
Matching Hierarchical
Structures for Shape

Recognition

Andrea Torsello

Submitted for the degree of Doctor of Philosophy

Department of Computer Science

May 2004

Abstract

In this thesis we aim to develop a framework for clustering trees and rep-

resenting and learning a generative model of graph structures from a set of

training samples. The approach is applied to the problem of the recognition

and classification of shape abstracted in terms of its morphological skeleton.

We make five contributions. The first is an algorithm to approximate tree

edit-distance using relaxation labeling. The second is the introduction of the

tree union, a representation capable of representing the modes of structural

variation present in a set of trees. The third is an information theoretic

approach to learning a generative model of tree structures from a training

set.

While the skeletal abstraction of shape was chosen mainly as a exper-

imental vehicle, we, nonetheless, make some contributions to the fields of

skeleton extraction and its graph representation. In particular, our fourth

contribution is the development of a skeletonization method that corrects

curvature effects in the Hamilton-Jacobi framework, improving its localiza-

tion and noise sensitivity. Finally, we propose a shape-measure capable of

characterizing shapes abstracted in terms of their skeleton. This measure has

a number of interesting properties. In particular, it varies smoothly as the

shape is deformed and can be easily computed using the presented skeleton

extraction algorithm.

Abstract 2

Each chapter presents an experimental analysis of the proposed approaches

applied to shape recognition problems.

Contents

1 Introduction 19

1.1 The Problem . 19

1.2 Our Goal . 21

1.3 Thesis Overview . 22

2 Literature Review 24

2.1 Skeleton Extraction . 24

2.2 Graph Representations . 28

2.3 Graph Matching . 30

2.4 Graph Clustering and Embedding 36

2.5 Conclusions . 40

3 Curvature Correction of the Hamilton-Jacobi Skeleton 43

3.1 Hamilton-Jacobi Skeleton . 44

3.1.1 Curvature in the Boundary Front 45

3.1.2 Normalized Flux . 46

3.2 Momentum Field . 47

3.3 Boundary Curve Parameterization 53

3.4 Computing the Density . 54

3.4.1 Integration in Time . 54

Contents 4

3.4.2 Integration in Space 55

3.5 Skeletonization . 57

3.6 Experimental Comparison . 58

3.6.1 Noise Sensitivity . 62

3.6.2 Skeleton Localization 67

3.7 Conclusions . 69

4 Skeletal Measure 70

4.1 Contribution . 71

4.2 The Shape-Measure and its Properties 73

4.3 Measure Extraction . 79

4.4 Computing the Distance Between Skeletons 80

4.5 Experimental Results . 81

4.5.1 Stability under Deformation 82

4.5.2 Changes in Skeleton Topology 83

4.6 Conclusions . 86

5 Tree Edit-Distance 89

5.1 Problem Statement . 89

5.2 Association Graph and the Maximum

Common Subtree Problem . 92

5.3 Inexact Tree Matching . 95

5.3.1 Editing the Transitive Closure of a Tree 95

5.3.2 Cliques and Common Obtainable Subtrees 99

5.4 Heuristics for Maximum Weighted Clique 100

5.5 Experimental Results . 105

5.5.1 Shock Trees . 105

5.5.2 Quantitative Analysis 116

Contents 5

5.5.3 Sensitivity Study . 118

5.6 Conclusions . 121

6 Structural Embedding Through Tree Union 124

6.1 Embedding Space . 127

6.2 Union of Two Trees . 128

6.3 Matching a Tree to a Union 129

6.4 Joining Multiple Trees . 132

6.5 Experimental Results . 133

6.5.1 Embedding . 134

6.5.2 Clustering . 137

6.5.3 Synthetic Data . 138

6.6 Conclusions . 140

7 Classification Using a Probabilistic Mixture of Tree Unions142

7.1 Generative Tree Model . 144

7.1.1 Probabilistic Framework 145

7.1.2 Estimating Node Parameters 148

7.2 Mixture Model . 151

7.2.1 Unweighted Samples 153

7.2.2 Weighted Samples . 154

7.3 Learning the Mixture . 155

7.4 Tree Edit-Distance . 160

7.5 Experimental Results . 161

7.5.1 Clustering . 161

7.5.2 Quantitative Analysis 163

7.5.3 Synthetic Data . 166

7.6 Conclusions . 168

Contents 6

8 Conclusions 170

8.1 Skeleton Extraction . 170

8.2 Shape Measure . 171

8.3 Edit-Distance . 172

8.4 Class Archetypes for Graphs 173

Appendix A: Pairwise Clustering 176

Appendix B: Multi-Dimensional Scaling 183

Bibliography 185

List of Figures

3.1 Evolution of a boundary segment. 48

3.2 The flux through the boundary is equal to the flux through ε. 51

3.3 Integration along the boundary path. 56

3.4 Pseudo-code for the thinning process. 58

3.5 Differences in the velocity and momentum fields. Left to right:

shape, (normalized) flux of ~F , log(ρ), and flux of ρ~F 60

3.6 Differences in the velocity and momentum fields. Left to right:

shape, (normalized) flux of ~F , log(ρ), and flux of ρ~F 61

3.7 Discretization error on boundary localization. 62

3.8 The effect of smoothing on skeleton extraction. 63

3.9 Smoothing improves localization of endpoints. 65

3.10 Effect of smoothing and threshold on skeleton extraction. . . . 66

3.11 Histogram over value of (negative) divergence of the field and

distance to skeleton. 68

3.12 Histogram of divergence-localization on a database of 50 shapes. 68

4.1 Geometric quantities used in our analysis. 73

4.2 Ligature points are generated by short boundary segments. . . 74

4.3 Differential geometry of a skeletal branch. 77

List of Figures 8

4.4 Two sample shapes. The height and intensity of the skeleton

at each point is proportional to the shape measure. 80

4.5 A “disappearing” protrusion which causes instability in shock-

length, but not in our measure. 82

4.6 The measure of the skeleton segment generated by a protrusion. 82

4.7 Morphing sequences and their corresponding skeletons. 84

4.8 Distances from first and last frame of the morphing sequences. 85

4.9 Some tools and the normalized distance between them. 86

5.1 Terminology on directed graphs. 96

5.2 Pairwise similarities between shapes for the weighted shock

trees. 106

5.3 Pairwise similarities between shapes for the unweighted shock

trees. 107

5.4 Top six matches for each shape for the weighted shock trees. . 108

5.5 Top six matches for each shape for the unweighted shock trees. 108

5.6 First and second principal components of the edit-distances of

the shapes for the weighted shock trees. 111

5.7 First and second principal components of the edit-distances of

the shapes for the unweighted shock trees. 112

5.8 (a) Initial similarity matrix for the weighted tree edit-distances;

(b) Final similarity matrix for the weighted tree edit-distances. 113

5.9 (a) Initial similarity matrix for the unweighted tree edit-distances;

(b) Final similarity matrix for the unweighted tree edit-distances.114

5.10 Clusters extracted from weighted edit-distance. 115

5.11 Clusters extracted from un-weighted edit-distance. 115

5.12 2D multi-dimensional scaling of the pairwise distances of the

shock graphs. The numbers correspond to the shape-classes. . 117

List of Figures 9

5.13 Proportion of correct classifications obtained with pairwise

clustering of the edit-distances. 118

5.14 Sensitivity analysis: top-left node removal, top-right node re-

moval without outliers, bottom-left weight jitter, bottom-right

weight jitter without outliers. 120

6.1 Edit-intersection of two trees. 126

6.2 Edit-union of two trees. 129

6.3 Edit-union is not always a tree. 130

6.4 The weight of a node in the union account for every node

mapped to that node. 131

6.5 Left: embedding through union. Right: multi-dimensional

scaling of pairwise distances. 135

6.6 Left: embedding through union. Right: multi-dimensional

scaling of pairwise distances. 136

6.7 Left: embedding through union. Right: multi-dimensional

scaling of pairwise distances. 136

6.8 Edit-union vs pairwise distances. 137

6.9 Clusters extracted from edit-distances versus those obtained

from the L1 norm defined on the union. 138

6.10 Synthetic clusters. 139

7.1 Merging sample trees into a single tree-model. 159

7.2 Comparison of three clustering approaches. a) Mixture of trees

b) pairwise clustering of edit-distance c) pairwise clustering of

the Union-induced L1 norm. 162

7.3 Comparison of clusters obtained from non-attributed edit-distance

and mixture of trees. 163

List of Figures 10

7.4 2D multi-dimensional scaling of the pairwise distances of the

shock graphs. The numbers correspond to the shape classes. . 164

7.5 Proportion of correct classifications obtained with the mixture

of tree versus those obtained with pairwise clustering. 165

7.6 Principal components analysis of the union embedding of the

clusters. 167

7.7 Percentage of correct classifications under increasing struc-

tural noise. 168

Glossary of Symbols

~C(t) Time evolution of the boundary of a shape.

∇f Gradient of the function f .

∇ · ~F Divergence of the field ~F .

D(p) Distance of a point p to the boundary of a shape.

|A| Area of region A.

||l|| Length of segment l.

ΦA(~F) Flux of the field ~F through region A.

κ(p) Curvature at point p of the inward evolving boundary curve ~C.

NΦA(~F) Normalized flux of the field ~F through region A.

Ω(t) Transitive closure of the tree t.

ρ Density field.

v u Node v is a parent of node u.

v 99K u Node v is an ancestor of node u.

wv Weight associated with node v.

d(t1, t2) Edit-distance between tree t1 and tree t2.

rv Cost of removing node v.

muv Cost of matching node u to node v.

M Set of matches between two trees.

C Set of correspondences from the training set to the tree union models.

U(M) Utility of a set of matches M.

Glossary of Symbols 12

T A set of trees.

D The complete training set of trees.

T Tree union.

H Generative tree model.

θi Sampling probability for node i.

L Log-likelihood function.

LL Description length.

KL Kullback-Leiber divergence.

I Entropy.

Acknowledgments

I wish to thank Dr. Richard Wilson and Prof. Horst Bunke for their

assessment of this work and their valuable feedback and discussion. My

sincere thanks also go to the good friends I made in York, with whom I shared

good times and long working nights, and particularly to Fabio, to whom I

owe a lot. I wish there was a way to express my gratitude to my parents,

who have always encouraged me and supported me in all my achievements.

A very special and loving thank you goes to Vera, who has put up with my

vagrant life for so long. Finally, last but certainly not least, I want to express

my deepest gratitude to Edwin Hancock. He has not only been an attentive

supervisor and an insightful mentor, but also a person I feel extremely lucky

to consider my friend.

Declaration

I declare that all the work in this thesis is solely my own except where

attributed and cited to another author. Some of the material in the following

chapters has been previously published, a full list of the publications is listed

in the next page.

List of Publications

2003

• A. Torsello and E. R. Hancock, Computing approximate tree edit dis-

tance using relaxation labeling. Pattern Recognition Letters, 24:1089–

1097, 2003.

• A. Torsello and E. R. Hancock, Curvature Correction of the Hamilton-

Jacobi Skeleton. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Vol. I, pp. 828–834, 2003.

• A. Torsello and E. R. Hancock, Curvature Dependent Skeletonization.

In IEEE International Conference on Image Processing, Vol. I, pp.

337–340, 2003.

• A. Torsello and E. R. Hancock, Curvature Dependent Skeletonization.

In 13th Scandinavian Conference on Image Analysis, Springer-Verlag

Berlin, LNCS 2749, pp. 200–207, 2003.

• A. Torsello and E. R. Hancock, Learning mixture of Tree-Unions by

Minimizing Description Length. In Energy Minimization Methods in

Computer Vision and Pattern Recognition, Springer-Verlag Berlin, LNCS

2683, pp. 130–146, 2003.

List of Publications 16

• A. Torsello and E. R. Hancock, Tree Edit Distance from Information

Theory. In 4th IAPR-TC15 Workshop on Graph-based Representations

in Pattern Recognition, Springer-Verlag Berlin, LNCS 2727, pp. 71–82,

2003.

2002

• A. Torsello and E. R. Hancock, Learning Structural Variations in Shock

Trees. In Joint International Workshops on Structural, Syntactic, and

Statistical Pattern Recognition, Lecture Notes in Computer Science,

Springer, LNCS2396, pp. 113–122, 2002.

• A. Torsello and E. R. Hancock, Matching and Embedding through

Edit-Union of Trees. In 7th European Conference on Computer Vision,

Vol. III, Lecture Notes in Computer Science, Springer, Copenhagen,

Denmark, LNCS2352, pp.822-836, 2002.

• A. Torsello and E. R. Hancock, Shape-Space from Tree-Union. In 16th

International Conference on Pattern Recognition, IEEE Computer So-

ciety Press, Vol.I, pp.188–191, 2002.

2001

• A. Torsello, B. Luo, A. Robles-Kelly, R. C. Wilson, and E. R. Hancock,

A Probabilistic Framework for Graph Clustering. In IEEE conference

on Computer Vision and Pattern Recognition, Vol. I, pp. 912–919,

2001.

• A. Torsello and E. R. Hancock, A Skeletal Measure of 2D Shape Sim-

ilarity. In Visual Form, Lecture Notes in Computer Science, Springer,

LNCS2059, pp.260–271, 2001.

List of Publications 17

• B. Luo, A. Robles-Kelly, A. Torsello, R. C. Wilson, and E. R. Hancock,

Clustering Shock Trees. In 3rd IAPR-TC15 Workshop on Graph-based

Representations in Pattern Recognition, pp.217–226, 2001.

• A. Torsello and E. R. Hancock, Computing approximate tree edit dis-

tance using relaxation labeling. In 3rd IAPR-TC15 Workshop on Graph-

based Representations in Pattern Recognition, pp.125–136, 2001.

• B. Luo, A. Robles-Kelly, A. Torsello, R. C. Wilson, E. R. Hancock,

Discovering Shape Categories by Clustering Shock Trees. In Computer

Analysis of Images and Patterns, Lecture notes in Computer Science,

Springer, LNCS2124, pp.151-160, 2001.

• A. Torsello and E. R. Hancock, Efficiently computing weighted tree edit

distance using relaxation labeling. In Energy Minimization Methods in

Computer Vision and Pattern Recognition, pp. 438–453, 2001.

• B. Luo, A. Robles-Kelly, A. Torsello, R. Wilson and E. R. Hancock,

Learning Shape Categories by Clustering Shock Trees. In IEEE Signal

Processing Society International Conference on Image Processing, Vol.

III, pp. 672–675, 2001.

Submitted Papers

• A. Torsello and E. R. Hancock, A skeletal measure of 2D shape simi-

larity. Submitted to Computer Vision and Image Understanding.

• A. Torsello and E. R. Hancock, Curvature Correction of the Hamilton-

Jacobi Skeleton. Submitted to IEEE Trans. on Pattern Analysis and

Machine Intelligence.

List of Publications 18

• A. Torsello and E. R. Hancock, Learning Mixtures of Weighted Tree-

Unions by Minimising Description Length. Submitted to IEEE Trans.

on Pattern Analysis and Machine Intelligence.

Chapter 1

Introduction

1.1 The Problem

Graph-based representations have been used with considerable success in

computer vision in the abstraction and recognition of object shape and scene

structure. Concrete examples include the use of shock graphs to represent

shape-skeletons [42, 81], the use of trees to represent articulated objects

[37, 101] and the use of aspect graphs for 3D object representation [22].

The attractive feature of structural representations is that they concisely

capture the relational arrangement of object primitives, in a manner which

can be invariant to changes in object viewpoint. Using this framework we

can transform a recognition problem into a relational matching problem.

Recognition tasks are typically performed by comparing a structure extracted

from an image to a structural prototype. The problem of how to measure the

similarity or distance of pictorial information using graph abstractions has

been a widely researched topic for over twenty years, yet the topic of how to

use them to learn shape-classes has not received significant attention. The

importance of the topic stems from the fact that it is a fundamental tool for

1 Introduction 20

learning the class structure of data abstracted in terms of relational graphs.

One of the reasons for limited progress in this area has been the lack of

algorithms suitable for clustering relational structures. In particular, the

problem has proved elusive to conventional central clustering techniques.

This is due to the fact central clustering algorithms are designed to work

on vectorial data, and graph representations cannot be easily embedded in

a vector space. There are two reasons for this. First, there is no canonical

ordering for the nodes or edges of a graph. Hence, before a vector-space

can be constructed, the correspondences between nodes must be established.

Second, structural variations in graphs manifest themselves as differences in

the numbers of nodes and edges. As a result, even if a vector mapping can

be established, the vectors will be of variable length.

A possible approach is to estimate a representation of the structural vari-

ation present in a set. However, despite the many advantages and attractive

features of graph representations, the methodology available for representing

structural variation is relatively limited. As a result, the process of con-

structing embedding spaces which capture the modes of structural variation

for sets of graphs has proved to be elusive. The difficulty derives from the

fact that in order to construct a representation for a distribution of graphs,

the correspondences must be at hand. Hence, there is a chicken and egg

problem in structural learning. Before the structural model can be learned,

the correspondences with it must be available, and yet the model itself must

be to hand to locate correspondences.

1 Introduction 21

1.2 Our Goal

The principal aim of the research reported in this thesis is to develop a

framework for clustering trees and learning the modes of structural variation

present in a set of training samples. We propose and analyze two approaches

to the problem. The first of these is to use the distance measures obtained

applying standard graph-matching, and then apply pairwise clustering to

the resulting set of graph distances. This approach, however, does not result

in an ordering of the graphs that has metrical significance under structural

variations due to graded shape-changes. The second approach is to learn

structural representations from sets of training examples. To this end, we

introduce the tree union, a representation which is capable of representing

the modes of structural variation present in a set of trees. We adopt an

information theoretic approach to learn a generative tree-union model from

a training set.

We apply the proposed clustering approaches to the problem of recog-

nizing shape abstracted in terms of shock graphs. Broadly speaking the

representation and recognition of 2D shapes based on the shock representa-

tion is a three stage process. Firstly, the skeleton must be computed from

the available shape boundary information. Secondly, the skeleton must be

reduced to a concise representation that captures the differential structure of

the original boundary. The final step is the matching and clustering of the

resulting shape representation.

While the skeletal abstraction of shape was chosen mainly as a experimen-

tal vehicle, we, nonetheless, do make a number of contributions to the prob-

lem of extracting and representing the morphological skeleton. In particular,

we show how to eliminate curvature-dependent error in the Hamilton-Jacobi

skeleton. We also devise a shape measure capable of characterizing shapes

1 Introduction 22

abstracted in terms of their skeleton.

1.3 Thesis Overview

After defining the problem domain and the goals of the thesis in Chapter 1, in

Chapter 2 we give a brief review of the relevant literature. The review covers

the literature on skeleton extraction and representation, graph matching,

and, finally, graph clustering and embedding.

The research work presented in this thesis is roughly divided into three

sections. The first section, which contains Chapters 3 and 4, deals with the

extraction of the skeleton and its abstraction in terms of graphs.

Chapter 3 presents an algorithm for extracting the skeleton, while Chap-

ter 4 presents a shape-measure that can be used to compare shapes abstracted

in terms of their skeleton. This measure has a number of interesting proper-

ties. In particular, it varies smoothly as the shape is deformed and can be

easily computed using the skeleton extraction algorithm presented in Chapter

3.

The second section contains only Chapter 5 and deals with the tree match-

ing problem. This chapter presents an algorithm for computing approximate

tree edit-distance. It shows that the tree edit-distance problem can be re-

duced to a series of maximum weighted clique problems and adopts a con-

tinuous optimization approach to approximate them. In this chapter we also

show how the computed edit-distance, together with a pairwise clustering al-

gorithm, can be used to perform unsupervised classification of a set of trees.

The third section deals with the problem of defining and leaning a repre-

sentation of a class of tree structures from a set of training samples. Chapter

6 presents the tree union, a structural archetype capable of describing the

1 Introduction 23

modes of variation present in a class of trees. Chapter 7 deals with the prob-

lem of learning these class representations from a set of trees. Here we adopt

an information theoretic approach to the structural learning problem and

construct the archetypes so as to minimize a description length criterion.

