space and
time computational complexity that grows exponentially with the model number of components.
When the Markov chain is infinite and, unless a special regular structure of matrix Q allows to
derive closed form expression of the solution π , one has to approximate the solution on a
truncated state space. For closed networks the time computational complexity of liner system (1)
is determined by the space state E cardinality that grows exponentially with the buffer sizes
(Bi≤N, 1≤i≤M) and M. Although the state space cardinality of the process can be much smaller
than that the process of the same network with infinite capacity queues (which is exponential in N
and M), it still remains numerically untractable as the number of model components grows.
In some special cases, queueing networks with blocking have a product-form solution, under
particular constraints and for various blocking types. A survey of product-form solutions of
networks with blocking and equivalence properties among different blocking network models is
presented in [BD94]. Some efficient algorithms for some closed product-form networks with
blocking have been recently defined [BC95]. These algorithms provide the model solution with a
time computational complexity linear in the number of network components, i.e., the number of
service centers and the number of customers. However, general queueing networks with blocking
do not have a product-from solution and approximate analytical methods or simulation have to be
applied [AP89, BR00, On90, On93, Pe98, Pe94].
We consider queueing networks with blocking as a performance model of software architectures.
In the next section we summarize the framework of performance modelling of SA and in Section
4 we discuss how queueing networks with finite capacity and blocking can be used to model
synchronous communications between software components.

3. Performance models of Software Architectures

We consider software performance analysis based on queueing network models derived by Message
Sequence Charts as software architecture description. In this section we briefly summarize an
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approach to automatically derive a performance evaluation model, based on a queueing network
model, from a SA specification described by Message Sequence Charts (MSC). A detailed
description of this method is given in [AABI00].
MSC have been widely used as a design tool in many event-based distributed systems. Our approach
assumes the SA is described by MSC whose objects are components and interactions are modeled as
message sequences, that is, how messages are sent and received between a number of objects. We
analyze MSC in terms of the trace languages that they generate trying to single out the real degree
of parallelism among components and their dynamic dependencies. This information is then used to
build a faithful queueing network model representing the SA behavior that forms the basis to
conduct software system performance analysis.

3.1 Message Sequence Charts as SA description
MSC illustrate the interactions among a set of objects focusing on message sequences, that is, how
messages are sent and received between them [ITU94]. The sequence diagram describes the specific
interaction between objects that happens at a certain time during the system's execution. On the
horizontal axis there are the objects involved in the sequence, represented by an object rectangle
with the object name. The vertical dashed line represents the object's lifeline. Horizontal arrows
between object's lifelines represent communications between objects. The end of arrows indicates the
type of communication. In our approach the objects are substituted by architectural components
and the arrows indicate the time when communication occurs. We assume that each component is
contained in a MSC and the MSC contain state information about each component. MSC can
contain repeat cycles, refer to the same initial configuration and must be representative of the major
system behavior.

3.2 Deriving Queueing Network Models from Message Sequence Charts
Starting from the high level description of software architectures based on MSC we derive a
queueing network model to evaluate and predict SA performance. We derive dynamic information
such as communication among components, communication types, concurrency and non-
determinism among components. The approach is based on the derivation from each MSC of a
regular expression describing the events sequence performed in the MSC. Such expressions are
analyzed and compared to find out the common maximum prefix. Then we analyze the remainder
parts of the regular expressions to identify particular structures that complete the needed
information. This information is collected into sets, called interaction sets. For the sake of simplicity
we assume one to one communication between components and that the associated automata is
complete, i.e. from every state it is possible to do all possible actions. Hence we can get the
parallelism between components.
We encode the MSC as follows. Let M = {M1, M2,…, Mn} denote the set of MSC describing the

architectural behavior of the set of components C1,…,Cm. An event ej on a MSC Mi  is a
communication between two components, denoted by an arrow. We define a visual ordering of
events ej  and ek denoted by ej <i ek if e j precedes ek  in the MSC Mi temporal sequence. A label S(C1,

