Model Checking
Principles

Model (System Requirements) → Model Checker → Specification (System Property)

Answer:
Yes, if the model satisfies the specification
Counterexample, otherwise
Kripke Model

- Kripke Structure + Labeling Function
 - Let AP be a non-empty set of atomic propositions.
 - Kripke Model: $M = (S, s_0, R, L)$

\[
\begin{align*}
S & \quad \text{finite set of states} \\
S_0 \in S & \quad \text{initial state} \\
R \subseteq S \times S & \quad \text{transition relation} \\
L : S \rightarrow 2^{\text{AP}} & \quad \text{labeling function}
\end{align*}
\]
Specification

- Often expressed in temporal logic
 - Propositional logic with temporal aspect
 - Describes ordering of events without explicitly using the concept of time
 - Several variants: LTL, CTL, CTL*
Why Use Temporal Logic?

- Requirements of concurrent, distributed, and reactive systems are often phrased as constraints on *sequences of events or states* or constraints on *execution paths*.

- Temporal logic provides a formal, expressive, and compact notation for realizing such requirements.

- The temporal logics we consider are also strongly tied to various computational frameworks (e.g., automata theory) which provides a foundation for building verification tools.
Temporal Logics

- Express properties of event orderings in time

- **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Temporal Logic (LTL)

- **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)
Computational Tree Logic (CTL)

Syntax

\(\Phi ::= \) P
\(| \) !\(\Phi \) | \(\Phi \) && \(\Phi \) | \(\Phi \) | | \(\Phi \) | \(\Phi \) \(\rightarrow \) \(\Phi \)
\(| \) AG \(\Phi \) | EG \(\Phi \) | AF \(\Phi \) | EF \(\Phi \)
\(| \) AX \(\Phi \) | EX \(\Phi \) | A[\(\Phi \) U \(\Phi \)] | E[\(\Phi \) U \(\Phi \)]

Semantic Intuition

AG \(p \) ...along All paths \(p \) holds **Globally**
EG \(p \) ...there Exists a path where \(p \) holds **Globally**
AF \(p \) ...along All paths \(p \) holds at some state in the **Future**
EF \(p \) ...there Exists a path where \(p \) holds at some state in the **Future**
Computational Tree Logic (CTL)

Syntax

\[\Phi ::= \text{P} \]
\[| \neg \Phi \]
\[| \Phi \&\& \Phi \]
\[| \Phi \mid \Phi \]
\[| \Phi \rightarrow \Phi \]
\[| \text{AG} \Phi \]
\[| \text{EG} \Phi \]
\[| \text{AF} \Phi \]
\[| \text{EF} \Phi \]
\[| \text{AX} \Phi \]
\[| \text{EX} \Phi \]
\[| \text{A[} \Phi \cup \Phi \text{]} \]
\[| \text{E[} \Phi \cup \Phi \text{]} \]

Semantic Intuition

\[\text{AX} \ p \]
...along \textit{All} paths, \(p \) holds in the \textit{neXt} state

\[\text{EX} \ p \]
...there \textit{Exists} a path where \(p \) holds in the \textit{neXt} state

\[\text{A[} p \cup q \text{]} \]
...along \textit{All} paths, \(p \) holds \textit{Until} \(q \) holds

\[\text{E[} p \cup q \text{]} \]
...there \textit{Exists} a path where \(p \) holds \textit{Until} \(q \) holds
Computation Tree Logic

AG p

Diagram of a computation tree logic with AG operator and propositions p.
Computation Tree Logic

EG p
Computation Tree Logic

$\text{AF } p$
Computation Tree Logic

EF p
Computation Tree Logic

AX p
Computation Tree Logic

EX p
Computation Tree Logic

\[A[p \bigcup q] \]
Computation Tree Logic

$E[p U q]$
Example CTL Specifications

For any state, a request (e.g., for some resource) will eventually be acknowledged

\[\text{AG(requested} \rightarrow \text{AF acknowledged)} \]