Finally, Chapter 8 draws some conclusions and identifies some directions

for further work.

Chapter 2

Literature Review

In this chapter we will present a review of the literature relevant to the

work presented in the thesis. The review covers a) the extraction of the

morphological skeleton of 2D shape, b) its abstraction in terms of graphs, c)

graph matching, and d) clustering and embedding of graph representations.

2.1 Skeleton Extraction

The skeletal abstraction of 2D and 3D objects has proved to be an allur-

ing yet highly elusive goal for over 30 years in shape analysis. The topic is

not only important in image analysis, where it has stimulated a number of

important developments including the medial axis transform and iterative

morphological thinning operators, but is also an important field of investiga-

tion in differential geometry and biometrics, where it has led to the study of

the so-called morphological skeleton [7].

The morphological skeleton of a shape is defined as the set of singularities

in the inward evolution of the boundary with constant velocity. The dynamics

of the boundary motion is described by the eikonal equation. This is a

2 Literature Review 25

partial differential equation that governs the motion of a wave-front through

a medium. In the case of a uniform medium the equation is

∂

∂t
~C(t) = α ~N(t), (2.1)

where ~C(t) : [0, s]→ R
2 is the equation of the front at time t, ~N(t) : [0, s]→

R
2 is the equation of the normal to the wave front in the direction of motion,

and α is the propagation speed. As the wave front evolves, opposing segments

collide, generating a singularity.

Given the importance of skeletal representations, the quest for reliable

and efficient ways of computing skeletal shape descriptors has been the sub-

ject of sustained activity [1, 45, 56, 87, 83]. The problem is a complex and

elusive one because it is based on the detection of singularities in the in-

ward evolution of the shape boundary [7]. The available methods for ex-

tracting the skeleton can be divided into three broad categories. The first

class of methods are those that involve the use of marching front techniques

which simulate the grassfire transform. These methods are concerned with

iteratively propagating the boundary front over time. Singularities in the

simulated evolution of the front indicate the locations of the skeleton. This

class of algorithms can be further divided into a) thinning methods [1, 2],

methods where layers of pixels are sequentially pealed from the shape like

the skin of an onion, and b) curve evolution methods [45, 87], where curve

descriptors such as splines or snakes are transformed according to the eikonal

equation. Thinning algorithms have a clear advantage in terms of simplicity.

However, their performance is not invariant under Euclidean transformation.

Curve evolution methods, on the other hand, are invariant under Euclidean

transformation, but require a functional description of the boundary curve.

Concrete examples include the use of second order or higher order curves and

splines [45], or local descriptors such as line segments or circular arc segments

2 Literature Review 26

[87]. If the shape is a binary silhouette on the image lattice, then curve evolu-

tion requires that a fit be performed to the shape-boundary, and this process

not only adds to the complexity of the method, but can also be adversely

affected by noise. Furthermore, the quality of the extracted boundary curve

depends strongly on the reliability of the fitted curve descriptors.

A second class of skeleton extraction algorithms consists of those that

rely on the relationship between the Voronoi triangulation and the skeleton

[70, 56, 57]. This class is based on the property that, as the number of

control points on the object boundary increases, the locus of the centers of the

triangles of the corresponding Voronoi triangulation of the shape converges

to the skeleton. The consequence is that as the triangulation increasingly

approximates the shape boundary, then, correspondingly, the centers of the

triangles increasingly approximate the skeleton. The important advantages

of this approach are that it offers invariance under Euclidean transformation,

that it is numerically stable, that it is fast, and that it is simple to implement.

However, its major drawback is the relatively slow convergence speed of the

skeleton approximation with respect to the number of control points on the

boundary. Hence, this class of algorithm is the natural choice either when the

shape is already triangulated (as is often the case with 3D models) or when

it presents a natural triangulation, as does a polygonal object. Otherwise,

the need to tessellate the shape with a large number of triangles negates the

advantage of speed.

The third, and final, class of algorithms rely on the analysis of the dif-

ferential structure of the boundary. An important method that falls into

this class is the one resulting from an analysis of the boundary evolution

dynamics using the Hamilton-Jacobi equations from classical mechanics [58].

This analysis leads to an eikonal equation which governs the boundary flow.

2 Literature Review 27

Whenever this flow is non-singular, the system is Hamiltonian, and, thus,

conservative. However, when the system ceases to be conservative there are

singularities in the flow of boundary evolution. In the Hamilton-Jacobi set-

ting [11, 82, 83], skeletal points are detected by searching for locations where

the system ceases to be Hamiltonian. The resulting skeleton search method is

algorithmically simple, numerically stable, and fast. Furthermore, it works

directly on the image lattice without the need to extract an intermediate

curve description of the boundary.

In the first reported account of the Hamilton-Jacobi method, the analy-

sis assumed that boundary evolution ceased to be Hamiltonian at locations

where the divergence of the flow was non-zero [11, 82]. Unfortunately, this is

not the case. Hence, this initial work appears to overlook the fact that the

linear density of the evolving boundary front is not constant where the front

is curved. The result of changes in density is that the flux is not conser-

vative and hence the premise underpinning the skeletonization method does

not hold. In a subsequent paper [83] the authors correct this oversight in the

analysis by normalizing the flux by the perimeter of the integration area. The

resulting normalized flux is still non-zero at non-skeletal locations. However,

in the limit as the integration area shrinks to zero, the normalized flux does

tend to zero at non-skeletal locations, and is negative on the skeleton itself.

Unfortunately, when the integration is performed on the image lattice, the

integration area is bounded from below by the pixel size and this introduces

an error into the calculation of the normalized flux. Furthermore, there are

locations where this error is unbounded. One way to reduce the effect of this

error is to use interpolation techniques to compute the flux with sub-pixel

precision [23].

2 Literature Review 28

2.2 Graph Representations

Once the skeleton is to hand, the next step is to devise ways of using it to

characterize the original boundary shape. Most of the approaches reported in

the literature opt to use a structural characterization. For instance, Zucker,

Siddiqi and others have labeled points on the skeleton using so-called shock

labels [85]. According to this taxonomy of local differential structure, there

are different classes associated with the behavior of the radius of the bitan-

gent circle inscribed in the shape. The so-called shocks distinguish between

the cases where the local bitangent circle has maximum radius, minimum

radius, constant radius or a radius which is strictly increasing or decreasing.

Kimia and Giblin opt for a simpler representation which is based just on the

junctions and terminations of the skeleton [88]. There are also examples in

the literature of skeletal representations that are not based on the morpho-

logical skeleton. Among these are the shape axis representation of Liu and

Geiger [47]. Here the skeleton is not defined using the symmetry axis, but as

the mid point between two corresponding boundary points on opposite sides

of the shape. Another important skeleton based representation is that used

in the FORMS system [101]. In this work the medial axis is matched to a

model skeleton using a branch and bound strategy.

Graph-based representations have been used with considerable success in

computer vision in the abstraction and recognition of object shape and of

scene structure. Concrete examples of the use of structural representations

in computer vision include the use of trees to represent articulated objects

[47, 37, 101] and 2D shape [42, 84, 85], and the use of aspect graphs for

3D object representation [22, 50, 21]. The attractive feature of structural

representations is that they concisely capture the relational arrangement of

object primitives, in a manner which can be invariant to changes in object

2 Literature Review 29

viewpoint. The reduced memory requirement of structural descriptors makes

them particularly interesting for indexing into large databases [80, 88, 73].

One of the criticisms that can be leveled at existing skeleton representa-

tions is their sensitivity to small boundary deformations and the consequent

formation of so-called ligatures: segments of the skeleton that are not in cor-

respondence with any boundary feature [4]. Although this sensitivity can be

reduced via curvature dependent smoothing, it may have a significant effect

on the topology of the extracted skeleton.

In order to reduce the number of spurious branches generated by local

shape deformations on the border, many authors have applied some form of

post-processing to the skeleton extraction, eliminating any branch that has

a low relevance to the shape, according to some notion of relevance. Many

features of the skeleton have been used to measure relevance [78]. Examples

include the speed at which the shock propagates [7], the time of creation of

the branch [85], the amount of smoothing required to eliminate the branch

[53, 10], and the length of the border that generates the branch [56, 57].

Most methods are applied in a hierarchical way and can be used to determine

the relevance of terminal branches only, i.e. branches that terminate on an

endpoint of the skeleton. They are not applicable to internal measurements.

The ratio of border length to shock length, on the other hand, maintains this

informational content in the hierarchy, and does not exhibit the hierarchical

bias seen on other measures.

A different approach to overcome the susceptibility of skeletal topology to

noise and small deformation is to attribute the skeletal representation with

some measure based on the local geometry of the shape, leaving the pruning

of spurious branches to a later matching stage. Siddiqi and Zucker label

the shocks generated by the eikonal equation with their time of formation

2 Literature Review 30

[81, 84, 85], or, which is equivalent, the distance to border. The later the time

of formation, and hence the closer their proximity to the center of the shape,

the higher the shock in the hierarchy. This temporal notion of relevance

is based on the observation that the skeletal branches generated by noise

and high frequency features are always close to the border. Unfortunately,

the converse does not hold. To give an example, a protrusion that ends

on a vertex will always have the earliest time of creation, regardless of its

relative relevance to the shape. For this reason the time of formation is not

an effective measure of branch relevance in the presence of sharp boundary

structure or high curvature features. In order to augment the structural

information, Pelillo, Siddiqi and Zucker [62] associate each node in the shock

tree with the length, radii, velocities and curvatures of the corresponding

shocks. Unfortunately, these attributes do not, in general, vary uniformly

with continuous geometric deformation of the shape.

Blum and Nagel [8] suggested that the ratio of border length to shock

length could be used, together with other measures, to characterize the shape,

but the proposal was based solely on the ability of this measure to reveal

whether a skeletal section is a ligature. In practice they used the measure

only as a purely static measure of relevance, ignoring its properties when the

shape undergoes deformation.

2.3 Graph Matching

Once the skeletal representation is to hand, then shapes may be matched by

comparing their skeletons. The problem of how to measure the similarity of

pictorial information which has been abstracted using graph-structures has

been the focus of sustained research activity for over twenty years in the

2 Literature Review 31

computer vision literature. Early work on the topic included Barrow and

Burstall’s idea [5] of locating matches by searching for maximum common

subgraphs using the association graph and Shapiro and Haralick’s idea [79]

of locating the isomorphism that minimizes the weight of unmapped nodes.

Most early approaches proposed to solve subgraph isomorphism problems

adopt a tree-search algorithm [92, 79, 90, 25, 94]. Other search approaches

found in the literature include genetic search [20] and Tabu search [95]. Exact

search methods produce the optimum subgraph isomorphism, but are too

slow to be used in practice.

A different approach to graph matching is to use permutationally invari-

ant entities that can be easily calculated on the graph. Umeyama [93] uses

eigenvalues of the association graph to solve the weighted graph matching

problem (WGMP). The problem is formulated in terms of the isomorphism

between weighted graphs that minimizes the difference between weights.

Two criticisms can be leveled at eigendecomosition methods. The first is

that the approach will produce false positives. The reason for this is that

there are co-spectral graphs that are structurally different but that have the

same spectrum [91]. However, the speed and ease of the method combined

to the relatively low probability of a false positive can compensate for the

problem. The second, and more important, criticism is that the methods

cannot easily cope with structural error or subgraph isomorphism problems.

The reason for this is that the noise added by spurious nodes completely

disrupts the spectral structure of the graph.

A third approach transforms the combinatorial problem into a continuous

optimization problem and then uses the wide range of available optimization

algorithms available in to find an approximate solution. In [16] Christmas

and Kittler use relaxation labeling to label nodes in the data graph with

2 Literature Review 32

the corresponding node in the model graph and use graph connectivity to

combine evidence. Relaxation labeling, however, does not guarantee a one-

to-one correspondence between nodes. In order to guarantee a one-to-one

assignment, Gold and Ragaranjan [30] introduced the “graduated assign-

ment” method. This is an evidence combining model that guarantees two

way constraints.

Evidence combining methods like relaxation labeling and graduated as-

signment give a very interesting framework to iteratively improve on our ini-

tial estimate, but they are critically dependent on a good consistency model

and a reliable initialization.

A more generic approach to error-tolerant graph matching derives from

the extension of the concept of string edit-distance to graph-matching. This

idea was independently introduced by Bunke and Allermann [12], and by

Fu and his co-workers [25]. The idea behind edit-distance [90] is that it is

possible to identify a set of basic edit operations on nodes and edges of a

structure, and to associate a cost with these operations. The edit-distance

is found by searching for the sequence of edit operations that will make the

two graphs isomorphic with one another, and which has minimum total cost.

By making the evaluation of structural modification explicit, edit-distance

provides a very effective way of measuring the similarity of relational struc-

tures. Moreover, the method has considerable potential for error tolerant

object recognition and for indexing into large structural databases.

Unfortunately, the task of calculating edit-distance is a computationally

hard one and most early efforts can be regarded as being goal-directed. How-

ever, in an important series of recent papers, Bunke has demonstrated the in-

timate relationship between the size of the maximum common subgraph and

the edit distance [14]. In particular, he showed that, under certain assump-

2 Literature Review 33

tions concerning the edit-costs, computing the maximum common subgraph

(MCS) and the graph edit-distance are computationally equivalent. The re-

striction imposed on the edit-costs is that the deletions and re-insertions of

nodes and edges are not more expensive than the corresponding node or edge

relabeling operations. In other words, there is no incentive to use relabeling

operations and, as a result, the edit operations can be reduced to those of

insertion and deletion.

The problem of assigning costs to edit operations remains an open one.

Most approaches adopted in the literature are problem specific or heuristic

in nature. Recently, there has been work aimed at providing a more prin-

cipled approach to the estimation of the costs incurred in structural editing

or deformation. For instance, adopting an information theoretic approach,

Wong and You [97] have shown how the cost of edit operations can be mea-

sured using changes in entropy. Wilson and Hancock [96], on the other hand,

opt for an approach in which the distribution of correspondence errors and

structural errors are modeled probabilistically.

By re-casting the search for the maximum common subgraph as a max

clique problem [5], we can tap into a diverse array of powerful heuristics and

theoretical results available for solving the max clique problem. In particu-

lar the Motzkin-Straus theorem [54] allows us to transform the max clique

problem into a continuous quadratic programming problem. An important

recent development is reported by Pelillo [60] who shows how relaxation la-

beling can be used to find a (local) optimum of this quadratic programming

problem.

In many computer vision and pattern recognition applications, such as

shape recognition [74, 101, 85], pattern recognition [52], and image processing

[67], the graphs at hand are trees, i.e. they are connected and acyclic. In

2 Literature Review 34

particular, the shock graph representation of any 2D shape with no holes is a

tree. Therefore, the special case of matching and comparing tree structures

is an important topic by itself.

Most research in the literature adopts a structural approach to the shock-

tree matching problem. For instance, Pelillo, Siddiqi and Zucker use a sub-

tree matching method [62].

Kimia, Klein, and their co-workers have a potentially more robust method

which matches by minimizing graph edit-distance [43, 88, 72, 74]. In particu-

lar, Sebastian, Klein and Kimia [72, 73, 42, 74] have developed a variational

method which can be used to measure the cost of boundary deformation,

which they refer to as “edit-distance” [72, 74]. The cost of removing a branch

of the skeleton is related to the associated boundary deformation. The dis-

tance measure based on this skeleton editing procedure has been successfully

used to index and retrieve shapes from a large data-base [73]. However, the

method is cumbersome since it requires alignment and explicit comparison

of the boundary and hence can not be encoded on the skeleton alone.

One of the criticisms of these structural matching methods is that small

boundary deformations may significantly distort the topology of the skeleton.

Hence, they are potentially vulnerable to structural variations or errors due

to local deformations, ligature instabilities or other boundary noise.

Golland and Grimson [31] provide an interesting alternative: they mini-

mize a boundary functional to find the optimal fit to a fixed model skeleton.

This approach is very robust to boundary deformations, but is computa-

tionally very expensive. Therefore, it is not well suited to indexing large

databases of shapes.

While trees are, indeed, a special case of graphs, because of the connec-

tivity and partial order constraints which apply to them, the methods used

2 Literature Review 35

to compare and match them require significant specific adaptation. For in-

stance, Bartoli et al. [6], use the graph theoretic notion of a path string to

transform the tree isomorphism problem into a single max weighted clique

problem. This work uses a refinement of the Motzkin Strauss theorem to

transform the max weighted clique problem into a quadratic programming

problem on the simplex [9]. The quadratic problem is then solved using

relaxation labeling.

Because of the added connectivity and partial order constraints men-

tioned above, Bunke’s result [14] linking the computation of edit-distance

to the size of the maximum common subgraph does not translate in a sim-

ple way to trees. Furthermore, specific characteristics of trees suggest that

posing the tree-matching problem as a variant on graph-matching is not the

best approach. In particular, both the tree isomorphism problem and the

subtree isomorphism problem have efficient polynomial time solutions. Tai

[86] has proposed a generalization of the string edit distance problem from

the linear structure of a string to the non-linear structure of a tree. The re-

sulting tree edit-distance differs from the general graph edit-distance in that

edit operations are carried out only on nodes and never directly on edges.

The edit operations thus defined are node deletion, node insertion, and node

relabeling. This simplified set of edit operations is guaranteed to preserve

the connectivity of the tree structure. Zhang and Shasha [99] have investi-

gated a special case which involves adding the constraint that the solution

must maintain the order of the children of a node. With this order among

siblings, they showed that the tree-matching problem is still in P and gave

an algorithm to solve it. In subsequent work they showed that the unordered

case was indeed an NP hard problem [100]. The NP-completeness, however,

can be eliminated again by adding particular constraints to the edit opera-

2 Literature Review 36

tions. In particular, it can be shown that the problem returns to P when we

add the constraint of strict hierarchy [98]. This is the case when separate

subtrees are constrained to be mapped to separate subtrees.

2.4 Graph Clustering and Embedding

Although considerable effort has gone into the extraction and matching of

shock trees, the topic of how to use shock trees to learn shape classes has not

received significant attention.

Graph clustering is an important, yet relatively under-researched topic

in machine learning [65, 75, 24]. The importance of the topic stems from

the fact that it is a fundamental tool for learning the class structure of data

abstracted in terms of relational graphs. Problems of this sort are posed by a

multitude of unsupervised learning tasks in knowledge engineering, pattern

recognition and computer vision. The process can be used to structure large

data-bases of relational models [76] or to learn equivalence classes. One of

the reasons for limited progress in this area has been the lack of algorithms

suitable for clustering relational structures. In particular, the problem has

proved elusive to conventional central clustering techniques. The reason for

this is that it has proved difficult to define what is meant by the mean or

representative graph for each cluster. However, Munger, Bunke and Jiang

[38, 55] have recently taken some important steps in this direction by devel-

oping a genetic algorithm for searching for median graphs. A more fruitful

avenue of investigation may be to pose the problem as pairwise clustering.

This requires only that a set of pairwise distances between graphs be sup-

plied. The clusters are located by identifying sets of graphs that have strong

mutual pairwise affinities. There is therefore no need to explicitly identify

2 Literature Review 37

a representative (mean, mode or median) graph for each cluster. Unfortu-

nately, the literature on pairwise clustering is much less developed than that

on central clustering.

When posed in a pairwise setting, the graph-clustering problem requires

two computational ingredients. The first of these is a distance measure be-

tween relational structures. As illustrated before, this requirement has been

addressed successfully using graph-matching methods, and, in particular, us-

ing an edit-distance approach. The second is a means of performing pairwise

clustering on the distance measures. There are several possible routes avail-

able. The simplest is to transform the problem into one of central clustering.

For instance, it is possible to embed the set of pairwise distances in a Eu-

clidean space using a technique such as multi-dimensional scaling and to

apply central clustering to the resulting embedding. The second approach

is to use a graph-based method [77] to induce a classification tree on the

data. Finally, there are mean-field methods which can be used to iteratively

compute cluster-membership weights [36]. These methods require that the

number of pairwise clusters be known a priori .