C2)
c is associated to an event ej where C1 and C2 are the sending and receiving components,

respectively and c denotes the communication type, i.e., synchronous (c = s) or asynchronous (c =
a). Given a set of ordered events e1 ,…,ej  the associated trace is a regular expression of the

corresponding labels l1 ,…,lj where each lk is the label of ek or a regular expression {b1 ,…,bq)
n

where b1 ,…,bq is the trace associated to a block of events in a repeat cycle. From the MSC we
generate the labels of the events and then we build the traces according to the visual ordering given
by the event sequences in the MSC. During the labels generation we produce the Based Interaction
Sets representing all the communication in the MSC. In particular if we generate a label S(C1, C2)

c

at step i, then we put the Interaction Pair (C1, C2)
c
 in a set called Based Interaction Set Ii. Then by

trace analysis we generate the Structured Interaction Sets composed of two Interaction Pairs and
corresponding to concurrent components, one to one, two to two and alternative communications.
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This trace analysis is based on a comparison of pairs of traces searching a matching among their
prefixes. Indeed a trace singles out an automata computation, so a common prefix corresponds to
the time in which two computations begin to have distinct behaviors. A detailed description of the
method and the algorithm is given in [AABI00].
In order to derive the queueing network model of the SA described by the MSC, from the trace
analysis we obtain the Structured Interaction Sets that are examined to associate elements of the
queueing network model. We identify internal and external components so determining whether the
queueing network is open or closed. External components can be seen as sources that model the
production of system customers or processing elements from which the system communicates the
results to the environment.
We analyze interaction among system components, i.e. the Interaction Sets to understand their real
level of concurrency and consequently generate the corresponding queueing network. This is
crucial to obtain a model that faithfully represents the given system. The goal is to understand which
components are strongly synchronized so they result in a sequential behavior, and which are
independent from others and can be concurrently active.
We start from considering each component as an autonomous server. Then along the computation it
can become part of a more structured element. Informally, an Interaction Set Ii= {(C1, C2)

c
} is

modeled as a complex server representing a unique service composed of C1 followed by C2 and that
expresses the sequence of operations. The service center with an infinite buffer implicitly models the
(infinite) communication channel.
Moreover the algorithm builds the transition from C1 to C2 in the network topology, defines

external arrivals if C1 is an external element and a departure if C2 is an external element. The
algorithm models a non-deterministic computation by introducing a multi-customers service center
that at the end of the generation process is transformed in a simple-customer service center whose
service time depends on the service times of the original classes.
The complete definition of the queueing network model also depends on how we represent the type
of communication among components. In particular we observe that by using only service centers
with infinite capacities we cannot model systems with concurrent components that can communicate
synchronously. In the next section we deal with queueing networks with finite capacity and blocking
to model synchronous communication among software components.

4. Modelling synchronous communication by QNM with finite capacity

In this section we discuss how queueing network with finite capacity queues and blocking can be
used as performance models of SA.
In the examples we considered, the class of queuing network models with infinite capacity queues
was not sufficiently expressive to model systems with synchronous communication between
concurrent components. Hence, by observing the need of a more accurate definition of the
performance models of software architectures to capture such feature of the communication
systems, we consider queueing networks with finite capacity and blocking to represent some
synchronization constraints.
To model synchronous communication among concurrent system components, we assign distinct
service centers to the communicating components in order to model their independence. We
associate to the receiver component a service center with a zero capacity buffer and impose a BAS
blocking mechanism to the sender component in order to model synchronization.
Specifically we model the components that can receive a synchronous communication with a finite
capacity service center, with one server and where the buffer capacity is set to one. That is, we model
a component Ci with a single server service center i, where we allow no queueing by setting Bi=1 as
the queue capacity, i.e. the maximum number of customers admitted at service center i, that is in the
queue and in the server.
We assume BAS blocking as the mechanism for the sending nodes of the finite capacity service
center. We choose to model such components as service centers to exploit component concurrency
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in the SA. Finite capacity queues and BAS blocking mechanism allow to model synchronous
communication.

For example consider a system that consists of three components C1, C2 and C3 with synchronous
communication, as illustrated in Figure 1. Assume that all the components can be active at the same

System

Figure 1 - Concurrent system with synchronous communication

time. Our goal is to define a performance model that represents the parallel execution of the three
components and also synchronous communication. For example the model must represent the case
where component C1tries to communicate with component C2 which is active on some operations;
then component C1 becomes blocked until component C2 is free and can receive information from
C1. Modelling this synchronous communication between the two concurrent components is
illustrated in Figure 2.