From any state, it is possible to get to a restart state

\[\text{AG(EF restart)} \]

An upwards travelling elevator at the second floor does not change its direction when it has passengers waiting to go to the fifth floor

\[\text{AG((floor=2} \& \& \text{direction=up} \& \& \text{button5pressed) } \rightarrow \text{A[direction=up} \cup \text{ floor=5]}) \]
CTL Example

LEGEND:
- ● p holds
- ○ q holds
- ○ don't care
CTL Semantics

- \(M, s \models p \) if \(p \in L(s) \)
- \(M, s \models \neg p \) if not \(M, s \models p \)
- \(M, s \models p \land q \) if \(M, s \models p \) and \(M, s \models q \)
- \(M, s \models p \lor q \) if \(M, s \models p \) or \(M, s \models q \)
- \(M, s \models Ap \) if \(\forall \pi \in \pi(s) : M, \pi \models p \)
- \(M, s \models Ep \) if \(\exists \pi \in \pi(s) : M, \pi \models p \)
CTL Semantics

• $M, \pi \models Xp$ if $M, \pi_1 \models p$

• $M, \pi \models Fp$ if $\exists i \geq 0: M, \pi_i \models p$

• $M, \pi \models Gp$ if $\forall i \geq 0: M, \pi_i \models p$

• $M, \pi \models pUq$ if $\exists i \geq 0: M, \pi_i \models q$ and $\forall j < i: M, \pi_j \models p$

$M \models p$ if $M, s_0 \models p$
CTL Satisfiability

• If a CTL formula is satisfiable, then the formula is satisfiable by a finite Kripke model.

• CTL Model Checking: $O(|p| \cdot (|S|+|R|))$
Example: traffic light controller

- Guarantee no collisions
- Guarantee eventual service
Specifications

• Safety (no collisions)

 \[AG \neg (E_{Go} \land (N_{Go} \lor S_{Go})) ; \]

• Liveness

 \[AG (\neg N_{Go} \land N_{Sense} \Rightarrow AF N_{Go}) ; \]
 \[AG (\neg S_{Go} \land S_{Sense} \Rightarrow AF S_{Go}) ; \]
 \[AG (\neg E_{Go} \land E_{Sense} \Rightarrow AF E_{Go}) ; \]

• Fairness constraints

 \[AF \neg (N_{Go} \land N_{Sense}) ; \]
 \[AF \neg (S_{Go} \land S_{Sense}) ; \]
 \[AF \neg (E_{Go} \land E_{Sense}) ; \]
Equivalence

<table>
<thead>
<tr>
<th>EXp</th>
<th>EGp</th>
<th>E(pUq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXp</td>
<td>$\equiv \neg EX \neg p$</td>
<td></td>
</tr>
<tr>
<td>AFp</td>
<td>$\equiv \neg EG \neg p$</td>
<td></td>
</tr>
<tr>
<td>AGp</td>
<td>$\equiv \neg EF \neg p$</td>
<td></td>
</tr>
<tr>
<td>A(pUq)</td>
<td>$\equiv \neg E(\neg pR \neg q)$</td>
<td></td>
</tr>
<tr>
<td>EFp</td>
<td>$\equiv E(\text{true } U p)$</td>
<td></td>
</tr>
</tbody>
</table>
CTL Model Checking

• Six Cases:
 – p is an atomic proposition
 – p = \neg q
 – p = q \lor r
 – p = \text{EX}q
 – p = \text{EG}q
 – p = \text{E} (q \text{ Ur})
Example: Microwave Oven
CTL Specification

• We would like the microwave to have the following properties (among others):
 – No heat while door is open
 • $\text{AG}(\text{Heat} \rightarrow \text{Close})$:
 – If oven starts, it will eventually start cooking
 • $\text{AG} (\text{Start} \rightarrow \text{AF Heat})$
 – It must be possible to correct errors
 • $\text{AG} (\text{Error} \rightarrow \text{AF } \neg \text{Error})$:

• Does it? How do we prove it?
CTL Model Checking Algorithm

• Iterate over subformulas of f from smallest to largest
 – For each $s \in S$, if subformula is true in s, add it to $\text{labels}(s)$

• When algorithm terminates
 – $M,s \models f$ iff $f \in \text{labels}(s)$
Checking Subformulas

• Any CTL formula can be expressed in terms of: \(\neg, \lor, \text{EX}, \text{EU}, \text{and EG}\), therefore must consider 6 cases:

Atomic proposition
 if \(ap \in L(s)\), add to \(labels(s)\)

\(\neg f_1\)
 if \(f_1 \notin labels(s)\), add \(\neg f_1\) to \(labels(s)\)

\(f_1 \lor f_2\)
 if \(f_1 \in labels(s)\) or \(f_1 \in labels(s)\), add \(f_1 \lor f_2\) to \(labels(s)\)

\(\text{EX } f_1\)
 add \(\text{EX } f_1\) to \(labels(s)\) if successor of \(s, s'\), has \(f_1 \in labels(s')\)
Checking Subformulas

- $E[f_1 \cup f_2]$
 - Find all states s for which $f_2 \in \text{labels}(s)$
 - Follow paths backwards from s finding all states that can reach s on a path in which every state is labeled with f_1
 - Label each of these states with $E[f_1 \cup f_2]$
Checking Subformulas

• **EG** f_1 Basic idea – look for one infinite path on which f_1 holds.

• Decompose M into nontrivial strongly connected components
 – A strongly connected component (SCC) C is
 • a maximal subgraph such that every node in C is reachable by every other node in C on a directed path that contained entirely within C.
 – C is nontrivial iff either
 • it has more than one node or
 • it contains one node with a self loop

• Create $M' = (S', R', L')$ from M by removing all states $s \in S$ in which $f_1 \notin labels(s)$ and updating S, R, and L accordingly
Checking Subformulas

- Lemma $M,s \models EG f_1$ iff

1. $s \in S'$

2. There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component of the graph (S', R', L').

- Proof left as exercise, but basic idea is
 - Can’t have an infinite path over finite states without cycles
 - So if we find a path from s to a cycle and f_1 holds in every state (by construction), then we’ve found an infinite path over which f_1 holds
Checking EG f_1

```latex
\begin{procedure}
  \textbf{CheckEG}(f_1)
  \begin{align*}
  S' &= \{ s \mid f_1 \in \text{labels}(s) \}; \\
  \text{SCC} &= \{ C \mid C \text{ is a nontrivial SCC of } S' \}; \\
  T &= \bigcup_{C \in \text{SCC}} \{ s \mid s \in C \}; \\
  \text{for all } s \in T \text{ do } \text{labels}(s) = \text{labels}(s) \cup \{ \text{EG } f_1 \}; \\
  \text{while } T \neq \emptyset \text{ do}
  \begin{align*}
    \text{choose } s \in T; \\
    T &= T \setminus \{ s \}; \\
    \text{for all } t \text{ such that } t \in S' \text{ and } R(t,s) \text{ do}
    \begin{align*}
      \text{if } \text{EG } f_1 \notin \text{labels}(t) \text{ then}
        &\quad \text{labels}(t) = \text{labels}(t) \cup \{ \text{EG } f_1 \}; \\
        &\quad T = T \cup \{ t \};
    \end{align*}
    \end{align*}
  \end{align*}
  \text{end while;}
  \end{procedure}
```
Checking a Property

- Checking $\text{AG}(\text{Start} \rightarrow \text{AF Heat})$
 - Rewrite as $\neg \text{EF}(\text{Start} \land \text{EG} \neg \text{Heat})$
 - Rewrite as $\neg \text{E}[\text{true U} (\text{Start} \land \text{EG} \neg \text{Heat})]$