Graph matching may provide a fine measure of distance between struc-

tures, and this in turn may be used to cluster similar graphs by applying

pairwise clustering to the resulting set of graph distances. However, this

approach does not result in an ordering of the graphs that has metrical

significance under structural variations due to graded shape changes. An

alternative approach is to construct a graph-space that captures the modes

of structural variation present in the data. This approach has been at the

heart of recent developments in the construction of deformable models and

continuous shape-spaces [33]. Here shape variations have been successfully

captured by embedding them in a vector-space. The dimensions of this space

2 Literature Review 38

span the modes of shape-variation. For instance, Cootes and Taylor [17] have

shown how such shape-spaces can be constructed using the eigenvectors of a

landmark covariance matrix. Sclaroff and Pentland [71], on the other hand,

use the elastic modes of boundaries to define the shape-space. Luo, Wilson,

and Hancock [49] use spectral features of the Laplacian matrix to embed the

graphs in a low dimensional space.

Demerici and Dickinson [40] have shown how the minimum distortion

embedding procedure of Linial, London, and Rabinovich [46] can be used for

the purposes of correspondence matching. A recent review of methods that

could be used to perform the embedding process is provided in the paper of

Hjaltason and Samet [35].

Despite the many advantages and attractive features of graph represen-

tations, the methodologies available for learning structural representations

from sets of training examples is relatively limited. As a result, the process

of constructing shape-spaces which capture the modes of structural variation

for sets of graphs has proved to be elusive. Hence, geometric representations

of shape such as point distribution models [71, 33], have proved to be more

amenable when variable sets of shapes must be analyzed. There are two rea-

sons why pattern spaces are more easily constructed for curves and surfaces

than for graphs. First, there is no canonical ordering for the nodes or edges

of a graph. Hence, before a vector-space can be constructed, the correspon-

dences between nodes must be established. Second, structural variations in

graphs manifest themselves as differences in the numbers of nodes and edges.

As a result, even if a vector mapping can be established, the vectors will be

of variable length. However, there has been some progress in the area. For

instance Luo, Wilson and Hancock [49] have shown how simple spectral fea-

tures derived from the eigenvalues and eigenvectors of the adjacency matrix

2 Literature Review 39

can be used both to construct pattern spaces and to locate clusters for sets

of graphs.

While these spectral method can provide compact vectorial representa-

tions for the graphs, they do not provide a representation for the modes of

structural variations present in the set of graphs. Recently there has been

considerable interest in learning structural representations from samples of

training data, in particular in the context of Bayesian networks [34, 26], mix-

tures of tree-classifiers [51], or general relational models [27]. The idea is

to associate random variables with the nodes of the structure and to use a

structural learning process to infer the stochastic dependency between these

variables. Although these approaches provide a powerful way of inferring

the relations between the observable quantities of the model under exami-

nation, they rely on the availability of correspondence information for the

nodes of the different structures used in learning. However, in many cases

the identity of the nodes and their correspondences across samples of train-

ing data are not to hand. Therefore, the correspondences must be recovered

using a graph matching technique during the learning process. Hence, there

is a chicken-and-egg problem in structural learning. Before the structural

model can be learned, the correspondences with it must be available, and

yet the model itself must be to hand to locate correspondences. Lozano and

Escolano [48], and Bunke et al. [13] resolve this problem by constructing a

supergraph representation from available samples. While these approaches

provide a structural model of the samples, they way in which the supergraph

is learned is heuristic in nature.

2 Literature Review 40

2.5 Conclusions

Based on this review of the relevant literature, we can draw a number of

conclusions. First, the development of an efficient and reliable method for

extracting the morphological skeleton is still and open issue. The Hamilton-

Jacobi method provides a promising approach, but the presence of a curvature-

dependent error term in the differential analysis limits its applicability. In

this thesis we present a refinement on the Hamilton-Jacobi method that elim-

inates the curvature-dependent error term.

Second, the task of devising a stable representation of shape using the

skeleton is still elusive. This is mainly due to the fact that small boundary

deformations may significantly distort the topology of the skeleton. Hence,

structural representations derived from the skeleton are potentially vulner-

able to structural variations or errors due to local deformations, ligature

instabilities or other boundary noise. In order to make the representation

more stable, many measure of branch relevance or similarity have been pro-

posed. However, most are not continuous over local regions in shape-space in

which there are no topological transitions. We propose to label the skeletal

representation with the ratio of border length to shock length in order to

assess the similarity between the shapes.

Third, with the structural representations to hand, the correspondences

between nodes must be estimated. The edit-distance framework has proven

to be a powerful approach to graph matching that can be tailored to many

different matching problems. Despite this, there is very little work aimed at

solving or approximating the edit-distance for unordered trees. In this thesis

we will show how the tree edit-distance problem can be transformed into a

series of quadratic programming problems and how relaxation labeling can

be used to find an approximate solution.

2 Literature Review 41

Finally, the topic of how to use shock trees to learn shape classes has not

received significant attention. In particular, there are very few methods to

learn structural archetypes capable of describing the distribution of a class

of graphs. One method is to use a superstructure as a class archetype, but

the existing methods to estimate these structures are heuristic in nature and

more principled approaches to learn graph archetypes are needed. Central to

this research is the development of a superstructure-based representation of

tree classes, the tree union, and an information theoretic approach to learn

different sets of union archetypes from training data.

Section I

Skeleton Extraction and

Representation

Chapter 3

Curvature Correction of the

Hamilton-Jacobi Skeleton

In this Chapter we present an improvement on the Hamilton-Jacobi skeleton

extraction algorithm. We perform a Hamilton-Jacobi analysis of the bound-

ary evolution under conditions where the flux-density varies due to curvature.

Instead of using the gradient of the distance map, i.e. the velocity field of the

eikonal equation, we use the momentum field. In other words, we multiply

the velocity by the linear density of the boundary front. The resulting field is

conservative, and hence zero at non-skeletal locations. Moreover, our analysis

leads to a new skeleton extraction method. We compare the resulting cur-

vature corrected skeletonization method with the Hamilton-Jacobi method.

The advantages of the new method are improved localization and stability,

and a reduced sensitivity to the model parameters.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 44

3.1 Hamilton-Jacobi Skeleton

We commence by defining a distance-map that assigns to each point on the

interior of an object the closest distance D from the point to the boundary

(i.e. the distance to the closest point on the object boundary). The gradient

of this distance-map is a field ~F whose domain is the interior of the shape.

The field is defined to be

~F = ∇D, (3.1)

where ∇ = (∂
∂x

, ∂
∂y

)T is the gradient operator. The trajectory followed by

each boundary point under the eikonal equation is governed by the ordinary

differential equation ~̇x = ~F (~x), where ~x is the coordinate vector of the point.

Siddiqi, Bouix, Tannenbaum, and Zucker assume that this dynamic system

is Hamiltonian everywhere except on the skeleton [82, 11]. The original

interpretation of this property was that at non-skeletal points the normalized

flux field ~F is conservative, i.e. ∇ · ~F = 0. However, the total inward

flux through the boundary of the shape is non zero. In fact, the flux is

proportional to the length of the boundary.

The divergence theorem states that the integral of the divergence of a

vector-field over an area is equal to the flux of the field over the enclosing

boundary of that area. In our case, this implies that
∫

A

∇ · ~F (x) dx =

∫

∂A

~F · ~n dl = ΦA(~F), (3.2)

where A is an arbitrary region, ~F is a vector field defined in A, dσ is the area

differential in A, dl is the length differential on the boundary ∂A of A, ~n is a

vector normal to the boundary, and ΦA(~F) is the outward flux of F through

the boundary ∂A of the region A. This implies that, where the divergence is

well defined, we have

∇ · ~F = lim
|A|→0

ΦA(~F)

|A| , (3.3)

3 Curvature Correction of the Hamilton-Jacobi Skeleton 45

where |A| is the area of the region A. With a slight abuse of notation, we

extend the definition to points where the divergence is not well defined. This

is done by redefining the divergence on skeletal points using equation 3.3.

Since the flux through the initial boundary is non-zero, by virtue of the

divergence theorem, within the interior of the shape there are points where

the system is not conservative. The non-conservative points are those where

the boundary trajectory is not well defined, i.e. where there are singularities

in the evolution of the boundary. These points are the so-called shocks or

skeleton of the shape-boundary. Shocks are thus characterized by locations

where

lim
|A|→0

ΦA(~F)

|A| < 0, (3.4)

or, using the extended definition of the divergence,

∇ · ~F < 0. (3.5)

3.1.1 Curvature in the Boundary Front

Unfortunately, in general the flux of ~F is not conservative. To illustrate

this point, let us consider an instant in time t during the inward boundary

evolution. The initial shape boundary has evolved under the eikonal equation

to the front ~C(t) which is at every location orthogonal to ~F . We would like

to select a point p ∈ ~C(t) and compute the value of ∇ · ~F (p) at this point.

The value of this divergence is more easily computed in the Frenet frame

of the front ~C(t) passing over point p. The Frenet frame of a plane curve

γ : [a, b]← R
2 is the frame provided by the orthogonal basis {v‖, v⊥}, where

v‖(γ(s)) = γ′(s)
||γ′(s)||

v⊥(γ(s)) = ±
∂
∂s

v‖(γ(s))

|| ∂
∂s

v‖(γ(s))|| .
(3.6)

3 Curvature Correction of the Hamilton-Jacobi Skeleton 46

Here the sign of v⊥ depends on the chosen orientation of the curvature. We

chose to orient the curvature so that ∂
∂s

v‖(~C(t, s)) = κ(p)~F (p). That is, so

that the curvature κ(p) of ~C(t) is positive when the curve bends towards

the interior of the shape. Calculating the Frenet frame for the front ~C(t) at

the point p, and selecting the inward orientation of the boundary curvature,

we have v⊥ = ~F . Furthermore, we have v‖ = dl, where dl is the arc length

differential of ~C(t) at point p. Since the divergence operator is invariant

under rotations, the divergence of the field calculated in the Frenet frame is

∇ · ~F =
∂

∂v‖
~F +

∂

∂v⊥
~F . (3.7)

Since ||~F || = 1 everywhere, we have ∂
∂v⊥

~F = 0. Moreover, since v‖ is an

an arc-length differential for the boundary front C(t) at point p, we have

∂
∂v‖

~F (p) = −κ(p), where κ(p) is the curvature at p of ~C(t).

Hence, we have

∇ · ~F (p) = −κ(p). (3.8)

In other words, the divergence ∇ · ~F is not always zero as predicted by the

original Hamilton-Jacobi approach [82]. Rather, it is equal to the curvature

of the front of the inward evolving boundary.

As a concrete example, consider a circle of unit radius centered in (0, 0)T .

The gradient of the distance map at point (x, y)T is ∇D = − 1√
x2+y2

(x, y)T ,

and the divergence is ∇2D = − 1√
x2+y2

6= 0.

3.1.2 Normalized Flux

This problem was recognized by Siddiqi, Bouix, Tannenbaum, and Zucker

who corrected the analysis in a subsequent publication [83] by introducing the

concept of normalized flux. With this modification to the analysis, the non

Hamiltonian points are detected by considering the flux through a circular

3 Curvature Correction of the Hamilton-Jacobi Skeleton 47

region A of radius r normalized by the perimeter length 2πr. According to

the modification, non skeletal points satisfy the condition

lim
r→0

ΦA(F)

2πr
= 0. (3.9)

This condition results from the fact that ΦA(F) = ∇ · ~F (ξ)|A|, where ξ ∈ A

and |A| = πr2 is the area of the circle A. Hence, the limit of the normalized

flux becomes

lim
r→0

ΦA(F)

2πr
= lim

r→0

∇ · ~F (ξ)

2
r = 0. (3.10)

Furthermore, in [83] the authors proved that the limit of the normalized flux

at skeletal locations is less than a negative constant c, and that this constant

depends only on the characteristics of the boundary of the original shape.

While this analysis is correct, it relies on the ability to calculate the limit

of the normalized flux through a region of vanishingly small area. Unfortu-

nately, on the image lattice there is an obvious lower bound on the size of

the integration area due to the pixel resolution. Hence, assuming a minimum

integration radius of one pixel, the calculated normalized flux is

NΦA(~F)(p) = −κ(p)

2
. (3.11)

At most locations the absolute value of the calculated normalized flux is much

smaller than the constant c. However, near the endpoints of the skeleton the

curvature of the boundary front tends to infinity. Hence, at these locations

the exact location of the skeletal points becomes somewhat elusive.

3.2 Momentum Field

The fact that the divergence of the field ~F is non-zero can be easily under-

stood by appealing to an analogy from physics. Let us assume that a fluid

3 Curvature Correction of the Hamilton-Jacobi Skeleton 48

dl(t + ∆t)dl(t)

Figure 3.1: Evolution of a boundary segment.

of uniform density flows from the boundary of the shape, which acts as a

source, to the skeleton, which acts as a sink. If the fluid is incompressible,

then the fluid density never changes and the flux of the velocity field ~F is

conservative everywhere except at points on the skeleton. If, on the other

hand, the fluid is compressible, then as soon as a curved front compresses

the fluid, the density changes and the velocity field is no longer conservative.

To develop this idea one step further, consider a segment dl(t) of the

boundary front ~C(t) at time t. We assume that this segment has average

linear density ρ̂(t) (see Figure 3.1). Under the eikonal equation, at time

t+∆t the boundary front segment dl(t) has evolved to dl(t+∆t). Since each

of the points in dl(t) are now contained in dl(t + ∆t), the total mass of the

two segments is the same. However, if dl(t) is curved then the lengths of the

segments are different, i.e. ||l(t + ∆t)|| 6= ||l(t)||. Thus the average density

of l(t + ∆t) is ρ̂(t + ∆t) 6= ρ̂(t). As a result, when the front is curved, the

density is not constant and we have to take into account mass effects. That

is, we have to resort to the more general principle of conservation of mass.

Based on this physical intuition, we state that there is indeed a con-

servative field associated with the dynamics of the boundary, namely the

3 Curvature Correction of the Hamilton-Jacobi Skeleton 49

momentum ~M = ρ~F , where ρ is the scalar field that assigns to each point

the linear density of the boundary front. As a result we have that

∇ · (ρ~F) = 0, (3.12)

Applying the rules of product differentiation, we obtain the partial differential

equation (PDE)

∇ρ · ~F = −ρ∇ · ~F . (3.13)

By setting σ = log(ρ), we can write the above PDE as a function of the

log-density σ

ρ∇σ · ~F = −ρ∇ · ~F . (3.14)

Eliminating ρ from both sides, we obtain

∇σ · ~F = −∇ · ~F . (3.15)

This is a transport equation that can be reduced to the following set of

ordinary differential equations (ODE) along the paths of the boundary points






d
dt

σ(s(t)) = −∇ · ~F (s(t))

d
dt

s(t) = ~F (s(t)),
(3.16)

where s(t) is the trajectory of a boundary point.

These equations can be derived by analyzing the change in density of the

segment dl in Figure 3.1. To commence, we note that ρ̂(t)||dl(t)|| = m, where

dl(t) is the length of the boundary segment at time t, m is its mass, ρ̂(t) is

its average linear density and κ(t) is the curvature at time t. After a small

interval of time ∆t, the segment length will be

||dl(t + ∆t)|| = ||dl(t)|| κ(t)

κ(t + ∆t)
+ O(∆t2), (3.17)

and the curvature

κ(t + ∆t) =
κ(t)

1− κ(t)∆t
+ O(∆t2). (3.18)

3 Curvature Correction of the Hamilton-Jacobi Skeleton 50

From these equations and the conservation of mass, we have that

ρ̂(t + ∆t) =
m

||dl(t + ∆t)|| = ρ̂(t)
1

1− κ(t)∆t
+ O(∆t2). (3.19)

Hence

ρ̂(t + ∆t)− ρ̂(t) = ρ̂(t)
κ(t)∆t

1− κ(t)∆t
+ O(∆t2). (3.20)

Taking the limit for ∆t→ 0 and ||dl|| → 0, we have

d
dt

ρ(s(t))

ρ(s(t))
= κ(s(t)), (3.21)

where s(t) is the trajectory of the limit point of the segment dl as ||dl|| → 0.

Integrating (3.21) we obtain

log(ρ(s(t))) =

∫ t

0

κ(s(τ)) dτ. (3.22)

From Equation 3.8, we have that κ(p) = −∇ · ~F , yielding

log(ρ(s(t))) = −
∫ t

0

∇ · ~F (s(τ)) dτ. (3.23)

Hence, integrating ρ, we obtain the vector field ρF which satisfies the

condition ∇· (ρ~F) = 0 at non-skeletal points. The analysis of skeletal points

is more complex. The problem we face is that both F and ρ are multi-valued

on the skeleton and hence ∇ · (ρ ~F) is not defined. Although the divergence

is not well defined, we can calculate the flux through an area containing a

skeletal point.

To pursue this analysis we turn our attention to Figure 3.2. Consider the

skeleton segment s in the figure that is surrounded by a ribbon ε of half-

width radius r. The skeleton segment s originates from the inward evolution

of the boundary segments l1 and l2. The interior of the shape between the

ribbon surrounding the skeleton and the two object boundary segments can

be divided into two areas Aε
1 and Aε

2. The areas are enclosed by the out-

side boundary of the ribbon ε, the boundary segments l1 and l2, and the

3 Curvature Correction of the Hamilton-Jacobi Skeleton 51

Aε
2

ε2

ε1
b2
1

b2
2

Aε
1

l1

b1
2

b1
1

s

l2

Figure 3.2: The flux through the boundary is equal to the flux through ε.

trajectories b1
1, b2

1, b1
2 and b2

2 of the endpoints of l1 and l2. Since ∇ · ρ~F = 0

everywhere in Aε
1 and Aε

2, by virtue of the divergence theorem the flux from

the two areas are both zero, i.e. ΦAε
1
(ρ~F) = 0 and ΦAε

2
(ρ~F) = 0. The tra-

jectories of the endpoints of the boundary are, by construction, parallel to

the field, so the associated boundary normals are everywhere perpendicular

to the field. Thus there is no flux through the segments b1
1, b2

1, b1
2 and b2

2. On

the other hand the field on the shape boundary is always perpendicular to

the boundary. Hence, the flux through the boundary segments l1 and l2 is

equal to their respective lengths ||l1|| and ||l2||.
Since ΦAε

1
(ρ~F) = 0 and ΦAε

2
(ρ~F) = 0 the flux that enters through the

boundary segments l1 and l2 has to exit through ε. That is, if ε1 and ε2 are

respectively the sides of the areas Aε
1 and Aε

2 close to the skeleton, we have

that Φε1(ρ~F) = Φl1(ρ~F) and Φε2(ρ~F) = Φl2(ρ~F). The results in turn imply

that the flux through the ribbon ε is Φε(ρ~F) = −||l1|| − ||l2||.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 52

Since any area containing a skeleton segment s can be approximated with

arbitrary precision with a series of ribbons of the sort described above, the

flux through any region A containing a skeletal segment s is

ΦA(ρ~F) = −||l1|| − ||l2||. (3.24)

The limit is not well-defined for an arbitrary sequence of regions of van-

ishingly small area. However, assuming that we can construct a sequence of

circular regions Ar of radius r, containing a skeletal segment ls, we have that

lim
r→0

ΦAr
(ρ~F)

||Ar||
= lim

r→0

−4r dl
dls

(ξ) + O(r2)

πr2
= −∞ if

dl

dls
> 0. (3.25)

Here dl
dls

is the ratio between boundary length and segment length and ξ is a

point in the skeletal segment ls.

When integrating the flux numerically on the pixel lattice, there will be

a lower bound on the radius, hence the corresponding limiting value of the

normalized flux will not be −∞, but it will be negative since dl
dls
≥ 0. In

particular, the flux will be zero if and only if dl
dls

= 0, that is, on pure ligatures.