SC(C2)

       SC(C1)

    BAS blocking

Figure 2 - Modelling synchronous communication between concurrent components

In particular, we have synchronous communication between the two components C1 and C2. We
model this communication pattern by associating a service center to each component, say SC(C1)
and SC(C2), respectively. Then we associate to SC(C2) a single capacity queue and to SC(C1) the
BAS blocking mechanism. Thanks to this kind of modeling we can describe more complex contexts
where the components C1 and C2 are simultaneously active but also situations in which C1 attempts
to communicate with C2, when the latter is still working. In fact the BAS mechanism permits to
block the component C1 waiting for C2 to complete its service.
By setting in SC(C2) finite capacity B2=1, then it can receive service requests from SC(C1) only
when its server is not occupied. When SC(C2) is full, if SC(C1) at the completion of its service
attempts to send a customer (a request) to SC(C2), then SC(C1) is blocked until a departure (service
completion) occurs from SC(C2), according to BAS definition. This corresponds to the system
behavior that we want to represent in the performance model.

Therefore, one to two {(C1, C2)
c1

, (C1, C3)
c2

} and two to one {(C2, C1)
c1

, (C3, C1)
c2

}
communications are modeled assigning to the involved components distinct service centers, with a
single capacity queue if the communication is synchronous. One to two communication model is

C1

zero queueing
B2=1

C2

Input Output  C1 Info1 Info2    C3   C2
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for synchronous communication, i.e. with c1=c2=s, illustrated in Figure 3. Service center SC(C1) can
have in turn finite capacity if C1 is also a destination component of a synchronous communication.

SC(C2)

       SC(C1)

    BAS blocking

SC(C3)

Figure 3 - Modelling one to two synchronous communication between concurrent components

In two to one communication {(C2, C1)
c1

, (C3, C1)
c2

} for synchronous communication we have
to assume a scheduling of the communication requests (the customers in the queueing network)
arriving at C1 from C2 and C3. This corresponds to the definition of the unblocking scheduling in
BAS blocking definition. First Blocked First Unblocked scheduling corresponds to maintaining the
order of communication request times. Figure 4 illustrates two to one communication model for
synchronous communication, i.e. with c1=c2=s.

SC(C2)

         SC(C1)

BAS blocking

SC(C3)

Figure 4 - Modelling two to one synchronous communication between concurrent components

Service centers SC(C2) and SC(C3) can have in turn finite capacity if C2 and C3 are also destination
components of a synchronous communication, respectively.

A different case is the two to one communication {(C2, C1)
c1

, (C3, C1)
c2

} where there is a
synchronous and an asynchronous communication. For example assume that components C1 and
C3 are active components with synchronous communication (i.e. c2=s) and C2 is a connection

C1

B2=1

C2

B3=1

C3

B1=1

C2

C3

C1
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element for some other component. Then SC(C2) has infinite capacity queue, because it models
the buffer for asynchronous communication from an other component to component C1 (i.e.
c1=a). Hence, the customers waiting in the infinite queue of SC(C2) model the communication
requests arriving through connection component C2. This server of this service center can be
blocked by SC(C1) when the queue is full, and this represents the attempt to send a request to a
busy destination component.
Finally note that when both components C2 and C3 are connection elements, we have
asynchronous communication to component C1 (i.e. c1=c2=a) that can be modeled by an infinite
capacity service center SC(C1). A similar case is when component C1 is a connection element.

Hence, with this modelling approach we can complete the definition of the queueing network model
as concerns the communication among components. We introduce finite capacity service centers
with single queue capacity and BAS blocking only for those components that use synchronous
communication.
The algorithm to derive the queueing network from the MSC trace analysis identifies the possible
service centers by considering components interactions by the Interaction Sets, and defines the
corresponding service center according to the communication type between components.
When all the Interaction Sets have been examined the algorithm proceeds by performing several
merging operations to reach the final configuration of the service centers.
Specifically, to consider concurrent components we define a set CONC of pairs of independent
execution elements. This set is used eventually to reduce the number of service centers, by deleting
the useless ones. The idea is to analyze set CONC to verify whether for each service center SC(Ci)
there is a concurrent component which communicate in synchronous way. This analysis is carried
out by considering the complex servers and multiclass servers. If we observe that a service center
with finite capacity represents a component that is not concurrent with other components, then that
service center can be eliminated in the queueing network model.