- Compute labels for smallest subformulas
 - Start, Heat
 - \neg Heat

<table>
<thead>
<tr>
<th>Formulas/States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$\neg \text{Heat}$</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{EG} \neg \text{Heat}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Start} \land \text{EG} \neg \text{Heat}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{E[true U}(\text{Start} \land \text{EG} \neg \text{Heat})\text{]}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg \text{E[true U}(\text{Start} \land \text{EG} \neg \text{Heat})\text{]}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checking a Property

- Compute labels for $\text{EG} \neg \text{Heat}$
- $S' = \{1,2,3,5,6\}$
- $\text{SCC} = \{\{1,2,3,5\}\}$
- $T = \{1,2,3,5\}$
- No other state in S' can reach a state in T along a path in S'.
- Computation terminates. States 1, 2, 3, and 5 labelled with $\text{EG} \neg \text{Heat}$

<table>
<thead>
<tr>
<th>Formulas/States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Heat</td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td></td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$\neg \text{Heat}$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>$\text{EG} \neg \text{Heat}$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Start} \land \text{EG} \neg \text{Heat}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{E}[\text{true U} (\text{Start} \land \text{EG} \neg \text{Heat})]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg \text{E}[\text{true U} (\text{Start} \land \text{EG} \neg \text{Heat})]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checking a Property

- Compute labels for \(\text{Start} \land \text{EG} \, \neg \text{Heat} \)

<table>
<thead>
<tr>
<th>Formulas/States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Start}</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>\text{Heat}</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>\neg \text{Heat}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>\text{EG} \neg \text{Heat}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>\text{Start} \land \text{EG} \neg \text{Heat}</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{E}[\text{true} , U(\text{Start} \land \text{EG} \neg \text{Heat})]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\neg \text{E}[\text{true} , U(\text{Start} \land \text{EG} \neg \text{Heat})]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checking a Property

- \(E[true \ U(Start \land EG \neg Heat)] \)
- Start with set of states in which \(Start \land EG \neg Heat \) holds i.e., \{2,5\}
- Work backwards marking every state in which \(true \) holds

<table>
<thead>
<tr>
<th>Formulas/States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(\neg Heat)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EG (\neg Heat)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(Start \land EG \neg Heat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E[true \ U(Start \land EG \neg Heat)])</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(\neg E[true \ U(Start \land EG \neg Heat)])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checking a Property

- Check $\neg E[true \cup (Start \land EG \neg Heat)]$
- Leaves us with the empty set, so this property doesn’t hold over our microwave oven

<table>
<thead>
<tr>
<th>Formulas/States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Start$</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Heat$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$\neg Heat$</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$EG \neg Heat$</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$Start \land EG \neg Heat$</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$E[true \cup (Start \land EG \neg Heat)]$</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$\neg E[true \cup (Start \land EG \neg Heat)]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genealogy

- **Floyd/Hoare** late 60s
- **Aristotle 300’s BCE**
- **Kripke 59**

- **CTL Model Checking**
 - **Clarke/Emerson** Early 80’s
 - **Pnueli** late 70’s
 - **ω-automata** late 60s
 - **LTL Model Checking**
 - **Logics of Programs**
 - **Büchi, 60**
 - **Kurshan** mid 80’s
 - **Vardi/Wolper** mid 80’s
 - **ATV**
 - **BDD** mid 80’s

- **Temporal/Modal Logics**
 - **Clarke/Emerson** Early 80’s
 - **Clarke/Emerson** Early 80’s

- **Symbolic Model Checking**
 - **Clarke/Emerson** Early 80’s
 - **Büchi, 60**
 - **Kurshan** mid 80’s
 - **Vardi/Wolper** mid 80’s
 - **ATV**
 - **BDD** mid 80’s

- **Tarski** 50’s
 - **Park, 60’s**
 - **μ-Calculus**
 - **QBF** late 80’s
Turing Awards in Verification

 Temporal logics for specifying system behavior

2. Edmund Clarke, Allen Emerson, and Joseph Sifakis (2007)
 Development of model checking