Ligatures are skeletal branches linked with high negative curvature on the

boundary. They are not linked with any feature on the boundary, but serve

the purpose of linking skeletal features keeping the skeleton connected.

It is worth noting that if we follow Siddiqi et al. [83] and normalize by

the perimeter ||∂Ar|| of the region Ar, we obtain

lim
r→0

ΦAr
(ρ~F)

||∂Ar||
= lim

r→0

−4r dl
dls

(ξ) + O(r2)

2πr
= − 2

π

dl

dls
. (3.26)

Hence, factoring out the curvature effects, we obtain a clear geometrical

interpretation of the value of the normalized flux at a skeletal point: It

is proportional to the ratio between the boundary length and the skeletal

length.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 53

3.3 Boundary Curve Parameterization

There is another interpretation for the scalar field ρ derived from the analysis

of the evolution of an arc-length parameterization of the boundary curve of

the shape [41]. Let ~C(t) be a solution to the eikonal equation (2.1), where

~C(t) : [0, s] → R
2 is the equation of the front at time t. Furthermore, let

the differential ds of the parameterization s of the curve be, at time t = 0,

an arc length differential. Clearly, ds will not remain a differential of arc

length throughout the evolution of the curve. However, we can define a

metric g(t, s) = ds
dl

that links the length at time t of the differential ds of the

parameterization s, to the arc length differential dl. With this notation, we

have that

ρ(~C(t, s)) =
1

g(t, s)
. (3.27)

Further suppose that l is a segment on the initial boundary, and let l′ be the

corresponding segment on the front at time t. Since we assume unit density

at time t = 0, the total mass of the segment l is equal to its length |l|. Since

mass is conserved, the total mass of the segment l′ will remain |l|. Hence,

the average density is ρ = |l|
|l′| . Taking the limit as |l′| → 0, we have ρ = dl

ds
.

With this definition of the front density, we can rewrite the momentum field

as ~M =
~F
g
. Following [41], the divergence of the momentum and velocity

fields are given by

∇ ·
(

~F

g

)

=
∂

∂l

~F

g
+

∂

∂t

~F

g
=

∂

g∂s

~F

g
+

∂

∂t

~F

g
=

1

g2
(−kg) +

−∂g

∂t

g2
− k

g
+

kg

g2
= 0

(3.28)

and

∇ · ~F =
∂

∂l
~F +

∂

∂t
~F =

∂

g∂s
~F +

∂ ~F

∂t
=

1

g
(−kg) + 0 = −k. (3.29)

These are, in fact, the results obtained via our analysis of the momentum

field.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 54

3.4 Computing the Density

To obtain the momentum field we need to integrate the density field over

the interior of the shape. Since images have a finite resolution, we need to

discretize the solution onto the image lattice.

One approach is to express the PDE (3.15) as a system of difference

equations. The difference equations form a linear system that can then be

solved to obtain the log-density σ = log(ρ). The problem with this approach

is that the skeleton is a set of singularities of the momentum field. Hence, the

density can have very different values at opposite sides of a skeletal branch.

The net effect is that the linear system will have no solution. In fact, even

seeking an approximate solution using a residual descent method would result

in oscillations near the skeleton.

3.4.1 Integration in Time

In order to overcome this problem we need to ensure that the difference

operators used in the equations never cross a skeletal branch. One way to

guarantee this is to integrate the equation in the time domain. This must be

done so that the formulae giving the value of ρ at points on the boundary

front at time t reference values of ρ only at points in the fronts at previous

times. We can realize this by integrating the ODE (3.16) along the paths of

the boundary points.

To do this we opt to use the second order Cranck-Nicolson method [19].

For each point (x, y) = ~C(t, s) in the interior of the shape, we have the

equation

σ(~C(t, s))− σ(~C(t− 1, s)) = −1

2
[∇ · ~F (~C(t, s)) +∇ · ~F (~C(t− 1, s))]. (3.30)

3 Curvature Correction of the Hamilton-Jacobi Skeleton 55

Solving for the log-density at time t, we obtain

σ(~C(t, s)) = σ(~C(t− 1, s))− 1

2
[∇ · ~F (~C(t, s)) +∇ · ~F (~C(t− 1, s))]. (3.31)

Using this equation we can calculate the log-density at a point on the evolving

boundary at time t, referencing only values of the log-density at points that

belong to the front at previous times. Since the evolution never crosses

the skeleton, we are guaranteed not to cross skeletal branches during our

calculations.

3.4.2 Integration in Space

Equation (3.31) allows us to integrate the log-density σ in the time domain

along the evolution path followed by a boundary point. However, we have

not shown how to calculate the integration path. Fortunately, we do not

need to calculate every possible path. Let us assume that at time t the

boundary front passes through the point ~C(t, s) = (x, y)T . The first order

approximation of the position of this point at time t− 1 is

~C(t− 1, s) = (x, y)T − ~F (x, y) = (x− Fx, y − Fy)
T . (3.32)

Using this approximation, we can write Equation (3.31) in the spatial domain

instead of the time domain. As a result the density is given by

σ(x, y) =

σ(x−Fx(x, y), y−Fy(x, y))−1

2
[∇· ~F (x, y))+∇· ~F (x−Fx(x, y), y−Fy(x, y))].

(3.33)

As shown in Figure 3.3, the point (x, y)T − ~F (x, y) does not belong to the

image lattice. Hence, we need to interpolate it using the values at the four

corners of the square containing the point. Note that the point (x, y)T is the

3 Curvature Correction of the Hamilton-Jacobi Skeleton 56

σ(x, y′)σ(x′, y′)

σ(x′, y)

σ(x − Fx, y − Fy)

~F

σ(x, y)

Figure 3.3: Integration along the boundary path.

last of the four points in the lattice that is visited by the evolving boundary.

Hence, the interpolation is guaranteed to use points on the same side of a

skeleton. We opt to compute the quantity f(x + a, y + b) with a, b ∈ [0, 1)

using the bilinear interpolation

(a−1)(b−1)f(x, y)+a(b−1)f(x+1, y)+(a−1)bf(x, y+1)+abf(x+1, y+1).

(3.34)

With this interpolation, Equation (3.33) becomes

[1− (1− |Fx|)(1− |Fy|)]σ(x, y) = |Fx|(1− |Fy|)σ(x′, y)

+(1−|Fx|)|Fy|σ(x, y′)+|Fx||Fx|σ(x′, y′)−1

2
[∇·~F (x, y))+∇·~F (x−Fx, y−Fy)],

(3.35)

where x′ = x + sgn(Fx(x, y)) and y′ = y + sgn(Fy(x, y)).

Using Equation (3.35) we can compute the value of the log-density σ(x, y)

using values of σ at the points spanned by the evolving boundary front be-

fore the point (x, y)T . Hence, to calculate σ all we need to do is to iterate

Equation (3.35) through the interior points according to front arrival time.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 57

We commence from the points reached first by the boundary front and pro-

ceed to those reached last. Since the evolving boundary front is moving with

constant unit velocity, the time taken by the front to reach the point with

position (x, y)T is equal to its distance from the initial shape boundary.

Once we have the density to hand, we need to calculate the divergence

of the momentum in every point on the image lattice. We opt to discretize

Equation (3.15) using the second order approximation

∇ · (ρ~F)(x, y) = [σ(x, y)− σ(x− Fx, y − Fy)] exp(σ(x, y)− 1

2
∆σ)

+
1

2

[

∇ · ~F (x− Fx, y − Fy) exp(σ(x− Fx, y − Fy)) +∇ · ~F (x, y) exp(σ(x, y))
]

.

(3.36)

This corresponds to the second-order Cranck-Nicolson method applied to the

integration of the log-density σ.

3.5 Skeletonization

Once the divergence of the momentum field is to hand, we can extract the

skeleton. The extraction process we adopt is similar to the one adopted by

Siddiqi et al. [83]. To perform the extraction we thin the shape by removing

boundary points that have energy absorption below a certain threshold, and

whose removal does not cause the shape to be split into two disjoint parts.

We then further thin the remaining shape to a 1-pixel wide skeleton, being

careful to maintain the connectivity of the shape and to avoid shortening of

the skeleton by eliminating endpoints. Figure 3.4 provides pseudo-code for

the thinning process of the shape S.

The predicate is simple determines whether the shape is still connected

after the removal of the point p. It does so by checking only the points

3 Curvature Correction of the Hamilton-Jacobi Skeleton 58

For each point p in distance order

if is simple(S \ p) and −∇ · ρ ~F (p) < ε

then S = S \ p

For each remaining point p in distance order

if is simple(S \ p) and not is endpoint(S,p)

then S = S \ p

Figure 3.4: Pseudo-code for the thinning process.

in the neighborhood of p. The shape S \ p is connected if the points in

the neighborhood of p, excluding p, are connected. Similarly, is endpoint

determines whether p is an endpoint. It does so only by inspecting the

neighborhood of p. The point is an endpoint if it has at most two neighboring

points and those points are horizontally or vertically adjacent.

It is worth noting that the only external help this thinning algorithm

requires is the detection of endpoints. In fact, if an algorithm were to return

only the set of endpoints, the thinning process would reconstruct the same

skeleton. On the other hand, the algorithm is highly dependent on the quality

of the detection of the endpoints. Hence, an improvement in the detection

and localization of the endpoints would result in an improvement in the

extraction algorithm.

3.6 Experimental Comparison

In this section we attempt to characterize the differences between the Hamilton-

Jacobi skeletonization method and our density-corrected approach. We com-

mence by providing a qualitative analysis of the difference in the divergence of

the velocity and momentum fields. Then, we provide an analysis of the noise

3 Curvature Correction of the Hamilton-Jacobi Skeleton 59

and thresholding sensitivity of the two methods. Finally, we provide a more

quantitative analysis of the localization properties of the two skeletonization

methods.

Figures 3.5 and 3.6 show, for a few selected shapes from our database,

the values of the flux through a unit circle of the velocity field Φ1(~F), the

computed log-density log(ρ), and the flux through a unit circle of Φ1(ρF).

Note that, since we fixed the radius for the calculation of the flux at 1 pixel,

the flux Φ1(~F) and the normalized flux NΦ1(~F) differ only by a multiplicative

constant. In these pictures white (grey-scale 255) corresponds to a large

positive value, black (grey scale value 0) to a large negative value and zero is

represented by the grey scale value 128. To better show the differences, the

contrast of the images is strongly enhanced. This is done by applying to the

intensity of each point a sigmoidal function with slope on 0 equal to 10.

It is clear from the pictures that the divergence of the velocity field on

non-skeletal points is not zero where the boundary evolution front is curved

– that is, in correspondence with a curved boundary. The value of the flux

through an area that does not contain any section of the skeleton is, in

general, an order of magnitude smaller than the value calculated over an

area that contains a skeletal branch. However, near the endpoints of the

skeletal branches the values become comparable. This can be observed as a

blurred dark region around the endpoints. Furthermore, quantization in the

localization of the shape causes the initial boundary to be very jagged. This

high-frequency, low-amplitude noise is transported and amplified throughout

the velocity field, creating stripes with high local curvature in the evolving

front. This in turn yields a noisy and poorly localized skeleton. By contrast,

the density correction in the momentum field dampens this noise.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 60

Figure 3.5: Differences in the velocity and momentum fields. Left to right:

shape, (normalized) flux of ~F , log(ρ), and flux of ρ~F .

3 Curvature Correction of the Hamilton-Jacobi Skeleton 61

Figure 3.6: Differences in the velocity and momentum fields. Left to right:

shape, (normalized) flux of ~F , log(ρ), and flux of ρ~F .

3 Curvature Correction of the Hamilton-Jacobi Skeleton 62

Figure 3.7: Discretization error on boundary localization.

3.6.1 Noise Sensitivity

Our skeletonization method depends on our ability to calculate the distance

map D and its gradient. This, in turn, depends on the correct localization

of boundary points. Unfortunately, due to the truncation effects caused by

the finite precision of the image lattice, the extracted boundary presents dis-

cretization errors – most notably in the form of jagged edges. Figure 3.7

illustrates the problem. The dashed line represents the original boundary of

the shape and the gray squares represent the boundary pixels in the image

lattice. Due to this discretization, the observed boundary is equal to the

solid line. Clearly, commencing from this observed boundary, the distance

map will diverge considerably from its correct value. The effects of this dis-

cretization error will be even more dramatic on the gradient ∇D. To over-

come quantization noise from the object boundary, we need to smooth the

observed shape boundary and select an appropriate skeletonization thresh-

old. To smooth the shape boundary we approximate shape diffusion [41]. In

order to approximate the skeletonization of the diffused shape, it is not nec-

essary to explicitly calculate the diffused shape and distance-map. Instead,

it is sufficient to approximate the gradient ∇D of the diffused distance map.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 63

Figure 3.8: The effect of smoothing on skeleton extraction.

Let D be the distance map of the original shape and Dτ be the distance map

of the shape after a diffusion with parameter τ . Furthermore, let Gτ ∗ f be

a Gaussian smoothing of a function f with standard deviation τ . For small

τ we have

∇Dτ ≈
∇Gτ ∗D

||∇Gτ ∗D|| . (3.37)

Hence, we can approximate the diffusion of the image by performing Gaussian

smoothing to the distance map and normalizing the resulting gradient. This

approach allows us to approximate the gradient of the distance map of an

ideal diffused boundary calculated with subpixel precision, without actually

calculating the diffused boundary with subpixel precision.

If either the smoothing radius or the threshold is too large, then some

of the branches of the skeleton will be thinned away. If, on the other hand,

the selected values are too small, then the detected skeleton will have a large

number of spurious branches (See Figure 3.8). In this section we characterize

the effects of the smoothing radius and the skeletonization threshold on the

quality of the detected skeleton.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 64

Figure 3.8 displays the effects of very low (top) and very high (bottom)

values of the smoothing radius and the skeletonization threshold on a test

shape. The picture shows, left to right, the divergence of the velocity field,

the uncorrected Hamilton-Jacobi skeleton, the divergence of the momentum

field, and the skeleton extracted using the density-corrected method. These

pictures demonstrate that the density corrected method is much less sensitive

to the amount of smoothing and to the value of the threshold.

The improved extraction and the extended range of the extraction param-

eters have a direct effect on the usability of the method for any shape recog-

nition process based on a skeletal representation. The extended parameter-

range reduces the amount of tuning required on the extraction part of the

recognition method, allowing the method to be fully automated, while im-

proved correctness of the extraction has obvious implications for the recog-

nition process.

Sensitivity to boundary noise is a problem with all skeleton extraction

methods, and is rooted in the high sensitivity of the skeletal representation

to boundary deformation. In an actual skeleton extraction algorithm this

sensitivity is compounded with the accumulation of discretization errors in

correspondence with high frequency boundary noise. This means that an

algorithm that is correct in the continuous domain can be affected by errors

in the discrete domain. Our solution is to reduce the high frequencies in the

shape boundary in order to reduce the discretization error.

A complementary approach present in the literature is to extract a noisy

skeleton and then prune the extraneous branches [56, 57, 10, 87]. A problem

with this approach is that the calculation of the endpoints of the skeletal

branches that are not pruned away is still affected by the high-frequency

boundary noise. Hence a branch that should stop within the interior of the

3 Curvature Correction of the Hamilton-Jacobi Skeleton 65

Figure 3.9: Smoothing improves localization of endpoints.

shape, on the center of a low curvature bitangent circle, will be prolonged

almost up to the boundary, to the center of a high curvature bitangent circle

created by a high frequency boundary feature. This effect can be seen con-

fronting the results in Figure 3.9 with the results published in [87]. Just like

our method, the algorithm described by Tek and Kimia in [87] is correct in

the continuous domain. Yet they chose to adopt the pruning approach. The

resulting skeletal branches are, for the most part, the same, except that their

approach extends the branches inward to the center of circles that are bitan-

gent to boundary features that have similar magnitude as the discretization

noise.

3 Curvature Correction of the Hamilton-Jacobi Skeleton 66

To be fair, the smoothing approach has a drawback as well: in certain

degenerate cases boundary diffusion could generate new skeletal features [3].

0.01
0.1

0.2

0.3

0.5

0.6

Threshold

0.6

2.5

4.4

6.2

8.1

10.

Smoothing

0

1000

2000

3000

Skeletal points

0.01
0.1

0.2

0.3

0.5

0.6

Threshold

0.01
0.1

0.2

0.3

0.5

0.6
Threshold

0.6

2.5

4.4

6.2

8.1

10.

Smoothing

0

100

200

300

Skeletal points

0.01
0.1

0.2

0.3

0.5

0.6
Threshold

0.6

2.5

4.4

6.2

8.1

10.

Smoothing

0.01
0.1

0.2

0.3

0.5

0.6
Threshold

0.6

2.5

4.4

6.2

8.1

10.

Smoothing

0

100

200

300

Skeletal points

0.01
0.1

0.2

0.3

0.5

0.6
Threshold

0.6

2.5

4.4

6.2

8.1

10.

Smoothing

(b) Hamilton-Jacobi (c) Density corrected

Figure 3.10: Effect of smoothing and threshold on skeleton extraction.

Figure 3.10 plots the number of detected points on the skeleton of the

test shape as a joint function of the smoothing radius and the skeletonization

threshold. Ideally, as the smoothing radius increases, the number of detected

points should reach a plateau very quickly, and then abruptly drop to a

3 Curvature Correction of the Hamilton-Jacobi Skeleton 67

lower plateau as a feature of the shape is smoothed away. The amount of

smoothing required to reach a new plateau should be independent of the

value of the threshold. Figure 3.10a shows the number of points extracted

by the two methods. The results are superimposed as separate surfaces. It is

clear from the plot that, of the two methods, the density-corrected method

reaches the plateau faster as we increase the threshold or the smoothing

radius. Moreover, it maintains the plateau for longer. Figures 3.10b and

3.10c show the results separately for the Hamilton-Jacobi approach and the

density-corrected method. Here the location closest to the viewer is the

plateau side of the plots. The ridges in the forefront show the drop in the

number of skeletal points due to the smoothing away of an image feature.

In both cases, the drop is sudden, but the ridge in the Hamilton-Jacobi plot

shows a higher dependence on the threshold.

3.6.2 Skeleton Localization

In this section we characterize the localization properties of the skeleton ex-

tracted using the Hamilton-Jacobi method and the new density-corrected

method on a wide variety of shapes. To this end, we investigate how the

values of the divergence of the velocity and of the momentum field are dis-

tributed over the distance to the extracted skeleton. Figure 3.11 plots a

histogram of the distribution of non-skeletal points as a function of distance

and divergence value for the test shapes. The figure shows that the Hamilton-

Jacobi skeleton has a non-negligible tail for high divergence values, even at

large distance from the extracted skeleton.

We have also performed an experiment aimed at quantifying the local-

ization of the skeleton on a database of shapes. We have used a database

of 50 shapes and have histogrammed the distribution of field divergence as

3 Curvature Correction of the Hamilton-Jacobi Skeleton 68

0

0.2

0.4

0.6

0.8

1.

Energy

0

3.8

7.6

11.4

15.2

19.

Distance

0

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1.

Energy

0

0.2

0.4

0.6

0.8

1.

Energy

0

3.8

7.6

11.4

15.2

19.

Distance

0

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1.

Energy

(a) Hamilton-Jacobi (b) Density corrected

Figure 3.11: Histogram over value of (negative) divergence of the field and

distance to skeleton.

a function of the distance to the skeleton. We have repeated this procedure

for both the velocity field and the momentum field. For each shape, we take

the mean of the relevant divergence-distribution as a measure of divergence-

localization.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 1 2 3 4

distance from skeleton

f
i
e
l
d

d
i
v
e
r
g
e
n
c
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4

distance from skeleton

f
i
e
l
d

d
i
v
e
r
g
e
n
c
e

(a) Hamilton-Jacobi (b) Density corrected

Figure 3.12: Histogram of divergence-localization on a database of 50 shapes.

