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1 Introduction 

The Ambient Calculus (AC) [1] is a process calculus for describing mobile computations. Unit of the movement is 
the ambient n[P] that represents a bounded space named n in which the process P can make computations, exchange 
messages or exercise movement capabilities: i.e. enter or exit other named ambients or dissolve ambient boundaries. An 
interesting topic in Ambient Calculus is the study of an appropriate notion of semantics equivalence and of the methods 
for establishing such equivalences [2];  the principal equivalence relation proposed for the Ambient Calculus is a 
contextual equivalence  based on the observability of ambients ≈oobbss. In [3] the equivalence between terms of  Ambient 
Calculus has been studied by means a filter model, that results to be fully abstract with respect to the contextual 
equivalence ≈oobbss..  The model is designed via a type system, where types represent properties of processes. In  this paper 
we extend the definition of the filter model to a variant of Ambient Calculus: the Safe Ambients  (SA) Calculus.  As 
usual in filter  models, the processes of SA are interpreted as the set of  their types. The inclusion relation between these 
sets of properties induces an ordering ⊆FF  on processes. We prove the adequacy of the model: i.e.  
P ⊆FF  Q ⇒ P ⊆oobbss  Q.. 
 
2 The Calculus 
The calculus we consider here is basically the Safe Ambients Calculus [4] in which every capability has a co-capability.  
We omit communication and replication.   
The syntax of calculus is given in Table 1. As usual ≡ denotes structural congruence, Table 2 shows the reduction 
rules, representing the behavior of processes. Notice that for the out-reduction rule we follow the variant proposed in 
[5]. 
 

Table 1 
Names:  n ∈  NN  

Capabilities: c  ∈  CC  

    c  ::::==   in n | out n | open n| co-in n | co-out n | co-open n 
Processes: P ∈  PP  

    P  ::::==   0| c.P| P1| P2 | n[P] | (νn)P 

 
Table 2 

 
→ is the least equivalence relation that : 
 i) is preserved by all operators except prefixing 
 ii) satisfies the rules above: 
 
  - m[in n.P | Q] | n[co-in n.R | S] → n[m[P | Q] | R | S]   (Red-In) 

  -  m[n[out m.P|Q] | R] | co-out m.S → n[P | Q] | m[R] |  S  (Red-Out) 

  - open n.P | n[co-open n.Q | R] → P | Q | R    (Red-Open) 

  - P ≡ Q , Q → R, R ≡ S  implies P → S     (Red-Struct) 
 
→*  is the reflexive and transitive closure of  →. 
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Two processes P and Q  are considered equivalent if, placed in arbitrary contexts, exhibit the same ambients; formally 
([5]): 
Observational Equivalence Definition  (i) A process P exhibits an ambient n: P ⇓ n if  

P →*  (νm̃)(n[co-open n.Q|R]|S) for some processes Q, R, S  (n ∉ m̃). 
(ii) P ⊆ Q if for all contexts C[ ] and ambients n : C[P] ⇓ n   ⇒ C[Q] ⇓ n. 

(iii) P ≈ Q if P ⊆ Q and Q ⊆ P. 
 
3  Types 

Like in [3] types are intended to provide partial information about processes, giving their properties. We consider 
the mobility actions, the ambients and parallel composition. The formal definition of the set of types TT is given in Table 
3. 
 

Table 3 
 

Prefixes1: µ  ::::==   in n | out n | open n | co-in n | co-out n | co-open n | popm  n | free n 
Prefixes2: α  ::::==    enterm n | exitm n | co-enter  n  
Actions:  γ  ::::==  µ | α 
Types:  σ  ::::==    ω | µ.σ | α.(νm̃)   (< σ >n τ)  | n[σ] | (νn) σ | σ | τ  | σ ∧ τ 
 
