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We present an application of the framework developed in [1] to the
theory of graph transformation systems. Here we say “graph” to mean an
object of an arbitrary category with pushouts along monos where the local
Church-Rosser theorem holds. An example is an adhesive category [6].

In order to establish the basic concepts we
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Fig. 1. Type graph T .

shall consider a concrete example, working in the
category C of directed graphs whose vertices are
tagged with the elements of a set; the presheaf
topos C = Set·→·⇔·. The edges of such graphs
will represent physical proximity of entities represented by the vertices.
The elements with which vertices may be tagged represent the internal
state of the entities. Let T be the graph illustrated in Fig 1. Then C/T
is the adhesive category [6] of graphs typed over T .
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Fig. 2. Start graph S and productions q1, q2 and q3 of P.

Our example models Hoare’s dining philosophers problem [5]. Let P be
the dpo grammar over C/T with start graph S and the three productions
q1, q2 and q3 as illustrated in Fig 2. Note that we only illustrate the left
and the right hand sides of the productions, their interface is the obvious
one in each case. Each thinking philosopher may claim a fork next to her
using the production q1. Once a thinking philosopher has two forks in her
possession, she may start eating via the production q2. Finally, an eating
philosopher can release her forks at any time and return to thinking using
production q3. The dining philosophers problem is famous not least for
the fact that it succinctly illustrates the fundamental issue of deadlock in
parallel programming. If each of the philosophers picks up the fork to her
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left then no further productions are possible and the philosophers starve
to death. To solve this problem, one may choose to view of the behaviour
of each philosopher as a series of transactions – where each transaction
consists of a series of actions (two instances of q1) which lead to a state in
which a desired action (q2) can be performed. In order to avoid deadlock,
one specifies that each of the initial actions can be reversed.

The naive solution of simply adding a re-
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Fig. 3. Reversed rule q1?.

versed production q1?, illustrated in Fig 3 is
unsatisfactory. Indeed, a philosopher can now
begin by picking up her left fork with q1 and
placing it via q1? together with her right fork.
This sequence of actions results in a state not
in the problem specification. One can think
of several ways to fix this: for example, one can label the edges out of
each philosopher with l and r, replace the rule q1 with two rules q1l, q1r

and add their inverses q1l?, q1r?, thus disallowing the aforementioned er-
rant behaviour. There are two apparent problems with such an ad-hoc
solution: firstly, one has to prove that the transactions are indeed mod-
elled correctly (trivial in this case, but not always so); secondly, there is a
danger of making the model too complex to be of use. There is a general
solution, described in [1], which we briefly outline below.

Let the category of computations CpG of a grammar G be the cat-
egory with objects those of C and arrows finite (possibly empty) paths
of direct derivations modulo switch-equivalence. The arrows of CpG are
thus the concurrent computations of G. See [4, Ch 4] for a more in depth
presentation and a proof that such a category also arises as a free con-
struction.

In the problem specification, the set of productions P of G is parti-
tioned into sets of reversible productions R and irreversible productions
I. In our example, R = {q1} and I = {q2, q3}. Let R be the subcategory
of Cp(G) with arrows the derivations consisting of only the reversible pro-
ductions. Let I be the subcategory of Cp(G) consisting of the irreversible
computations – roughly, those where the last action in each thread is ir-
reversible. The arrows of I can be considered as paths of transactions
modulo concurrency - where a transaction is a causal sequence of re-
versible steps followed by an irreversible step. Since I is a subcategory, it
is clear that we allow empty transactions.

It is not difficult to verify that 〈I,R〉 is a factorisation system [2] on
Cp(G) – each computation can be factorised into a (possibly empty) irre-
versible component followed by a (possibly empty) reversible component,



moreover, such factorisation is essentially unique. As well as the notion
of a factorisation system, we shall need the notion of a category of frac-
tions [3]. Given a set of morphisms R of a category C, the category of
fractions C[R−1] is the category resulting from C by “freely” adding in-
verses to the arrows of R. We obtain a canonical functor Φ : C → C[R−1]
which sends each arrow in R to an isomorphism.

Let h(CpG,R) be the category of histories. The P1
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Fig. 4. h(CpG,R).

objects of this category are arrows in R (reversible
computations), while the arrows are commutative di-
agrams, as illustrated, where f is in CpG and f ′ is
in I. Clearly, any computation f : Q1 → Q2 leads to
a (unique up to isomorphism) object g2 : P2 → Q2 of h(CpG,R) and f ′

resulting in a map g1 → g2 – here g2f
′ is simply the 〈I,R〉-factorisation.

Let h?(CpG,R) be the category of reversible his-
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Fig. 5. h?(CpG,R).

tories. It has the same objects as h(CpG,R); arrows
are formal diagrams, as illustrated, where f? is in
C[R−1] and f?Φ(g1) = Φ(g2f). Roughly speaking,
this category is as h(CpG,R) but histories can be
backtracked [1]. Note that while we constructed the
history categories for our particular category CpG, in fact the construc-
tions rely only on the presence of a factorisation system. The main result
of [1] states that there is an equivalence of categories h?(CpG,C) ' I. In
other words, to simulate transactions for a graph grammar G, one replaces
the category of computations CpC with h?(CpC,R). More concretely,
one: (i) replaces the states of a computation; instead of a graph Q, a state
is a reversible computation f : P → Q; (ii) adds an inverse production q?

for each reversible production q. The resulting computations are “weakly”
(modulo reversible moves) equivalent to the transactions of the original
grammar.
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