Figure 3.12 shows histograms of this divergence-localization measure ac-

cumulated over all the shapes in our database. We have divided the histogram

3 Curvature Correction of the Hamilton-Jacobi Skeleton 69

contents into 8 bins of average divergence-distance. In Figure 3.12a we show

the localization histogram for the velocity field. The mean of this distribu-

tion is 2.52, while the variance is 0.34. Figure 3.12b is the corresponding

histogram for the momentum field. The mean of this distribution is 1.46,

while the variance is 0.28. The density correction clearly leads to a better

localization of the skeleton.

3.7 Conclusions

This chapter presents a skeletonization method that corrects curvature effects

in the Hamilton-Jacobi framework. Our approach addresses a shortcoming

of the Hamilton-Jacobi method for skeleton extraction, namely its sensitivity

to high curvature. This is due to the fact that the normalized flux, the key

component of the Hamilton-Jacobi algorithm, has an error term proportional

to the curvature of the inward evolving boundary front. To overcome this

problem, we have presented an analysis which takes into account variations

of density due to boundary curvature. This yields a skeletonization algo-

rithm that is both better localized and less susceptible to boundary noise

than the Hamilton-Jacobi method. Yet our analysis of the effects of bound-

ary noise show that high noise still affects the extraction algorithm. This

drawback is due to the intrinsic sensitivity of the skeletal representation,

and hence present in every extraction algorithm. This intrinsic sensitivity is

compounded with a higher incidence of discretization error in correspondence

with high frequencies in the boundary features. To counter this we smooth

the boundary by approximating a diffusion operator.

In the next chapter we take this work one step further by investigating

how to attribute the skeleton with information concerning the way in which

the skeleton varies as the boundary is deformed.

Chapter 4

Skeletal Measure

As noted in the review of the relevant literature, one of the criticisms that

can be leveled at existing skeletonization methods is their sensitivity to small

boundary deformations or ligatures. Although these can be reduced via cur-

vature dependent smoothing, they may have a significant effect on the topol-

ogy of the extracted skeleton. Conversely, the structural representations

of shape based on the morphological skeleton suffer from the problem that

perceptually distinct shapes may have topologically similar, if not identical,

skeletons which can not be distinguished from one another.

From the literature review we can hence draw two observations. The

first is that if a largely structural representation of the skeleton is used,

then shapes which are perceptually different but which give rise to the same

skeleton topology can be ambiguous with one another. For this reason in this

chapter we would like to develop a representation which can be used to assess

the differences in shape for objects which have topologically identical skele-

tons. Secondly, we would also like to be able to make comparisons between

shapes that are perceptually close, but whose skeletons exhibit topological

differences due to small but critical local shape deformations. Thirdly, we

4 Skeletal Measure 71

aim to do this without making detailed boundary comparisons. In particular

we wish to construct a representation which dispenses with the boundary,

but encodes information concerning its shape on the skeleton.

To meet these goals, our shape-measure must have three properties. First,

it must be continuous over local regions in shape-space in which there are

no topological transitions. If this is the case then it can be used to differ-

entiate shapes with topologically identical skeletons. Secondly, it must vary

smoothly across topological transitions. This is perhaps the most important

property, since it allows us to define distances across transitions in skeleton

topology. In other words, we can traverse the skeleton without encountering

singularities. Thirdly, it must distinguish between the principal components

of the skeleton and its ligatures [4]. This will allow us to suppress instabilities

due to local shape deformations.

4.1 Contribution

We opt to use a shape-measure based on the rate of change of boundary length

with distance along the skeleton. To compute the measure we construct at

each location on the skeleton the bitangent circle inscribed in the shape. This

circle is centered on a skeletal point and is bitangent to the boundary at the

two boundary points. Hence, each skeletal point is in correspondence with

(at least) two points on the border. The rate of change of boundary length

with distance along the skeleton is computed by taking neighboring points on

the skeleton. The corresponding change in boundary length is computed by

determining distance along the boundary between the corresponding points

of contact for the two bitangent circles. The boundary distances are averaged

for the boundary segments at either side of the skeleton.

4 Skeletal Measure 72

This measurement has previously been used in the literature to express

relevance of a branch when extracting or pruning the skeleton [56, 57]. Blum

and Nagel [8] suggested that the border length to shock length ratio could

be used, together with other measures, to characterize the shape, but the

reasons for this proposal were attributed to the measure’s ability to reveal

whether a skeletal section is a ligature. In practice they used the measure

only as a purely static measure of relevance, ignoring its properties when the

shape undergoes deformation.

We show that the rate of change of boundary length with distance along

the skeleton has a number of interesting properties. The consequence of

these properties is that the descriptive content of the measure extends be-

yond simple feature saliency, and can be used to attribute the relational

structure extracted from the skeleton in order to achieve a richer description

of shape. Furthermore, we demonstrate that there is an intimate relation-

ship between the shape measure and the divergence of the Momentum field

defined in the previous chapter. This is an important observation, since

the divergence plays a central role when the skeleton is computed using the

curvature-corrected Hamilton-Jacobi formalism to solve the eikonal equation.

Among the properties exhibited by this measure, we have that topolog-

ical changes on the skeleton correspond to zero crossings. This means that

ligatures are associated with a value of the measurement which is zero, and

hence have neutral weight. Secondly, the measure does not change when the

shape undergoes “bending”.

4 Skeletal Measure 73

4.2 The Shape-Measure and its Properties

The eikonal equation induces a map from a point in the skeleton to a set

of points on the boundary of the shape. That is, there is a correspondence

between a point on the skeleton and the set of points on the boundary whose

trajectories intercept it under the motion induced by the eikonal equation.

The cardinality of this set of corresponding points on the boundary can be

used to classify the local topology of the skeleton in the following manner

• the cardinality is greater than or equal to 3 for junctions.

• for endpoints the cardinality is a number from 1 to a continuum.

• for the general case of points on branches of the skeleton, the cardinality

is exactly 2.

ls

l1

l2

Figure 4.1: Geometric quantities used in our analysis.

As a result of this final property, any segment of a skeleton branch ls is

in correspondence with two boundary segments l1 and l2. This allows us to

assign to a portion of the skeleton the portion of the boundary from which

it arose. For each internal point in a skeleton branch, we can thus define the

local ratio between the length of the generating boundary segment and the

length of the generated skeleton segment. The rate of change of boundary

4 Skeletal Measure 74

length with skeleton length is defined as

dl

dls
=

dl1
dls

+
dl2
dls

. (4.1)

This ratio is our measure of the relevance of a skeleton segment in the rep-

resentation of the 2D shape-boundary.

Figure 4.2: Ligature points are generated by short boundary segments.

Our proposal is to use this ratio as a measure of the local relevance of the

skeleton to the boundary-shape description. In particular, we are interested

in using the measure to identify ligatures [4]. Ligatures are skeleton segments

that link the logically separate components of a shape. They are character-

ized by a high negative curvature on the generating boundary segment. The

observation which motivates this proposal is that we can identify ligature by

attaching to each infinitesimal segment of skeleton the length of the bound-

ary that generated it. Under the eikonal equation, a boundary segment with

high negative curvature produces a rarefaction front. This front will cause

small segments to grow in length throughout their evolution, until they col-

lide with another front and give rise to a so-called shock. This means that

4 Skeletal Measure 75

very short boundary segments generate very long skeleton branches. Con-

sequently, when a skeleton branch is a ligature, then there is an associated

decrease in the boundary-length to shock-length ratio. As a result our pro-

posed skeletal shape measure “weights” ligature less than other points in the

same skeleton branch.

To better understand the rate of decrease of the boundary length with

skeletal length, we investigate its relationship to the local geometry of the

bitangent circle inscribed within the object boundary. We have

dl1
dls

=
cos θ

1− rk1
(4.2)

and, similarly,
dl2
dls

=
cos θ

1− rk2
, (4.3)

where r is the radius of the bitangent circle and ki is the curvature of the

mapped segment on the boundary. The curvature is oriented inwards, that is,

when the boundary bends towards the skeleton we have a positive curvature,

while when the boundary bends away from the skeleton the curvature is

negative. Finally, θ is the angle between the tangent to the skeleton and

the tangent to the corresponding point on the boundary. These formulae

show that the measure is inversely proportional to negative curvature and

radius. That is, if we fix a negative curvature k1, the measure decreases as

the skeleton gets further away from the border. Furthermore, the measure

decreases faster when the curvature becomes more negative.

A second important property of the shape-measure is that its value varies

smoothly across shape deformations, even when these deformations impose

topological transitions to the skeleton. To demonstrate this property we

make use of the taxonomy of topological transition of the skeleton compiled

by Giblin and Kimia [29]. According to this taxonomy, a smooth deformation

4 Skeletal Measure 76

of the shape induces only two types of transition on the skeleton (plus their

time reversals). The transitions are branch contraction and branch splicing.

A deformation contracts a branch joining two junctions when it moves the

junctions together. Conversely, it splices a branch when it reduces in size,

smoothes out, or otherwise eliminates the protrusion or sub-part of a shape

that generates the branch.

A deformation that contracts or splices a skeleton branch causes the global

value of the shape-measure along the branch to go to zero as the deformation

approaches the topological transition. This means that a decreasing length

of boundary generates the branch, until the branch disappears altogether.

When a deformation causes a contraction transition, both the length of

the skeleton branch and the length of the boundary segments that generate

the branch go to zero. A more elusive case is that of splicing. Through

a splicing deformation, a decreasing length of boundary maps to the skele-

ton branch. This is either because the skeleton length and its associated

boundary length are simultaneously reduced, or because the deformation al-

lows boundary points to be mapped to adjacent skeleton branches. For this

reduction in the length of the generating boundary, we do not have a corre-

sponding reduction of the length of the skeleton branch. In fact, in a splice

operation the length of the skeleton branch is a lower bound imposed by the

presence of the ligature. This is the major cause of the perceived instabil-

ity of the skeletal representation. Weighting each skeletal branch with the

length of the corresponding boundary segments allows us to eliminate the

contributions from ligatures, thus smoothing the instability. Since a smooth

shape deformation induces a smooth change in the boundary, the total shape-

measure along the branch has to vary smoothly through any deformation.

4 Skeletal Measure 77

dl1

dls

drdlp1
r

θ

θ + dα− dβ

Figure 4.3: Differential geometry of a skeletal branch.

Moreover, just like the radius of the bitangent circle, key shape elements

such as necks and seeds are associated with local variations of the length ratio.

For instance, a neck is a point of high rarefaction and, thus, a minimum of

the shape-measure along the branch. A seed is a point where the front of the

evolution of the eikonal equation concentrates, and so is characterized by a

maximum of the ratio.

A third important property of the shape-measure is its invariance to bend-

ing of the shape. This invariance derives from the fact that, if we bend the

shape, we lose from one side the same amount of boundary-length that we

gain on the opposite side. This property was already identified in [7].

To prove the bending invariance, let ks be the curvature on the skeleton,

at point p. We can assume, without loss of generality that at this point

the skeleton is directed towards the border-segment dl2. Furthermore, let k1

and k2 be the inward curvature on the corresponding boundary points, and

let θ be the angle between the border tangents and the skeleton tangent.

At the point p the tangent angle and the radius are linked by the relation

4 Skeletal Measure 78

dr/||dls|| = sin(θ). We define the radius curvature kr as

kr =
dθ

||dls|| =
d2r/||d2ls||

√

1− (dr/||dls||)2
. (4.4)

This quantity represents the degree to which the boundary bends towards the

skeleton. Positive values indicate that the boundary is convex with respect

to the skeleton (i.e. bends towards the skeleton), negative values that the

boundary is concave with respect to the skeleton (i.e. bends away from the

skeleton). Let us now consider the segments dlp1 and dlp2 which are parallel

to the border-segments dl1 and dl2, and which cross the skeleton at point

p. The length of these segments is ||dlp1|| = ||dlp2|| = cos(θ)||dls||, and their

curvatures are kp
1 and kp

2 respectively. Moving along the skeleton by a distance

||dls||, the tangent to the skeleton rotates by an angle dα = ks||dls||, while

the tangent at the corresponding border segment dlp1 rotates by an angle

dβ = kp
1||dlp||+ O(||dls||2). These angles are linked by the relationship

dθ
||dls|| = dβ

||dls|| + dα
||dls||

kr = kp
1 cos(θ) + ks

kp
1 = kr−ks

cos(θ)
.

(4.5)

Similarly, remembering that on the opposite side of the skeleton, since ks

points towards dl2, we have that

dθ
||dls|| = dβ

||dls|| −
dα

||dls||

kr = kp
2 cos(θ)− ks

kp
2 = kr+ks

cos(θ)
.

(4.6)

Recalling that 1
k1

= 1
k

p
1
+r and 1

k2
= 1

k
p
2
+r, we have ||dl1|| = [cos(θ)+r(kr+ks)]

and ||dl2|| = [cos(θ) + r(kr − ks)]. Hence ||dl1|| + ||dl2|| is independent of

ks, since if we bend the object sufficiently to cause a curvature ks in the

skeleton, the increase in boundary length on the one side is compensated by

the decrease in boundary length on the opposite side.

4 Skeletal Measure 79

4.3 Measure Extraction

The extraction of the skeletal shape-measure is a natural by-product which

comes for free when we use the curvature-corrected Hamilton-Jacobi ap-

proach for skeleton extraction. This is a very important property of this

shape-measure. By means of the divergence theorem, we can transport a

quantity linked to a potentially distant border to a quantity local to the

skeleton. In the previous chapter we proved that the border length to shock

length ratio is proportional to the normalized divergence of the gradient of

the momentum field. Furthermore, the flux though a circular area A con-

taining a skeletal segment dls is

ΦA(ρ~F) = ||dl1||+ ||dl2||. (4.7)

Given that in order to extract the skeleton we approximate the divergence

using a unit-radius circle

∇ · (ρ~F) ≈ ΦA(ρ~F)

π
, (4.8)

we have
||dl1||
||dls||

+
||dl2||
||dls||

=
ΦA(ρ~F)

2π
≈ 1

2
∇ · (ρ~F). (4.9)

Hence, the calculation of the skeletal measure comes for free when we extract

the skeleton using the curvature-corrected Hamiton-Jacobi approach.

Figure 4.4 plots at each skeletal point the extracted value of the shape

measure of each of two sample shapes.

4 Skeletal Measure 80

Figure 4.4: Two sample shapes. The height and intensity of the skeleton at

each point is proportional to the shape measure.

4.4 Computing the Distance Between Skele-

tons

This result allows us to calculate a global shape-measure for each skeleton

branch during the branch extraction process. For our matching experiments

we have used a simple graph representation where the nodes are branches

of the skeleton. When we have completed the thinning of the shape bound-

ary and we are left only with the skeleton, we select an endpoint and start

summing the values of the length ratio for each skeleton point until we reach

either a junction or an extremal point. This sum
∑

i∈ls
∇ · ~F (~xi) over every

pixel xi of our extracted skeleton branch is an approximation of

∫

ls

∇ · ~F dls =

∫

ls

(
||dl1||
||dls||

+
||dl2||
||dls||

) dls = ||l1||+ ||l2||, (4.10)

which is the length of the border that generates the skeleton branch.

At this point we have identified a branch and we have calculated the

total value of the length-ratio along that branch, or, in other words, we

have computed the total length of the border that generated the branch.

4 Skeletal Measure 81

We continue this process until we have spanned each branch in the entire

skeleton. Thus we obtain a weighted graph representation of the skeleton.

In the case of a simple shape, i.e. a shape with no holes, the graph has no

cycles and thus is an (unrooted) tree.

Given this representation, we can cast the problem of computing distances

between different shapes as one of calculating the total difference in shape

measure between corresponding branches.

4.5 Experimental Results

In this section we experiment with the new skeletal similarity measure. The

experimentation is divided into two parts. First, we asses the ability of the

proposed measure to discriminate between deformed shapes that give rise to

skeletons with the same topology. Second, we asses how smoothly the overall

similarity measure varies through transitions in skeletal topology.

There is clearly an underlying correspondence problem that must be

solved before the similarity between two skeletons can be computed. This

arises because we need to know how to associate branches in the two skele-

tons being compared. To fully perform a shape recognition task, we should

recover these correspondences automatically. However, the aim of this chap-

ter is to analyze the properties of our length ratio measure independently of

the correspondence process. Therefore, for the set of experiments reported

on here, we have located the branch correspondences by hand. The subse-

quent chapters of the thesis will present our approach to the remaining steps

for the shape recognition task. In particular, the automatic recovery of the

correspondences will be dealt with in the next chapter.

4 Skeletal Measure 82

Figure 4.5: A “disappearing” protrusion which causes instability in shock-

length, but not in our measure.

4.5.1 Stability under Deformation

As demonstrated earlier, we know that the length ratio measure should be

stable with respect to any local shape deformation, including those that

exhibit an instability in the length of a skeletal branch. This kind of behavior

at local deformations is what has led to the idea that the skeleton is an

unstable representation of shape.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

sequence number

s
h
a
p
e

m
e
a
s
u
r
e

Figure 4.6: The measure of the skeleton segment generated by a protrusion.

To demonstrate the stability of the skeletal representation when aug-

mented with the length ratio measurement, we have generated a sequence of

images of a rectangle with a protrusion on one side (Figure 4.5). The size of

the protrusion is gradually reduced throughout the sequence, until it is com-

pletely eliminated in the final image. In Figure 4.6 we plot the global value

4 Skeletal Measure 83

of the length-ratio measure for the shock branch generated by the protrusion.

It is clear that the value of the length-ratio measure decreases monotonically

and quite smoothly until it becomes zero when the protrusion disappears.

4.5.2 Changes in Skeleton Topology

In a second set of experiments we have aimed to assess the ability of the

length-ratio measure to distinguish between structurally similar shapes. To

do this we selected two shapes that were perceptually different, but which

had skeletons with a very similar topology. We, then, generated an image

sequence in which the two shapes were morphed into one another. Here the

original shapes are the start and end frames of the sequence. At each frame

in the sequence we calculated the distance between the start and end shapes.

We have repeated this experiment with two morphing sequences. The

first sequence involved morphing a sand shark into a swordfish, while the

second morphed a donkey into a hare.

To determine the difference between two shapes we made use of hand-

picked correspondences between skeletal branches. The distance between

the complete skeletons was defined as the Euclidean distance between the

normalized weights of matched edges (skeletal branches). In other words, the

distance is D(A, B) =
√

∑

i(e
A
i − eB

i)2 where eA
i and eB

i are the normalized

weights on the corresponding edges indexed by i on the shapes denoted by

A and B. The normalized weights are computed by dividing the raw weights

by the sum of the weights of each tree.

We apply this normalized length-ratio measure to ensure scale invari-

ance. We note that two identical shapes scaled to different proportions would

have different ratios due to the scale difference. However, the measure along

equivalent branches of the two shapes would vary by a constant scale fac-

4 Skeletal Measure 84

tor, namely the ratio of the lengths of the borders. Since the sum of the

weights of the edges of a tree is equal to the total length of the border, by

dividing the weights in each branch by this quantity we have reduced the two

measurements to the same scale.

(a) sand shark to swordfish sequence

(b) donkey to hare sequence

Figure 4.7: Morphing sequences and their corresponding skeletons.

For each morphing sequence, in Figure 4.8 we plot the distance between

each frame in the sequence and the start and end frames. The monotonicity

of the distance is evident throughout the sequences. This is proof of the

ability of our length ratio measure to disambiguate between shapes with

topologically similar skeletons.

To further asses the ability to discriminate between similar shapes, we se-

lected a set of topologically similar shapes from a database of images of tools.

As in the case of the previous experiments, the correspondences are hand-

picked and the normalized Euclidean distance of the corresponding branch

weights is used to measure the similarity of the skeletons. In the first column

4 Skeletal Measure 85

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

sequence number

s
h
a
p
e

m
e
a
s
u
r
e

(a) Distances in fish morphing sequence

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

sequence number

s
h
a
p
e

m
e
a
s
u
r
e

(b) Distances in donkey to hare morph-

ing sequence

Figure 4.8: Distances from first and last frame of the morphing sequences.

of Figure 4.9 we show the selected shapes. To their right are the remaining

shapes sorted by increasing normalized distance. Each shape is annotated

by the value of the normalized distance.