 Our definition of types is inspired both by the type definition of [3] and by the labelled transition system of [5]. In 
particular to [5] is due the idea of action, as extension of the original definition of capability. In fact each capability  
gives rise to an action (elementary action), but, when inserted in ambients, it can induce further actions; by way of 
example we can say that the process k[in n.P] has the capability to enter the ambient n, after that it has a continuation, 

that is expressed by the pair  (νm̃)(< σ >n τ ) (cfr.  notion of concretion in [5]); a type α. (νm̃)(< σ >n τ))  models the 

behavior of a process that exercises the action α and then leaves inside the ambient n a process of type σ and, outside 

the ambient n, a process of type τ; m̃  represents the set of private names shared by σ and τ. The pairs (enterm n, co-

enter n), (popm n, co-out n), (free n, open n) are said matching pairs. 
Type ω represents a property true for all processes, whereas the conjunction type constructor ∧ is added to model 

nondeterminism: a process having type σ ∧ τ can possibly exhibit, in different reduction paths, both property  σ and τ.  
On the set of types TT  is defined a partial order relation ≤, representing entailment; σ ≤ τ  means that the property 

σ  entails property  τ; σ ~ τ  iff  σ ≤ τ  and τ ≤ σ. Among the Type Entailment Rules, particular relevance has a 
sequentialization rule  of kind: 
    γ1 .σ | γ1 .τ  ~  γ1.(σ | τ)  ∧ γ2.(σ | τ)      if γ1   and γ2 do not match 

              ~       σ' | τ'  ∧  γ1.(σ | τ)  ∧ γ2.(σ | τ)    if γ1   and γ2 match  
 

The application of this rule allows to translate a parallel composition of types into a nondeterministic choice between 
sequential types. A sequential type φ models the behavior of a process consisting of a sequence of actions, formally it is 
defined inductively in the following way: φ ::= ω | µ.φ  | α. (νm̃)(< φ1>n φ2). Using this fact we can prove that every type 
has a normal form, consisting in a nondeterministic choice of sequential types.  

Normal Form Lemma. For all σ ∈ TT  there is a unique type ∧i∈[1…n] ξi , where ξi  are sequential types, such that σ  ~    

∧i∈[1…n] ξi. We call it the normal form of σ, denoted by nnff (σ). 
 

Types are associated with processes by means of type assignment rules, shown in Table 4.  
We can prove that congruent processes have the same types  and that types are preserved under  subject expansion: 
 
Subject Congruence Lemma.  P : σ  and  P ≡ Q  ⇒  Q : σ. 

Subject Expansion Lemma. Q : σ  and  P →*  Q  ⇒  P : σ. 
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Table 4 

 
      P : σ     c ∈  CC        P : σ    n ∈  NN 
(ω)     P : ω   (prefix) ────────              (amb)  ──────── 

     c . P :   µc .σ           n [P] : n [σ] 
 
   P1 : σ     P2 : τ              P : σ      P : σ     σ  ≤ τ    
( | ) ────────  (res) ────────   ( ≤)  ──────── 
  P1 | P2 :  σ  |   τ      (νn) P :   (νn) σ          P :   τ    
 
 
                P : σ     P: τ    
    (∧)   ──────── 
         P :   σ ∧τ    

 
 
4 The Filter Model 

FF(TT) is the set of filters on the set of types TT.. If AA  ⊆  TT  then ↑AA    denotes the filter generated by AA, obtained  by 
closing AA under finite intersection  and by (upper closing AA under) ≤ . Let ppaarr : FF(TT)  × FF(TT) → FF(TT)  be the function  
defined by  ppaarr (F , G) = ↑{ σ | τ | σ ∈ F  and τ ∈ G }. The interpretation of a process is a function [[ - ]] : PP  →    FF(TT) , 
defined as follows: 

- [[0]]   = ↑{ω} 

- [[c.P]]   = ↑{µ c. σ  |  σ ∈ [[P]] } 

- [[n[P]]]    = ↑{n[σ] |  σ ∈ [[ P]] } 

- [[ P| Q]]   = ppaarr ([[ P]]   , [[Q]] )   
- [[ (νn)P]]   = ↑{(νn) σ |  σ ∈ [[ P]] } 
-  

The basic theorem of the filter models is that the interpretation of a term is given by the set of its types: [[ P]]  = {σ  | 

P  : σ } 
The inclusion on filters gives rise to an order relation ⊆FF  on processes, in the sense that P ⊆FF  Q if and only if [[ P]]  ⊆  [[ Q]]  
Adequacy 

The proof of adequacy is done by defining an interpretation of types as set of processes and by proving that a 
process P belongs to the interpretation of the type σ if and only if σ belongs to the filter [[ P]] .  To prove the adequacy of 
the model  of the model it is essential to prove the soundness of type inclusion relation:   σ ≤ τ  implies [[ σ]]    ⊆  [[ τ]]. 
 