4.1 Model solution
From the algorithm that we have sketched in the previous section to derive a queueing network from
a SA description based on MSC, we do not obtain a completely specified queueing network model,
because we only perform a functional analysis of the system.
In order to solve the performance model we have still to perform the parameterization step of the
modelling process. The parameters to be defined are the distributions characterizing the service
times, the customer arrival process for every service center and the network routing probability.
The complete specification of the queueing network has to be done by the designer according to the
system requirements and by considering the specific class of models. It is in fact important to select
the quantitative parameters so that the resulting queueing network belongs to a class that allows an
efficient solution method.
To this aim for queueing networks with blocking we usually derive single class models. Moreover
we observe that exact analysis can be applied in particular cases and approximate solution is often
necessary [Ba94, On90, On93, Pe94]. In particular the queueing network can be solved via the
numerical solution of the underlying of the Markov chain, i.e. by solving linear system (1).
However, this approach is possible only for small networks, since the space state cardinality grows
exponentially with the buffer sizes (Bi≤N, 1≤i≤M) and the number of service centers, M.
For some special cases, queueing networks with blocking have a product-form solution, under
particular constraints depending on the blocking type, the network topology and other network
parameters. For example for BAS blocking a product form solution holds for two-node networks
with BCMP-type service centers, multiple types of customers and class independent capacities.
Another case of product form networks with BAS blocking is for arbitrary topology networks whose
service centers have FIFO service discipline and exponential service time, multiple types of
customers, class independent capacities, and under the additional constraint that at most one node
can be blocked at a time. Details and references can be found in [Ba94, BD94].
Various approximate solution methods for queueing networks with blocking have been proposed by
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several authors [AP89, BR00, On90, Pe89, Pe94]. They usually provide average performance
indices, such as throughput, mean queue length and mean response time and they can be applied
under various assumptions. For example approximation methods to evaluate the network
throughput of arbitrary topology closed networks with BAS blocking and exponential service times
have been proposed in [AK88a, Ak88b]. Several methods can be applied for open networks with
blocking, depending on the topology, mostly based on the decomposition principle as in [BJ88,
DF93, HB67, KX89, LBDF95, PA86].
Hence the complete specification of the queueing network with the parameter selection should take
into account also special constraints that allow to apply appropriate solution methods to evaluate
performance parameters of the complete queueing network model.
We can carry out performance prediction and analysis of various potential implementation scenarios
by defining the parameters and solving the queuing network model. Such performance analysis can
provide useful insights for the software development process in order to meet some given
performance criteria.

5. Examples

In this section we illustrate the resulting performance models, the queueing networks with finite
capacity obtained by the application of our approach to two examples of software architectures.

The first example is the design of a Compressing Proxy system as described in [CIW99]. Such
system is introduced with the purpose of improving the performance of Unix-based World Wide
Web browsers over slow networks by an HTTP server that compresses and uncompresses data to and
from the network. We have four components as illustrated in Figure 5. Components are denoted by
square boxes and processes by ovals. The filters communicate using a function-call-based stream
interface.

Figure 5 - The Compressing Proxy SA

A filter F is said to read data whenever the previous filter in the series invokes the proper interface
function in F. The interface also provides a function to close the stream. The gzip program is also a
filter, but at the level of a UNIX process, so using the standard UNIX input/output interface.
Communication with gzip occurs through UNIX pipes. An important difference between UNIX
filters, such as gzip and the HTTP filters is that the formers explicitly choose when to read, whereas
the latter are forced to read when data are pushed at them. To assemble the Compressing Proxy
from the existing HTTP server and gzip without modification, we must create an adapter. This acts
as a pseudo HTTP filter, communicating with the upstream and downstream filters through a
function-call interface, and with gzip using pipes connected to a separate gzip process that it creates.
From the MSC describing the SA we can obtain a queueing network model that represents the
Compressing Proxy system. Details on MSC trace analysis is out of the scope of this paper and can
be found in [AABI00]. We assume synchronous communication. By applying the algorithm we
partition the four components into internal and external elements. From the MSC we derive the
traces whose analysis generates the Interaction Sets. By considering the modelling approach

gzip

Filter Pseudo Filter
Adapter

Filter
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presented in the previous section for the communication system we eventually obtain the queueing
network model with finite capacity and BAS blocking illustrated in Figure 6.