It is clear that similar shapes are usually closest to one another. However,

there are problems due to a high sensitivity to occlusion, made evident by

the high relative importance given to the articulation angle. This is due to

the fact that, in the pliers images, articulation occludes part of the prongs

of the pliers. While sensitivity to occlusion is, without a doubt, a drawback

of the measure, we have to take into account that skeletal representation is,

in general, highly sensitive to occlusion.

The reason that the first monkey wrench is recorded as being more similar

to the pliers than the second monkey wrench is due to sensitivity to articu-

lation and to the “closeness” of the head to the handles. Since the second

monkey wrench is almost closed, the skeleton branches of the handles have

a reduced overall weight. Thus the process of normalizing the edge weights

reduces the significance of the small yet salient head when it is compared to

4 Skeletal Measure 86

0.068 0.081 0.108 0.112 0.132 0.187

0.053 0.054 0.069 0.080 0.087 0.112

0.030 0.048 0.054 0.084 0.092 0.108

0.021 0.030 0.054 0.081 0.086 0.110

0.080 0.084 0.086 0.095 0.102 0.132

0.088 0.092 0.095 0.110 0.128 0.186

0.021 0.048 0.068 0.069 0.102 0.128

Figure 4.9: Some tools and the normalized distance between them.

the remainder of the shape.

4.6 Conclusions

This chapter introduces a shape-measure defined on the skeleton. This mea-

sure has been used in the literature as a branch-relevance measure during

skeleton extraction and pruning. We show, however, that this measure has

even greater informational utility, and can be used to augment the purely

4 Skeletal Measure 87

structural information residing in a skeleton in order to perform shape in-

dexation and matching tasks. The shape-measure has a number of inter-

esting properties that allow it to distinguish between structurally similar

shapes. In particular, the measure a) changes smoothly through topological

transitions of the skeleton, b) is able to distinguish between ligature and

non-ligature points and to weight them accordingly, and c) exhibits invari-

ance under “bending”. What makes the use of this measure particularly

appealing is the fact that it can be calculated with no added effort when

the skeleton is computed using the skeletonization method presented in the

previous chapter.

This chapter concludes our analysis and development of the skeletal rep-

resentation. In the next chapter we begin a discussion of the matching of

trees by introducing a method for computing approximate tree edit-distance.

Section II

Tree Matching

Chapter 5

Tree Edit-Distance

This chapter presents an energy minimization method for efficiently comput-

ing weighted tree edit-distance. Following the approach pioneered by Pelillo

[60], we cast the problem in terms of the Motzkin-Straus framework. Using

the graph-theoretic notion of tree closure, we show that, given a tree t, any

tree obtained by cutting nodes from t is a subtree of the closure of t. Fur-

thermore, subtrees of the closure of t that can not be obtained from t can be

eliminated by solving a series of max-clique problems. This provides a divide

and conquer method for finding the edit-distance by searching for maximal

cliques of an auxiliary structure similar to Barrow and Burstall’s association

graph [5]. A variant of the Motzkin-Straus theorem introduced by Bomze

et al. [9] is used to convert the maximum weighted clique problem into a

quadratic programming problem which can be solved by relaxation labeling.

5.1 Problem Statement

The problem we aim to solve is the automatic extraction of correspondences

between tree representations. Formally, given two trees t1 = (V1, E1) and

5 Tree Edit-Distance 90

t2 = (V2, E2), where V1 and V2 are set of nodes and E1 and E2 set of edges,

we wish to find the edit-distance between the two trees. That is, the sequence

of basic edit operations that make t1 and t2 isomorphic with one another.

Following common use, we consider three fundamental operations:

• node removal: this operation removes a node and links the children to

the parent of said node.

• node insertion: the dual of node removal.

• node relabel: this operation changes the weight of a node.

Since a node insertion on the data tree is dual to a node removal on the

model tree, we can reduce the number of operations to be performed to only

node removal and node relabeling, as long as we perform the operations on

both trees. Clearly, the cost of removing a node in the model tree must be

equal to the cost of inserting it in the data tree. We assign a cost rv to the

operation of removing node v and a cost mvu to matching node v to node u

(that is, the minimum cost of relabeling nodes v and u to a common label).

With these definitions, the edit-distance between trees t1 and t2 is:

d(t1, t2) = min
S

[

∑

v∈R1

rv +
∑

u∈R2

ru +
∑

(v,u)∈M

mvu

]

, (5.1)

where S is sequence of edit operations, R1 and R2 are the sets of nodes of t1

and t2, respectively, that are removed by S, and M ∈ V1 × V2 is the set of

matches between nodes of t1 and t2 induced by S.

The edit-distance approach is general in the sense that, by applying dif-

ferent costs to the edit operations, it can be equally applied to unattributed

trees and to trees with either symbolic or continuous-valued attributes. In

particular, to solve the correspondence problem for unattributed trees, we

set rv = 1 and mvu = 0 for each node v and u of the two trees. On the other

5 Tree Edit-Distance 91

hand, to solve the correspondence problem for shock trees attributed with the

weight described in the previous chapter, we set rv = wv and mvu = |wv−wu|,
where wv is the weight assigned to node v. Obviously, other cost assignments

are possible.

It is easy to see that the cost of the edit-sequence is completely determined

by the nodes in the two trees that are matched to one-another. In fact, given

the optimal edit-sequence S, we have:

d(t1, t2) =
∑

v∈R1
rv +

∑

u∈R2
ru +

∑

(v,u)∈M mvu

=
∑

v∈V1
rv +

∑

u∈V2
ru −

∑

(v,u)∈M

(

rv + ru −mvu

)

.
(5.2)

Since
∑

v∈V1
rv and

∑

u∈V2
ru are constant and independent from S, the edit-

distance is completely determined by the set of matches that maximize the

utility

U(M) =
∑

(v,u)∈M

(

rv + ru −mvu

)

. (5.3)

At this point we introduce the concept of an edited isomorphism. Let us

assume that we have two trees t1 = (V1, E1) and t2 = (V2, E2). Furthermore,

let t′ = (V ′, E ′) be a tree that can be obtained from both t1 and t2 with node

removal and relabel operations. The correspondences M1 and M2 between the

nodes of t′ and the nodes of t1 and t2, respectively, will induce an isomorphism

M ′ = M−1
1 ◦M2 between nodes in t1 and t2. This isomorphism places two

nodes in correspondence with each other if and only if they are mapped to

the same node in t′. We call this isomorphism an edited isomorphism induced

by t′. We say that the isomorphism induced by this tree is a maximum edited

isomorphism if it maximizes the total utility U(M ′). Clearly, finding the

maximum edited isomorphism is equivalent to solving the tree edit-distance

problem.

5 Tree Edit-Distance 92

5.2 Association Graph and the Maximum

Common Subtree Problem

First we describe a polynomial-time algorithm for the subtree isomorphism

problem. This allows us to formalize some concepts and provide a starting

point to extend the approach to the minimum tree edit-distance problem.

Let G = (V, E) be a graph, where V is the set of nodes (or vertices) and

E ⊆ V × V is the set of directed edges. With the notation v u we shall

mean that there is a directed edge going from node v to node u. If there is

a directed path from v to u, we shall write v 99K u. Hierarchical trees have

a canonical order relation O induced by paths: given two nodes v and u, we

have (v, u) ∈ O ⇔ v 99K u. That is, two nodes are in the canonical relation

if and only if there is a path connecting them. This relation can be shown

to be an (irreflexive) order relation.

The phase-space we use to represent the matching of nodes is the directed

association graph. This is a variant of the association graph, a structure that

is frequently used in graph matching problems [5, 62]. The association graph

GA = (VA, EA) of two graphs G1 = (V1, E1) and G2 = (V2, E2) has node set

VA = V1 × V2 equal to the Cartesian products of nodes of the graphs to be

matched. Hence, each node represents a possible association, or match, of a

node in one graph to a node in the other. The edges represent the pairwise

constraints of the problem. In particular, they represent both connectivity

on the original graphs and the feasibility of a solution having both associa-

tions linked by an edge. The use of directed arcs in the association graph

allows us to make use of the order provided by the tree hierarchies. For

the exact isomorphism problem (maximum common subgraph) the edges of

the association graph GA = (V1 × V2, EA) of two graphs G1 = (V1, E1) and

5 Tree Edit-Distance 93

G2 = (V2, E2) are:

(v, v′) (u, u′) iff v u and v′
 u′, (5.4)

where v, u ∈ V1 are nodes of graph G1 and v′, u′ ∈ V2 are nodes of graph

G2. The graph obtained can be shown to be ordered still. Specifically, an

association graph for the tree isomorphism problem can be shown to be a

forest.

Proposition 1 The directed association graph of two directed acyclic graphs

(DAGs) G and G′ is acyclic.

Proof. Let us assume that (u1, v1) . . . (un, vn) is a cycle. Then, since

an arc (v, v′) (u, u′) in the association graph exists only if the arcs v u

and v′
 u′ exist in G and G′ respectively, we have that u1 . . . un is

a cycle in G and v1 . . . vn is a cycle in G′ against the hypothesis that

they are DAGs. �

Proposition 2 The directed association graph of two trees t and t′ is a for-

est.

Proof. We already know that the association graph is a DAG, we have to

show that for each node (u, u′) there is at most one node (v, v′) such that

(v, v′) (u, u′). Due to the way in which the association graph is constructed

this means that either u or u′ must have at most one incoming edge. But t

and t′ are trees, so both u and u′ have at most one incoming edge, namely

the one that originates from the parent. �

The directed association graph can be used to reduce a tree matching

problem into subproblems using a divide-and-conquer approach. We call

the maximum (weight) common subtree rooted at (v, v ′) a solution to the

5 Tree Edit-Distance 94

maximum (weight) common subtree problem applied to two subtrees of t

and t′. In particular, the solution is constrained to the subtrees of t and t′

rooted at v and v′ respectively. This solution is further constrained by the

condition that v and v′ are roots of the matched subtrees.

With the maximum rooted common subtree problem for each child of

(v, v′) at hand, the maximum isomorphism rooted at (v, v′) can be reduced

to a maximum weight bipartite match problem between the set U of the

children of v and the set U ′ of the children of v′.

Let B = (U ∪ U ′, E) be a bipartite graph with partitions U and U ′ and

w : E → R be a weight function on the edges of B. A bipartite match

is a set of non-adjacent edges of B. The maximum weight bipartite match

is the set of non-adjacent edges with maximum total weight. The search

for a maximum weight bipartite match is a well known linear programming

problem with several very efficient polynomial time algorithms to solve it

[59].

The two partitions V and V ′ of the bipartite match consist of the children

of v and v′ respectively. The weight of the match between u ∈ V and

u′ ∈ V ′ is the sum of the matched weights of the maximum isomorphism

rooted at (u, u′). In the case of a un-weighted tree this is the cardinality of

the isomorphism. This structure provides us with a one-to-one relationship

between matches in the bipartite graph and the children of (v, v ′) in the

association graph. The solution of the bipartite matching problem identifies

a set of children of (v, v′) that satisfy the constraint of matching one node

of t to no more than one node of t′. Furthermore, among such sets is the

one that guarantees the maximum total weight of the isomorphism rooted at

(v, v′). See [63] for a similar approach applied to the subtree problem.

The maximum isomorphism between t and t′ is a maximum isomorphism

5 Tree Edit-Distance 95

rooted at (v, v′), where either v or v′ is the root of t or t′ respectively. This

reduces the isomorphism problem to n + m rooted isomorphism problems,

where n and m are the cardinalities of t and t′. Furthermore, since there

are n×m nodes in the association graph, the problem is reduced to a set of

n ×m maximum bipartite matching problems, each of which can be solved

with known polynomial time algorithms. In what follows, we will extend

this approach to the minimum weighted tree-edit problem and present an

evolutionary method to conquer the subproblems.

5.3 Inexact Tree Matching

We want to extend the algorithm described in the previous section to develop

an error-tolerant method for locating tree isomorphisms. There is a strong

connection between the computation of the maximum common subtree and

the tree edit-distance. Bunke [14] showed that, under certain constraints

applied to the edit-costs, locating the maximum common subgraph prob-

lem and computing the minimum graph edit-distance are computationally

equivalent to one another.

This is not directly true for trees, because of the added constraint that

a tree must be connected. However, extending the concept to the common

edited subtree, we can use common substructures to find the minimum-cost

edited tree-isomorphism.

5.3.1 Editing the Transitive Closure of a Tree

Given a tree t = (V, E), we define the closure Ω(t) = (V, EΩ) to be a directed

acyclic graph with the same node set and with edges satisfying

u v in Ω(t) ⇐⇒ u 99K v in t. (5.5)

5 Tree Edit-Distance 96

a

c d

a

b

c d

Edit operation

a

c d

a

b

c d

Edit operation

Cycle
Transitive Closure

Eb Eb

Ω

Figure 5.1: Terminology on directed graphs.

Clearly, t and Ω(t) are subject to the same order relation O between their

nodes. Furthermore, we have u v in Ω(t) ⇐⇒ uOv, i.e. the edge set of

Ω(t) is a complete description of O.

For each node v of t, we can define an edit operation Ev on the tree and

an edit operation Ev on the closure Ω(t) of the tree t (see Figure 5.1). In both

cases the edit operation removes the node v, all the incoming edges, and all

the outgoing edges.

We show that the transitive closure operation and the node removal op-

eration commute. That is, we have

Lemma 1 Ev(Ω(t)) = Ω(Ev(t)).

Proof. If a node is in Ev(Ω(t)) it is clearly also in Ω(Ev(t)). What remains

to be shown is that an edge (a, b) is in Ev(Ω(t)) if and only if it is in Ω(Ev(t)).

If (a, b) is in Ω(Ev(t)) then neither a nor b is v and there is a path from

a to b in Ev(t). Since the edit operation Ev preserves connectedness and the

5 Tree Edit-Distance 97

hierarchy O, there must be a path from a to b in t as well. This implies that

(a, b) is in Ω(t). Since neither a nor b is v, the operation Ev will not delete

(a, b). Thus (a, b) is in Ev(Ω(t)).

If (a, b) is in Ev(Ω(t)), then it is also in Ω(t), because Ev(Ω(t)) is obtained

from Ω(t) by simply removing a node and some edges. This implies that

there is a path from a to b in t and also, as long as neither a nor b are v,

there is a path from a to b in Ev(t) as well. Thus (a, b) is in Ω(Ev(t)). Since

(a, b) is in Ev(Ω(t)), both a and b must be nodes in Ev(Ω(t)) and, thus, neither

can be v. �

Furthermore, the transitive closure operation clearly commutes with node

relabeling as well, since one acts only on weights and the other acts only on

node connectivity.

We say that two nodes a and b of tree t are independent if there is no path

from a to b or from b to a, that is if neither is a descendent of the other in

t. We call a subtree s of Ω(t) obtainable if for each node v of s there cannot

be two children a and b so that the edge (a, b) is in Ω(t). In other words, s

is obtainable if and only if every pair of siblings in s are independent.

We can now prove the following:

Theorem 1 A tree t̂ can be obtained from a tree t with an edit sequence

composed of only node removal and node relabeling operations if and only if

t̂ is an obtainable subtree of Ω(t).

Proof. Let us assume that there is an edit sequence {Evi
} that transforms

t into t̂, then, by virtue of the Lemma 1, the dual edit sequence {Evi
} trans-

forms Ω(t) into Ω(t̂). By construction we have that t̂ is a subtree of Ω(t̂) and

Ω(t̂) is a subgraph of Ω(t), thus t̂ is a subtree of Ω(t). Furthermore, since the

node-removal operations respect the hierarchy, t̂ is an obtainable subtree of

5 Tree Edit-Distance 98

Ω(t).

To prove the converse, assume that t̂ is an obtainable subtree of Ω(t).

If (a, b) is an edge of t̂, then it is an edge on Ω(t) as well, i.e. there is a

path from a to b in t and we can define a sequence of edit operations {Evi
}

that removes any node between a and b in such a path. Showing that the

nodes {vi} deleted by the edit sequence cannot be in t̂, we show that all the

edit operations defined in this way are orthogonal. As a result they can be

combined to form a single edit sequence that solves the problem.

Let v in t̂ be a node in the edited path and let p be the minimum common

ancestor of v and a in t̂. Furthermore, let w be the only child of p in t̂ that is

an ancestor of v in t̂ and let q be the only child of p in t̂ that is an ancestor of

a in t̂. Since a is an ancestor of v in t, an ancestor of v can be a descendant

of a, an ancestor of a, or a itself. This means that w has to be in the edited

path. Were it not so, then w would have to be a or an ancestor of a against

the hypothesis that p is the minimum common ancestor of v and a. Since q

is an ancestor of a in t and a is an ancestor of w in t, q is an ancestor of w

in t, but q and w are siblings in t̂ against the hypothesis that t̂ is obtainable.

�

By virtue of Theorem 1, every common edited isomorphism between tree

t and tree t′ induces a consistent subtree of both Ω(t) and Ω(t′). Since min-

imizing the edit-cost and maximizing the utility are equivalent, the set of

correspondences of the minimum-cost edited tree-isomorphism can be found

by searching for the consistent subtree with maximum utility. As a con-

sequence, finding a minimum-cost edit-sequence is equivalent to finding a

maximum utility common obtainable subtree of Ω(t) and Ω(t′).

5 Tree Edit-Distance 99

5.3.2 Cliques and Common Obtainable Subtrees

In this section we show that the directed association graph induces a divide-

and-conquer approach to edited tree matching as well. Given two trees t and

t′ to be matched, we create the directed association graph of the transitive

closures Ω(t) and Ω(t′) and we search for an obtainable matching tree in the

graph. That is, we seek a tree in the graph that corresponds to two obtainable

trees in the transitive closures Ω(t) and Ω(t′). Any such tree having maximum

utility induces the optimal set of node-correspondence between t and t′.

By analogy to what we did for the exact matching case, we divide the

problem into a maximum common obtainable subtree rooted at (v, w), for

each node (v, w) of the association graph. We show that, given the utility

of the maximum common consistent subtree rooted at each child of (v, w)

in the association graph, we can transform the rooted subtree problem into

a maximum weighted clique problem. A clique of a graph G = (V, E) is

a complete, or fully connected, subgraph of G. A maximum (unweighted)

clique is a clique with maximum node cardinality among all cliques of G,

while a maximum weighted clique of a weighted graph G is a clique with

maximum total weight among all cliques of G. The search for a clique with

maximum weight is a well-known NP-hard problem. Solving this problem for

each node in the association graph and looking for the one with maximum

utility, we can find the solution to the minimum-cost edit-sequence problem

and hence find the edit-distance.

Let us assume that we know the utility of the subtree for every child of the

node (v, w) in the association graph. We want to find the set of independent

siblings with greatest total utility. Let us construct an undirected graph

whose nodes consist of the children of (v, w) in the association graph. We

connect the two nodes (p, q) and (r, s) if and only if p and r are independent

5 Tree Edit-Distance 100

in t, and q and s are independent in t′. Furthermore, we assign to each

association node (a, b) a weight equal to the utility of the maximum common

obtainable subtree rooted at (a, b). The maximum weight clique of this graph

will be the set of mutually independent siblings with maximum total weight.

Let W be the weight of this clique, The utility of the maximum common

obtainable subtree rooted at (v, w) will be

U (u,w) = W + rv + rw −mvw, (5.6)

where rv and rw are the costs of removing nodes v and w respectively, while

mvw is the cost of matching v to w. Furthermore, the nodes of the clique will

be the children of (v, w) in the maximum common consistent subtree.

5.4 Heuristics for Maximum Weighted Clique

We have transformed an inexact tree-matching problem into a series of max-

imum weighted clique problems. That is, we transformed one NP-hard prob-

lem into multiple NP-hard problems. The observation underlying this ap-

proach is the fact that the max clique problem is, on average, a relatively

easy one and a large number of approaches and very powerful heuristics exist

to solve it or to approximate it. Furthermore, since the seminal paper by

Barrow and Burstall [5], transforming matching problems into max-clique

problems has become a standard technique.