Soundness and Completeness Theorem  P : σ   ⇔ P ∈ [[ σ]]  . 
 
We can to characterize observational exhibition of ambients by means of typing:   
Resource property.  P :  free n.ω  ⇔ P ⇓ n 
 
Adequacy Theorem.  If  P ⊆FF  Q  then P ⊆ Q. 
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Completeness 

To prove completeness we define, for every sequential type φ, a Context Term Cφ
n [•], where n is an 

ambient name, fresh with respect to φ. The behavior of this terms is that for every process Q , for 

which  n is fresh,  Cφ
n [Q] ⇓ n iff Q : φ. 
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Table 1 
Names:  n ∈  NN  
  
Capabilities: c  ∈  CC  

    c  ::::==   in n | out n | open n| co-in n | co-out n | co-open n 
 
Processes: P ∈  PP  

    P  ::::==   0| c.P| P1| P2 | n[P] | (νn)P 

 
 
 
 
 

Table 2 
 
≡  is the least equivalence relation that : 
 
 i) includes α-conversion 
 ii) is preserved by all operators except prefixing 
 iii) satisfies the following rules: 
  - P | Q  ≡  Q | P      (Struct Par Comm) 

  - (P | Q) | R ≡ P | (Q | R)    (Struct Par Ass) 
  - P | 0 ≡ P      (Struct Zero Par) 
  - (νn) 0 ≡ 0      (Struct Zero Res) 

  - (νn) (νm) P ≡ (νm) (νn) P    (Struct Res Res) 

  - n ∉ fn(P) implies (νn) (P | Q) ≡ P | (νn) Q  (Struct Res Par) 

  - n ≠m implies (νn) (m[P]) ≡ m[(νn) P]   (Struct Res Amb) 
 
 
 
→ is the least equivalence relation that : 
 
 i) is preserved by all operators except prefixing 
 ii) satisfies the rules above: 
 
  - m[in n.P | Q] | n[co-in n.R | S] → n[m[P | Q] | R | S]   (Red-In) 

  -  m[n[out m.P|Q] | R] | co-out m.S → n[P | Q] | m[R] |  S  (Red-Out) 

  - open n.P | n[co-open n.Q | R] → P | Q | R    (Red-Open) 

  - P ≡ Q , Q → R, R ≡ S  implies P → S     (Red-Struct) 
 
→*  is the reflexive and transitive closure of  →. 
 
 
 

Table 3 
 

 Prefixes1: µ  ::::==   in n | out n | open n | co-in n | co-out n | co-open n | popm  n | free n 
 
Prefixes2: α  ::::==    enterm n | exitm n | co-enter  n  
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Actions:  γ  ::::==  µ | α 

 
Types: σ  ::::==    ω | µ.σ | α.(νm̃)   (< σ >n τ)  | n[σ] | (νn) σ | σ | τ  | σ ∧ τ 
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Table 4 
•   Axioms for ω 
 −  σ  ≤  ω 
 −  σ  ≤  σ | ω  
 −  (νn)ω ~   ω  

−   n[ω]  ~   ω  
 
•   Commutativity and Distributivity of parallel composition | 
 −  σ | τ   ~     τ | σ 
 −  (σ | τ) | ρ  ~    σ | (τ | ρ)  
 
• Conjunction  ∧ 
 −  σ  ∧ τ  ≤ σ      σ  ∧ τ  ≤ τ 

−  σ    ≤  σ ∧ σ 
 −  σ  ∧ τ  ~ τ  ∧ σ 
 −  σ ≤  σ’  &  τ  ≤  τ’  ⇒   σ  ∧ τ   ≤  σ’  ∧ τ’ 
 −   n[σ ∧ τ]   ~  n[σ] ∧  n[τ]   
 −   ρ | (σ ∧ τ)  ~  (ρ | σ) ∧ (ρ| τ)   
 −   µ .(σ ∧ τ)   ~  µ .σ ∧  µ τ   
 −   α. (<σ ∧ τ> n  ρ) ~ α. (<σ> n  ρ)  ∧ α. (<τ> n  ρ) 
 −   α. (<σ > n  ρ∧ τ) ~ α. (<σ> n  ρ)  ∧ α. (<σ> n  τ) 
 