Figure 6 - The queueing network model of the Compressing Proxy system

The model is an open two node network with finite capacity queues BAD=1 and BGZIP=1. We have
external arrivals and departures only from the AD service center (Adapter). We assume FIFO service
discipline. The tuple [FILTER1, AD, GZIP, AD, FILTER2] characterizes the service and it states that
a customer requires services to the processing elements in that order. The first element of the tuple is
an external element because the network is open.
The queueing network model can be solved with exact analysis based on the underlying Markov
process to derive the steady-state joint queue length distribution from which one can evaluate a set
average performance indices.
We can solve such queueing network model for different values of the network parameters, so
comparing and predicting the performance of the Compressing Proxy system under various
scenarios. This can provide useful insights on the design process development as concerns the
meeting of quantitative performance requirements.

The second example is the well-known multiphase compiler architectures [IW95, PW92]. The data
elements are characters, tokens, phrases, correlated phrases (i.e., phrases signifying name uses related
to phrases signifying name declarations), and object code. The processing elements are the text (i.e.,
the producer of source characters), lexer (i.e., lexical analyzer), the parser, the semantor (i.e.,
semantic analyzer), and the code generator. An optional processing element is the optimizer. We
consider an optimized architecture of the multiphase compiler architecture illustrated in Figure 7.

OPTIMIZER
object_code

TEXT

LEXER PARSER SEMANTOR

characters phrases

cor.phrases

CODE_GEN

tokens

Figure 7 - The concurrent multiphase compiler architecture

It fits the processing elements together via concurrent access to a shared repository. The processing
elements run their phases opportunistically and in parallel so that, for example, the semantor can
correlate phrases at the same time as the lexer is creating new tokens.

BAD=1 BGZIP=1

GZIPAD
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We can apply the algorithm to derive the interaction sets and then from the trace analysis we
eventually obtain the performance model. The derived queueing network is illustrated in Figure 8.

Figure 8 - The queueing network model of the Compressing Proxy system

The open queueing network is formed by five service centers and has acyclic topology. The first
service center is denoted by L and represents the Lexer component, and similarly the remaining
service centers denoted by P (Parser), S (Semantor), O (Optimizer) and G (Code_gen) correspond to
system components. Service center L has infinite capacity queue and every other service center has
finite capacity queue Bi=1, i=P,S,O,G. We assume BAS blocking.
Similarly to the previous example, we can solve such queueing network model for different values
of the network parameters, so comparing and predicting the performance of the multiphase
compiler architecture under various scenarios.
The queueing network model can be analyzed by approximate methods, as recalled in section 4.1.
We can apply one of the algorithms based on the decomposition approach. For example we can
analyze the queueing network with BAS blocking by the approximate algorithm described in
[LBDF95] for acyclic networks.
Hence we can evaluate the network throughput and other average performance indices.

6. Conclusions

We have presented the application of the class of queueing networks with finite capacity and
blocking as performance models of software architectures. In the framework of a methodology for
performance evaluation of software architectures we have considered the problem of defining an
appropriate modelling for the communication system.
Starting from a high level description of a SA by the Message Sequence Charts we obtain a trace
analysis and we derive a queueing network as a performance model. However, we have observed that
queueing networks with infinite capacities are not sufficiently expressive to model systems where
there are concurrent components that can communicate synchronously. Hence, by observing the
need of a more accurate definition of the performance models of software architectures to capture
some features of the communication systems, we have proposed queueing networks with finite and
single capacity queues and BAS blocking to represent some synchronization constraints. We have
discussed how this class of models can be used to represent synchronous communication between
concurrent components.
We have shown two examples of the application of the methodology that leads to the definition of
queueing network models with BAS blocking, whose solution can be obtained by known algorithms.
This work represents a step in the construction of a flexible environment for performance evaluation
of software architectures.

BP=1BP=1

SL P

BO=1

BG=1

G
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