The approach we will adopt to solve each single instance of the max weight

clique problem is an evolutionary one introduced by Bomze, Pelillo and Stix

[9]. This approach is based on a continuous formulation of the combinatorial

problem and transforms it into a symmetric quadratic programming problem.

In 1965, Motzkin and Strauss [54] showed that the (unweighted) maxi-

mum clique problem can be reduced to a quadratic programming problem

5 Tree Edit-Distance 101

on the n-dimensional simplex ∆ = {x ∈ R
n|xi ≥ 0 for all i = 1 . . . n,

∑

i xi =

1}, where xi are the components of vector x. More precisely, let G = (V, E)

be a graph where V is the node set and E is the edge set, and let C ⊆ V

be a maximum clique of G, then the vector x∗ = {x∗
i = 1/#C if i ∈ C, 0

otherwise} maximizes in ∆ the function g(x) = xT Ax, where A is the adja-

cency matrix of G. Furthermore, given a set S ⊆ V , we define the charac-

teristic vector xS

xS
i =











1/#S if i ∈ S

0 otherwise.

With this definition, S is a maximum (maximal) clique if and only if

g(xS) is a global (local) maximum for the function g.

Gibbons et al. [28] generalized this result to the weighted clique case.

In their formulation the association graph is substituted with a matrix Ā =

(āij)i,j∈V related to the weights and connectivity of the graph by the relation

āij =



























1/wi if i = j

kij ≥ āii+ājj

2
if (i, j) /∈ E

0 otherwise.

(5.7)

Let us consider a weighted graph G = (V, E, w), where V is the set of

nodes, E the set of edges, and w : V → R a weight function that assigns a

weight to each node. Gibbons et al. proved that, given a set S ⊆ V and its

characteristic vector xS defined as

xS
i =











w(i)
P

j∈S w(j)
if i ∈ S,

0 otherwise,

then S is a maximum (maximal) weight clique if and only if xS is a global

(local) minimizer for the quadratic form xT Āx. Furthermore, the weight of

the clique S is w(S) = 1
x

ST Āx
S .

5 Tree Edit-Distance 102

Unfortunately, under this formulation, the minima are not necessarily iso-

lated. As a result, when we have more than one clique with the same maximal

weight, any convex linear combinations of their characteristic vectors will give

the same maximal value. This implies that, if we find a minimizer x∗ we can

derive the weight of the clique. However, we might not be able to determine

the nodes that constitute the clique.

Bomze, Pelillo and Stix [9] introduce a regularization factor to the quadratic

programming method that generates an equivalent problem with isolated so-

lutions. The new quadratic program minimizes xT Cx in the simplex, where

the matrix C = (cij)i,j∈V is defined as

cij =



























1
2wi

if i = j

kij ≥ cii + cjj if (i, j) /∈ E, i 6= j

0 otherwise.

(5.8)

Once again, S is a maximum (maximal) weighted clique if and only if xS is

a global (local) minimizer for the quadratic program.

To solve the quadratic problem we transform it into the equivalent prob-

lem of maximizing xT (γeeT −C)x, where e = (1, · · · , 1)T is the vector with

every component equal to 1 and γ is a positive scaling constant.

To approximate the quadratic programming problem, we use relaxation

labeling. Relaxation labeling is an evidence-combining process developed in

the framework of constraint satisfaction. Its goal is to find a classification

that assigns a label from a set Λ = {λ1, · · · , λm} to a set of objects O =

{o1, · · · , on} that satisfies pairwise constraints and interactions between the

objects and labels. The discrete assignment space is relaxed into a probability

space Θ = (∆m)n, where ∆m is an m-dimensional simplex. Given a relaxed

assignment p, pi(λ) represents the probability that object oi ∈ O is classified

5 Tree Edit-Distance 103

with label λ ∈ Λ. The contraints to the possible assignmets are given in the

form of mutual compatibility between pair of assignments. We indicate with

rij(λ, µ) the degree of compatibility of assigning label λ to object oi, given

that object oj is labeled µ. A relaxation labeling process takes as input the

initial labeling assignment p0 and iteratively updates it taking into account

the compatibility model. The evolution of the assignment is determined by

the update rule

pt+1
i (λ) =

pt
i(λ)qt

i(λ)
∑

µ pt
i(µ)qt

i(µ)
, (5.9)

where the compatibility coefficient is qi(λ) =
∑n

j=1

∑m
µ=1 rij(λ, µ)pj(µ).

Pelillo [61] showed that, when the compatibilities are symmetric, that

is rij(λ, µ) = rji(µ, λ), the function A(p) =
∑

i,λ pi(λ)qi(λ) is a Lyapunov

function for the process, i.e. A(pt+1) ≥ A(pt), with equality if and only if

pt is a stationary point. Therefore, this process can be used to find local

optima of a quadratic programming problem defined on Θ. By setting the

number of objects equal to 1, the quadratic problem solved by the relaxation

labeling process is

max
∑m

i

∑m
j p(λi)r(λi, λj)p(λj)

subject to p ∈ ∆m.
(5.10)

By setting r(λi, λj) = γ− cij, this problem is equivalent to 5.8 above. There-

fore, relaxation labeling can be used to approximate the maximum weighted

clique problem and hence the maximum set of independent children of nodes

v and v′. Each label λi of the labeling problem is in relation with a node

(ui, u
′
i) which is a child of (v, v′) in the association graph. Upon convergence,

the non-zero component of p∞ are in correspondence with nodes of the chil-

dren of (v, v′) that from a clique of independent siblings with maximal weight.

That is, we find a set S such that

(ui, u
′
i) ∈ S ⇐⇒ p∞(λi) > 0. (5.11)

5 Tree Edit-Distance 104

This set of correspondences is optimal subject to the fact that v is matched

to v′. Hence, the weight of the match rooted at (v, v′) is

W (v,v′) = rv + rv′ −mvv′ +
∑

(u,u′)∈S

W (u,u′). (5.12)

In this way we can propagate the associations from the leaves of the di-

rected association graph upwards, using the weight of the extracted cliques to

initialize the compatibility matrix of every parent association. For a subprob-

lem rooted at (u, v) the compatibility coefficients can be calculated know-

ing the weight of every isomorphism rooted at the descendants of u and v.

Specifically, the compatibility coefficients are initialized as r(u,v)(a, a′b, b′) =

γ − c
(u,v)
(a,a′)(b,b′), where

c
(u,v)
(a,a′)(b,b′) =



























1
2W (a,a′) if (a, a′) = (b, b′)

c
(u,v)
(a,a′)(a,a′) + c

(u,v)
(b,b′)(b,b′) if (a, a′) and (b, b′) are independent

0 otherwise.

(5.13)

Once all the optimal associations have been calculated for all possible

nodes of the association graph, we can determine the topmost match in

the edited isomorphism by searching for the association with the maximum

weight. Once the topmost match is found, we can construct the complete

isomorphism by following the optimal matches obtained with relaxation la-

beling.

This optimization approach allows us to make use of problem specific

information about the solutions. Usually, when solving the maximum clique

problem, the label assignment probabilities are initialized with a uniform

distribution so that the relaxation labeling process starts from a point close

to the baricenter of the simplex. A problem with this approach is that the

5 Tree Edit-Distance 105

dimension of the basin of attraction of one maximal clique grows with the

number of nodes in the clique, regardless of their weights. With our problem

decomposition the wider cliques are the ones that map nodes at lower levels.

As a result the solution will be biased towards matches that are very low

on the graph, even if these matches require cutting a large number of nodes

and are, thus, less likely to give an optimum solution. Due to the nature

of our problem decomposition, matches higher up in the hierarchy are more

likely than matches lower down. For this reason, we initialize the assignment

probabilities as p0(λi) = p̂(λi)
P

j p̂(λj)
, where

p̂(λi) = exp[−k(depth(ui) + depth(u′
i))]. (5.14)

Here, k is a constant and depth(ui) is the relative depth in the original tree

t of node ui with respect to node v.

5.5 Experimental Results

Our experimental evaluation is divided into two parts. We commence by

evaluating the method for computing the tree edit-distance. Then, with the

edit-distances to hand, we explore how they may be used to discover shape

categories via pairwise clustering.

5.5.1 Shock Trees

The first set of experiments aims to establish the usefulness of the proposed

edit-distance approach as a tool to compare shapes abstracted using shock

trees. In these experiments we have used a database of shapes with very

different topologies. Hence there is no simple way to locate the correspon-

dences between the skeletal branches. Edit-distance was used to compute

5 Tree Edit-Distance 106

0.9810.8440.8230.4340.6040.4630.5620.6000.4950.5540.4220.3890.4510.4190.5110.4470.5570.6560.6460.5520.4840.4270.4280.4150.402

0.8440.9810.7360.5480.6850.5590.6830.7200.5520.5090.3810.5330.5500.5380.6210.5530.6290.7440.7480.6130.5340.4470.4740.5170.434

0.8230.7360.9730.4090.4790.3750.4200.4560.3980.5980.3520.3880.3980.4000.4680.4350.5150.5940.5840.5170.4510.3810.3980.3690.360

0.4460.5430.4371.0000.5690.7640.5540.6430.6370.4750.6510.4250.4750.4730.4360.5250.5590.5590.5500.4110.4280.3950.4060.4140.373

0.6040.6850.4790.8091.0000.7550.6630.7310.7130.5920.4960.4670.4960.5310.5070.5130.6240.5450.5800.4290.4040.4180.4430.4490.404

0.4040.4860.3520.7900.7181.0000.5630.5720.5040.3900.8130.3550.3930.4250.4050.4460.4680.4910.4760.3280.3140.3400.3820.3810.339

0.5620.6840.4200.5310.6660.6081.0000.8570.7140.4590.3850.5030.5900.5110.5880.6110.6220.6000.6560.4430.4560.4970.5240.5410.521

0.5710.6500.4150.6430.7500.5720.8571.0000.7900.5840.5050.5270.5450.5120.5800.5930.6700.5800.5850.4620.4560.5150.5140.4800.503

0.5020.5590.3980.6480.7270.5250.7030.7960.9990.5330.5030.4720.4800.3480.4380.5310.5620.4780.5060.4480.4430.4570.4670.5060.482

0.5540.6060.6120.4750.5920.3900.4590.5310.5540.9990.4150.4110.4430.3190.4340.4020.4050.4920.4040.4680.4430.4590.4190.4000.408

0.4410.3560.3520.6510.5060.8130.3880.4720.5300.3940.9810.3640.3840.3770.3840.3880.4380.3180.3730.3450.3960.3860.3100.3530.347

0.4500.5360.3880.3990.4150.3550.5060.5160.4830.4110.3670.8960.8530.6920.6000.5930.5840.6170.6150.4580.5760.6110.7410.6870.744

0.4810.5430.3980.4750.4790.3930.5900.5260.4870.4430.3860.8180.9760.6430.6690.5830.4970.6300.5310.5000.4690.6300.7060.6700.747

0.3930.4750.4000.4560.4860.4250.5810.4770.4040.3670.3700.7560.5590.8480.7550.7880.7840.6160.6260.5390.3960.6080.5340.5720.524

0.5160.6260.4680.4790.5070.4100.5930.5860.4870.4340.3790.6310.6920.5960.9990.7330.8250.6500.6910.5170.5560.5200.6340.6300.555

0.4700.5530.4320.5100.4950.4630.6160.6270.5310.3850.3920.5720.5830.6050.7020.9980.7470.6780.6700.5190.4730.5570.6060.4840.569

0.5560.6360.5110.5590.6260.5100.6220.6700.5780.4050.4280.6220.5860.7840.8200.7371.0000.7000.6390.5230.4490.5900.5420.5320.518

0.6510.7110.5940.5370.5590.4950.6000.6060.4890.3930.3710.5850.6070.6310.6350.6780.6921.0000.6320.6950.5220.5530.5170.5370.552

0.6290.6960.5670.6160.5630.4870.6560.6240.5060.4040.3870.5230.5770.6640.7270.6710.6880.8440.9330.5810.5840.5150.5680.5410.548

0.4990.6130.4810.4660.4290.3280.4770.4880.4640.4680.3190.4990.5110.5340.5370.5580.5380.7070.6100.9980.5560.6100.5390.4920.546

0.4960.4990.4500.4170.3880.3140.4620.4290.4750.3970.4030.5000.5070.4030.4920.4430.4490.5860.5760.5771.0000.6270.4960.5190.560

0.3950.4470.3680.3950.4410.3400.4950.4880.4450.4970.3710.6630.6290.4660.6020.6120.5730.5320.5440.5540.6930.9920.7110.6860.699

0.4430.5200.3980.3340.4360.3820.5700.5360.4650.4220.3350.6770.7020.5360.6320.5380.5540.5760.5680.5750.4940.6950.9750.8950.840

0.4310.4500.3910.4090.4250.3800.5200.5200.4800.4450.3780.6850.6680.5730.6290.5460.5430.5050.5860.5770.5720.7180.8460.9810.771

0.4410.4470.3920.3800.4470.3390.5600.5200.4930.4340.3460.6770.7240.5370.5630.5860.5580.4800.5650.5660.5410.7650.8630.8171.000

Figure 5.2: Pairwise similarities between shapes for the weighted shock trees.

both node correspondences and dissimilarity measures between shapes. We

have compared the results obtained when the skeleton is weighted with the

measure proposed in the previous chapter and when it is unweighted. In the

weighted case the cost of adding or removing a node with weight w is equal

5 Tree Edit-Distance 107

1.0001.0001000.0.7741.0000.7860.8890.8890.7060.6430.8500.5360.5360.5650.8180.7920.8890.8500.8040.7190.6350.6400.7060.6940.684

1.0001.0001.0000.7741.0000.7860.8890.8890.7060.6430.7290.5360.5360.5650.8180.7920.8890.8500.8040.7190.6350.6400.7060.6940.684

1.0001.0001.0000.7741.0000.7860.8890.8890.7060.6430.7290.5360.5360.5650.7010.7920.8890.8500.8040.7190.6350.6400.7060.6940.684

0.7740.7740.7741.0000.7740.8330.8330.8330.6760.7140.8000.7140.7140.5000.7730.6250.6940.6670.8750.6880.6150.6200.6760.6670.658

1.0001.0001.0000.7741.0000.7860.8890.8890.7060.6430.8500.5360.5360.5650.8180.7920.8890.8500.8040.7190.6350.6400.7060.6940.684

0.7860.7860.7860.8330.7861.0000.7220.7220.6180.6430.7000.6430.6430.6670.6820.6670.7220.7000.7500.6250.5770.5800.6180.6110.605

0.8890.8890.8890.8330.8890.7221.0001.0000.7650.7300.9500.5480.5480.4860.8080.6810.7780.7390.8260.7810.6730.6800.7650.7500.737

0.8890.8890.8890.8330.8890.7221.0001.0000.7650.7300.9500.5480.5480.4860.8080.6810.7780.7390.8260.7810.6730.6800.765 0.75 0.737

0.7060.7060.7060.6760.7060.6180.7650.7651.0000.7820.7150.4560.4560.4980.6740.6400.6800.7150.6430.6670.7300.7910.7650.7430.724

0.6430.6430.6430.7140.6430.6430.7300.7300.7821.0000.8570.5000.5000.6190.5680.5420.6390.6000.6880.9380.7140.7240.5860.6350.744

0.8500.7290.7290.8000.8500.7000.9500.9500.7150.8571.0000.6000.6000.4580.7640.6420.7390.7000.7880.8120.6920.7000.7940.7780.763

0.5360.5360.5360.7140.5360.6430.5480.5480.4560.5000.6001.0001.0000.6190.4870.3870.4560.4290.5890.4690.5490.6690.6510.6350.620

0.5360.5360.5360.7140.5360.6430.5480.5480.4560.5000.6001.0001.0000.6190.4870.3870.4560.4290.5890.4690.4950.6690.6510.6350.620

0.5650.5650.5650.5000.5650.6670.4860.4860.4980.6190.4580.6190.6191.0000.5230.5000.5830.5500.5210.4380.6090.6780.6400.6250.612

0.8180.8180.7010.7730.8180.6820.8080.8080.6740.5680.7640.4870.4870.5231.0000.7840.9090.7640.8640.7670.6470.6550.8240.8060.789

0.7920.7920.7920.6250.7920.6670.6810.6810.6400.5420.6420.3870.3870.5000.7841.0000.8750.9170.7290.6560.5480.6170.7110.6940.680

0.8890.8890.8890.6940.8890.7220.7780.7780.6800.6390.7390.4560.4560.5830.9090.8751.0000.8440.8260.6940.5980.6040.7650.7500.737

0.8500.8500.8500.6670.8500.7000.7390.7390.7150.6000.7000.4290.4290.5500.7640.9170.8441.0000.7880.7310.6230.7000.7150.6220.687

0.8040.8040.8040.8750.8040.7500.8260.8260.6430.6880.7880.5890.5890.5210.8640.7290.8260.7881.0000.6560.6540.6600.7350.7220.711

0.7190.7190.7190.6880.7190.6250.7810.7810.6670.9380.8120.4690.4690.4380.7670.6560.6940.7310.6561.0000.7570.6660.6670.7080.633

0.6350.6350.6350.6150.6350.5770.6730.6730.7300.7140.6920.5490.4950.6090.6470.5480.5980.6230.6540.7571.0000.7060.7300.7520.729

0.6400.6400.6400.6200.6400.5800.6800.6800.7910.7240.7000.6690.6690.6780.6550.6170.6040.7000.6600.6660.7061.0000.8400.8600.880

0.7060.7060.7060.6760.7060.6180.7650.7650.7650.5860.7940.6510.6510.6400.8240.7110.7650.7150.7350.6670.7300.8401.0000.9720.836

0.6940.6940.6940.6670.6940.6110.7500.7500.7430.6350.7780.6350.6350.6250.8060.6940.7500.6220.7220.7080.7520.8600.9721.0000.811

0.6840.6840.6840.6580.6840.6050.7370.7370.7240.7440.7630.6200.6200.6120.7890.6800.7370.6870.7110.6330.7290.8800.8360.8111.000

Figure 5.3: Pairwise similarities between shapes for the unweighted shock

trees.

to the weight itself, while the cost of matching two nodes with weights w and

w′ respectively is |w−w′|. In the unweighted case the node-removal cost was

set at 1, while the matching cost was set at 0.

Given the topological diversity of the shape skeletons, we have used a

5 Tree Edit-Distance 108

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.9810.9810.9731.0001.0001.0001.0001.0001.0000.9990.9810.8960.9760.8480.9990.9981.0001.0000.9330.9981.0000.9920.9750.9811.000

0.8440.8440.8230.8090.8090.8130.8570.8570.7960.6120.8130.8530.8530.7880.8250.7880.8250.8440.8440.7070.6930.7650.8950.8950.863

0.8230.7480.7360.7900.7550.7900.7140.7960.7270.6060.6510.7560.7470.7840.7550.7470.7840.7440.7480.6130.5860.7180.8630.8170.817

0.6560.7440.6120.6510.7500.7550.6840.7500.7140.5920.5300.7440.7060.7560.7330.7330.7470.7070.7270.6100.5840.7110.7410.7180.765

0.5520.7360.5940.6480.7270.6080.6660.7200.6480.5840.5060.7410.6920.7550.7270.6780.7000.7000.6880.6100.5770.6930.7110.6870.747

0.6460.6850.5840.6430.6660.5720.6560.6700.5780.5540.5050.6870.6700.6640.6920.6710.6880.6780.6710.5770.5760.6630.7060.6700.747

Figure 5.4: Top six matches for each shape for the weighted shock trees.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1.000

1.0001.0001.0000.8751.0000.8331.0001.0000.7910.9380.9501.0001.0000.6780.9090.9170.9090.9170.8750.9380.7570.8800.9720.9720.880

1.0001.0001.0000.8331.0000.7860.9500.9500.7820.8570.9500.7140.7140.6670.8640.8750.8890.8500.8640.8130.7520.8600.840 0.86 0.836

1.0001.0001.0000.8331.0000.7860.8890.8890.7650.7820.8570.6690.6690.6400.8240.7920.8890.8500.8260.7810.7300.8400.8360.8110.811

0.8890.8890.8890.8330.8890.7860.8890.8890.7650.7440.8500.6510.6510.6250.8180.7920.8890.8500.8260.7810.7300.7910.8240.8060.789

0.8890.8890.8890.8000.8890.7860.8890.8890.7650.7300.8500.6430.6430.6190.8180.7920.8890.8500.8260.7670.7290.7240.7940.7780.763

Figure 5.5: Top six matches for each shape for the unweighted shock trees.

more powerful representation than the simple one used for the experiments

presented in the previous chapter. Here we follow Zucker, Siddiqi, and oth-

ers, by labeling points on the skeleton using so-called shock labels [85]. This

taxonomy of local differential structure, implies different classes associated

with the behavior of the radius of the bitangent circle. The so-called shocks

5 Tree Edit-Distance 109

distinguish between the cases where the local bitangent circle has maximum

radius, minimum radius, constant radius or a radius which is strictly increas-

ing or decreasing. We abstract the skeletons as trees in which the level of a

node in the tree is determined by the time of formation of the corresponding

skeletal branch [81, 85]. The later the time of formation of the shock, the

higher the corresponding node in the hierarchy.