•  Action 
 - m[ in  n. σ]          ~  enter n .(< m[ σ ]>n ω) 

 - m[ out  n. σ]    ~  exit n .(< ω >n m[ σ ]) 

 - n[ co-in  n. σ]   ~  co− enter  n .(< σ >n ω) 

 - n[ co-open  n. σ]  ~ free  n .σ  

 − n[ exit n .(< σ >n  τ) ]  ~  pop  n . n[ σ ] |  τ 
  
•  Reduction 
 −   enter n . (νm̃) < σ1 >n σ2 |   co-enter n . (νq ̃) < τ1 >n τ2     ≤   (νm̃)(νq̃) (n[σ1 |  τ1]  |  σ2 |  τ2)  

 −   pop n . σ  |  co-out n. τ  ≤   σ  |   τ  

 −   open n . σ  |  free n. τ  ≤   σ  |   τ  
•  Restriction 
 −  (νm) n[σ]   ~  n[(νm) σ]     n ≠m   

 −  (νm) (σ | τ)   ~  σ | (νm)τ    m ∉ fn(σ) 
 −  (νn) (νm) σ  ~   (νm) (νn) σ 

 −  (νm) (σ ∧ τ)   ~  (νm) σ ∧ (νm) τ  

 −  (νm) γ.σ   ~   ω     if m = fn(γ) 
    ~   γ .(νm) σ     if m ≠ fn(γ) 
 

• Sequentialization  
 −   µ. σ | τ              ≤  µ.(σ | τ)  
 −   enter n . (νm ̃) (< σ >n τ) | ρ  ≤   enter n . (νm̃) (< σ >n ( τ  | ρ)) 

 −   exit n . (νm̃) (< σ >n τ) | ρ  ≤  exit  n . (νm̃)( < σ |  τ >n ρ )  

 −   co-enter n . (νm̃) (< σ >n τ) | ρ ≤   co-enter n . (νm ̃) (< σ >n ( τ  | ρ))  
 −   γ1 .σ | γ1 .τ   ~  γ1.(σ | τ)  ∧ γ2.(σ | τ)      if γ1   and γ2 do not match 
    ~  σ' | τ'  ∧  γ1.(σ | τ)  ∧ γ2.(σ | τ)     if γ1   and γ2 match   
•  Congruence 
 −  σ ≤  τ   ⇒ n[σ] ≤ n[τ] 
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 −  σ ≤  τ   ⇒ µ.σ  ≤ µ.τ 
 −  σ ≤  τ   ⇒ (νm) σ  ≤ (νm) τ 
 −  σ ≤  τ   ⇒ σ | ρ ≤  τ | ρ 
  
•  Transitivity 
 −  σ ≤  τ  &  τ  ≤  ρ ⇒ σ  ≤  ρ 
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Table 4 bis 
 

 
Sequentialization  rules 
 
 −   µ . σ | τ               ≤  µ.(σ | τ)  

 −   enter n . (νm̃) (< σ >n  τ) | ρ   ≤   enter n . (νm̃) (< σ >n ( τ  | ρ)) 

 −   exit n . (νm̃) (< σ >n  τ) | ρ   ≤  exit  n . (νm̃)( < σ |  τ >n ρ )  

 −   co-enter n . (νm̃) (< σ >n τ) | ρ  ≤   co-enter n . (νm̃) (< σ >n ( τ  | ρ))  

 −   µ1 .σ | µ2 .τ       ~  µ1.(σ | µ2 .τ)  ∧ µ2.(µ1 .σ | τ)    
           if µ1   and µ2 do not match 
  ~ 
 σ | τ ∧  µ1.(σ | µ2 .τ)  ∧ µ2.(µ1 .σ | τ)µ1.(σ | µ2 .τ)  ∧ µ2.(µ1 .σ | τ)     
          
  if µ1   and µ2 match 
  
 −   µ .σ |  α.(<ρ>n τ)      ~  µ .( α.(<ρ>n (τ |σ))) ∧      
           
  