The silhouettes used to generate the shock graphs at the basis of our

experiments are shown in Figure 5.2. There are 25 different shapes. These

include brushes, tools, spectacles, various animals and human hands. The

figure is annotated with the pairwise similarity of the shapes. For the shapes

indexed i and j, the similarity measure is defined as

Si,j = 1− 1

2
di,j, (5.15)

where di,j is the edit-distance between shapes i and j. In order to make

the comparison independent of the size of the picture or of the shock-tree

representation, the weight on each tree was previously normalized by dividing

it by the sum of all the weights on every node of the tree. In this way the

maximum possible edit-distance between two trees was 2.

For comparison purposes, Figure 5.3 reports the similarities between the

unweighted shock trees. In this case the similarity between ti and tj is

Si,j =
1

2

|Vi|+ |Vj| − di,j

2

(

1

|Vi|
+

1

|Vj|

)

, (5.16)

where Vi is the node set of tree ti and di,j is the unattributed edit-distance

between tree ti and tree tj.

In Figures 5.4 and 5.5 we show the six best matched shapes for each

object from the database. The top row of the figures shows the shapes

considered. The remaining rows, from top to bottom, show the six best

matched shapes ordered according to similarity. Hence, the further down we

5 Tree Edit-Distance 110

go in each column, the poorer the match to the shape in the top position.

Figure 5.4 shows the matches obtained when we associate the shape measure

to the shock trees. In each case the first matched shape is the object under

study. From the third row down errors begin to emerge. For instance, a

monkey wrench (object 6) matches to a hammer (object 11), and a horse

(object 22) matches to a hand (object 25). Although there are 6 such errors

in the third row (objects 6, 10, 11, 14, 16, 22), several of these are associated

with small differences in the similarity values. This is the case with object

6, where a monkey wrench is matched to a hammer. In both objects the

dominant feature is the long handle. Additionally, for four of the objects the

correct matches appear in the fourth (object 6, 16), fifth (object 14), or sixth

(object 22) position. It is only the two hammers that pose a real problem.

This is due to the fact that the handle, the main feature on both objects,

shows variation in its differential properties. Specifically, object 10 bulges

on the grip, creating a type one shock that splits the handle, whereas the

handle of object 11 generates a single shock segment. The problem could

be solved by allowing the edit-distance calculation to merge segments, as do

Sebastian, Kimia and Klein in [72, 74], but this is beyond the scope of the

present study.

Figure 5.5 displays the top matches obtained using unattributed shock

trees. Here again the top match is a perfect fit in each case. However, the

performance degrades more quickly as we go down the columns of the table.

In fact, the first error emerges in the second row of the figure.

To visualize the pairwise relationships between the different shapes, we

have performed multi-dimensional scaling on the set of pairwise similarities.

Multi-dimensional scaling is a well known statistical technique for visualiz-

ing data which exists in the form of pairwise similarities rather than ordinal

5 Tree Edit-Distance 111

Figure 5.6: First and second principal components of the edit-distances of

the shapes for the weighted shock trees.

values. Stated simply, the method involves embedding the objects associated

with the pairwise distances in a low-dimensional space. This is done by per-

forming principal components analysis on the matrix of pairwise similarities,

and projecting the original objects into the resulting eigenspace. The objects

are visualized by displaying their positions in the space spanned by the lead-

ing eigenvectors. The method has been widely exploited for data-analysis

in the psychology literature. A comprehensive review can be found in the

recent book by Cox and Cox [18]. Details of the procedure can be found in

Appendix B.

The projections of the edit-distances onto the 2D space spanned by the

two leading eigenvectors is shown in Figure 5.6 (where the skeleton is weighted

with the border-length to shock length ratio) and Figure 5.7 (where it is not).

When the skeleton is weighted with this ratio the MDS projection reveals the

5 Tree Edit-Distance 112

Figure 5.7: First and second principal components of the edit-distances of

the shapes for the unweighted shock trees.

emergence of some class structure. However, the full shape-structure is not

captured by the two leading eigenvectors. For instance, the hands, the fish,

the tools and the brushes all appear close to each other. However, there is no

clear delineation of the shape-classes. When the skeleton is not weighted us-

ing the above-mentioned measure the grouping of the shapes is even poorer,

with only the spectacles forming a well separated group.

5 Tree Edit-Distance 113

Encouraged by these results, we have performed a detailed pairwise clus-

tering of the pattern of similarities. Here we use the method recently de-

scribed by Robles-Kelly and Hancock [66]. Details of the clustering algo-

rithm can be found in Appendix A. The initial and final matrices of pairwise

distance are shown in Figure 5.8 for the measure-weighted skeleton and in

Figure 5.9 for the unweighted skeleton. In the case of the weighted skeleton

the initial pairwise similarity matrix shows a strong separation of the shape-

groups, which is further re-enforced by the iterative clustering method. On

the basis of the block structure of the final matrix of pairwise distances, we

identify eight clusters. Figure 5.10a presents the clusters in order of extrac-

tion.

In other words, the hands, tools, spectacles and animals form clusters.

However, there are shapes which leak between these clusters. The problems

encountered above are due to the fact that certain shapes straddle the true

shape-classes and cause cluster-merging. Figure 5.10b shows the result of

(a) (b)

Figure 5.8: (a) Initial similarity matrix for the weighted tree edit-distances;

(b) Final similarity matrix for the weighted tree edit-distances.

5 Tree Edit-Distance 114

(a) (b)

Figure 5.9: (a) Initial similarity matrix for the unweighted tree edit-distances;

(b) Final similarity matrix for the unweighted tree edit-distances.

applying the clustering algorithm to a pruned set of 16 shapes.

This is a much better set of clusters, which reflects the true shape-classes

in the data. We have repeated these clustering experiments with the un-

weighted skeletons. Here the initial pairwise similarity matrix contains less

structure than in the weighted case, and iteration of the clustering algorithm

results in a noisier set of final cluster membership indicators (Figure 5.3). In

particular, the clusters extracted from unweighted shock trees do not appear

to correlate well with the shape classes in the database (Figure 5.11a).

Clearly there is considerable merging and leakage between clusters. As

illustrated in Figure 5.11b, the classification does not improve when the al-

gorithm is applied to the reduced database.

5 Tree Edit-Distance 115

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

a) Full database. b) Partial database.

Figure 5.10: Clusters extracted from weighted edit-distance.

•
•
•
•
•

•
•
•
•
•
•

a) Full database. b) Partial database.

Figure 5.11: Clusters extracted from un-weighted edit-distance.

5 Tree Edit-Distance 116

5.5.2 Quantitative Analysis

We now turn our attention to the properties of the weighted variant of our

edit-distance approach when applied to a larger database of 150 shock trees.

The database consists of 150 shapes divided into 10 shape classes containing

15 shapes each.

In Figure 5.12 we show the results of the application of multi-dimensional

scaling to the edit-distances between the trees. Each label in the plot cor-

responds to a particular shape class. Label 1 identifies cars, label 2 dogs,

3 ducks, 4 fishes, 5 hands, 6 horses, 7 leaves, 8 men, 9 pliers, and, finally,

label 10 is associated with screwdrivers. The plot clearly shows the diffi-

culty of this clustering problem. The shape-groups are not well separated.

Rather, there is a good deal of overlap between them. Furthermore, there

are a considerable number of outliers.

To asses the ability of the clustering algorithm to separate the shape-

classes, we performed experiments on an increasing number of shapes. We

commenced with the 30 shapes from two shape-classes, and then increased

the number of shape-classes under consideration up to a set of 120 shapes,

i.e. 8 classes. Each experiment was performed four times with different

choices of shape-groups in order to provide some error analysis. Figure 5.13

plots the proportion of shapes correctly classified as the number of shapes is

increased. We can clearly see that the performance rapidly decreases as the

number of shape-classes increases. Further improvements on these results

will be presented in Chapter 7.

5 Tree Edit-Distance 117

11

1

1

1 1
1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4
4

4

4

4

44

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5
5 5

6

6

66

6

6

6

6

6
6

6

6

6

6

6

7

7

7

7

777

7

7

7

7

7

7

7

7

8
8

8
8

88

8

8

8

8

88

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

10
10

10

Figure 5.12: 2D multi-dimensional scaling of the pairwise distances of the

shock graphs. The numbers correspond to the shape-classes.

5 Tree Edit-Distance 118

number of shapes

p
r
o
p
o
r
t
i
o
n
o
f
c
o
r
r
e
c
t
c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

Figure 5.13: Proportion of correct classifications obtained with pairwise clus-

tering of the edit-distances.

5.5.3 Sensitivity Study

To augment these real world experiments, we have performed a sensitivity

analysis. The aim here is to characterize the behavior of our edit-distance

algorithm when confronted with measurement errors resulting from noise, or

jitter, on the weights and with structural errors resulting from node removal.

To test how well the method copes with structural modification we use

it to match a randomly generated tree with modified versions of itself. To

create these modified versions we removed an increasing fraction of nodes.

Since we remove nodes only from one tree, the edited tree will have an exact

match against the unedited version. Hence, we know the optimum value of

5 Tree Edit-Distance 119

the weight that should be attained by the maximum edited isomorphism.

This is equal to the total weight of the edited tree.

By adding measurement errors or jitter to the weights, we test how well

the method copes with a modification in the weight distribution. The mea-

surement errors are distributed normally, with zero mean and controlled vari-

ance. Here we match the tree with noisy or jittered weights against its noise-

free version. In this case we have no easy way of determining the optimal

weight of the isomorphism, but we do expect a smooth drop in total weight

with increasing noise variance.

We performed the experiments on trees with 10, 15, 20, 25, and 30 nodes.

For each experimental run we used 11 randomly generated trees. The pro-

cedure for generating the random trees was as follows: we commenced with

an empty tree (i.e. one with no nodes) and we iteratively added the required

number of nodes. At each iteration nodes were added as children of one of

the existing nodes. The parents were randomly selected with uniform proba-

bility from among the existing nodes. The weight of the newly added nodes

was selected at random from an exponential distribution with mean 1. This

procedure tends to generate trees in which the branch ratio is highest closest

to the root. This is quite realistic in real-world situations, since shock trees

tend to have this property.

The fraction of nodes removed was varied from 0% to 60%. In Figure

5.14 top left we show the ratio of the computed weighted edit-distance to

the optimal value of the maximum isomorphism. Interestingly, for certain

trees the relaxation algorithm failed to converge within the allotted number

of iterations. Furthermore, the algorithm also failed to converge on the noise

corrupted variants of these trees. In other cases, the algorithm exhibited par-

ticularly rapid convergence. Again, the variants of these trees also showed

5 Tree Edit-Distance 120

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0% 10% 20% 30% 40% 50% 60%

10
15
20
25
30

structural noise

n
o
d
e
s

m
a
t
c
h
e
d

0.88

0.9

0.92

0.94

0.96

0.98

1

0% 10% 20% 30% 40% 50% 60%

10
15
20
25
30

structural noise

n
o
d
e
s

m
a
t
c
h
e
d

0.7

0.75

0.8

0.85

0.9

0.95

1

0% 10% 20% 30% 40% 50% 60%

10
15
20
25
30

weight jitter

e
d
i
t
-
s
i
m
i
l
a
r
i
t
y

0.75

0.8

0.85

0.9

0.95

1

0% 10% 20% 30% 40% 50% 60%

10
15
20
25
30

weight jitter

e
d
i
t
-
s
i
m
i
l
a
r
i
t
y

Figure 5.14: Sensitivity analysis: top-left node removal, top-right node re-

moval without outliers, bottom-left weight jitter, bottom-right weight jitter

without outliers.

rapid algorithm convergence. When the method fails to converge in an al-

located number of iterations, we can still give a lower bound to the weight.

However, this bound is substantially lower than the average value obtained

when the algorithm does converge. The top right-hand graph of Figure 5.14

shows the proportion of matched nodes when we eliminate these convergence

failures. The main conclusions that can be drawn from these two plots are as

follows. First, the effect of increasing structural error is a systematic under-

estimation of the weighted edit-distance. Second, the different curves exhibit

a minimum within the plot-range. The reason for this is that the matching

problem becomes trivial as the trees are decimated to extinction.

5 Tree Edit-Distance 121

The bottom row of Figure 5.14 shows the results obtained when measure-

ment errors or jitter was added to the weights. Noise corrupted weights were

obtained by adding random Gaussian noise with standard deviation ranging

from 0 to 0.6. The bottom left-hand graph shows the result of this test.

It is clear that the matched weight decreases almost linearly with the noise

standard deviation. In these experiments, we encountered similar problems

with algorithm convergence failure. Furthermore, the problematic trees were

identical. This further supports the observation that the performance of the

algorithm strongly depends on the randomized realization of the tree. The

bottom right-hand plot shows the results of the jitter test with the conver-

gence failures removed. Here we see a smaller variation in performance as

the number of nodes increases.

5.6 Conclusions

In this chapter we have presented an algorithm for computing tree edit-

distance. Adopting an optimization approach to tree matching, we show that

any tree obtained with a sequence of node-removal or node-relabel operations

is a subtree of the transitive closure of the original tree. Furthermore, we

show that the necessary condition for any subtree to be a solution can be

reduced to a clique problem in a derived structure. Using this idea, we

transform the tree edit-distance problem into a series of maximum weight

clique problems, and then we use relaxation labeling to find an approximate

solution.

In a set of experiments we applied this algorithm to the problem of match-

ing shock trees, demonstrating that the algorithm is able to match similar

shapes together. We went on to perform pairwise clustering on the set of dis-

5 Tree Edit-Distance 122

tances obtained. The combination of edit-distance and pairwise clustering,

while capable of extracting the shape-classes present in the database, suffers

from the high level of noise present. In fact, the approach is capable of ex-

tracting the shape-classes present in the database only when presented with

a limited number of shapes. Indeed, too great a number of shapes saturates

the shock-tree space, and the performance of the approach deteriorates.

To overcome the problem of underestimating edit-distance, in Chapter 6

we explore the use of the union structure to capture the modes of variation

of graphs belonging to a particular class.

By measuring the edit-distance to the union structure, we make better

estimates of the dissimilarity of trees. This work is taken a step further

in Chapter 7, where we treat the tree union as a generative model for the

distribution of tree structure and present an algorithm for learning a mixture

of tree unions by minimizing description length.

Section III

Structural Archetype

Chapter 6

Structural Embedding Through

Tree Union

In order to improve on the results presented in the previous chapter, we

address the problem of how to organize shock trees into a shape-space where

a) similar shapes are close to one another and b) the space is traversed in

a relatively uniform manner as the shapes are gradually modified. In other

words, the aim is to embed the trees in a vector-space where the dimensions

correspond to principal modes of structural variation. In many ways this is

a prerequisite to learning a representation for a set of graphs. This chapter

deals with the problem of defining this structural representation, while the

next one will deal with the problem of learning this representation from a set

of samples.

There are a number of ways in which graph embedding can be achieved.

The first, as we have seen in the previous chapter, is to compute the edit-

distance between shock trees and to use multi-dimensional scaling to embed

the individual graphs in a low-dimensional space. However, this approach

does not necessarily result in a shape-space where the dimensions reflect

6 Structural Embedding Through Tree Union 125

the modes of structural variation of the shock trees. Furthermore, pair-

wise distance algorithms consistently underestimate the distance between

shapes belonging to different clusters. When two shapes are similar, the

node-correspondences can be estimated reliably, but as shapes move farther

apart in shape-space the estimation becomes less reliable. This is due to the

fact that correspondences are chosen to minimize the distance between trees

and, as the shock trees move farther apart, the advantage the “correct” cor-

respondence has over alternative ones diminishes, until, eventually, a match

which yields a lower distance is selected.

A second approach is to extract feature vectors from the graphs and to

use these as a shape-space representation. A shape-space can be constructed

from such vectors by performing modal analysis on their covariance matrix.

However, this approach becomes problematic as soon as graphs of different

sizes are used.

Here we take a different approach to the problem. We aim to embed trees

in a pattern space by mapping them to vectors of fixed length. We do this

as follows. We commence from a set of trees, and from this we construct

a super-tree from which each tree may be obtained by the edit operations

of node and edge removal. Hence, each tree is an edited subtree of the

super-tree. The super-tree is constructed so that it minimizes the total edit-

distance to the set of shock trees. To embed the individual shock trees in a

vector-space we allow each node of the super-tree to represent a dimension of

the space. Each shock tree is represented in this space by a vector which has

non-zero components only in the directions corresponding to its constituent

nodes. The non-zero components of the vectors are the weights of the nodes.

In this space, the edit-distance between trees is the L1 norm between their

embedded vectors.

6 Structural Embedding Through Tree Union 126

g

f d

h

a

dc

f

b

e

e g

b

a

a

b

e f g d

Figure 6.1: Edit-intersection of two trees.

In the previous chapter we have seen how the edit-distance between two

trees is completely determined by the set of nodes that do not get removed

by edit operations and, therefore, get matched. That is, in a sense, we are

taking the intersection of the sets of nodes of the two structures. With this

approach we match the trees by extracting a structure that can be obtained

from our original trees by removing some nodes. We have seen how the edit-

distance between two trees is related to this intersection structure (see Figure

6.1). We would like to extend the concept of edit-distance presented in the

previous chapter to more than two trees so that we can compare a shape

tree to a whole set T of trees. Moreover, we would like to determine how a

new sample relates to a previous distribution of tree structures. Formally,

we would like to find the match that minimizes the sum of the edit-distances

between the new tree t∗ and each tree t ∈ T , with the added constraint that

if node a in the new tree t∗ is matched to node b in a tree t1 ∈ T and to node

c in another tree t2 ∈ T , then b must be matched to c, i.e.

(a, b) ∈M ∧ (a, c) ∈M ⇒ (b, c) ∈M, (6.1)

where M is the “matches to” relation on nodes. One way of finding this match

6 Structural Embedding Through Tree Union 127

would be to find the maximum substructure that can be obtained from any

tree in a set by removing appropriate nodes. Unfortunately, by discarding

unmatched nodes, we are losing too much information. The main problem

is that the set of common nodes becomes marginal and we lose information

about how the nodes distribute in the various structures. To use Bunke’s [14]

analogy, the maximum common substructure gives us information about the

mean of the set of trees, but it completely discards any information about

how sample trees distribute around this mean. To overcome this limitation

we can calculate a union of the nodes. This is a structure from which we can

obtain any tree in our set by removing appropriate nodes, as opposed to the

common substructure, which provides the intersection of the nodes.

Any such structure has the added advantage of implicitly creating an

embedding space for our trees. Crucially, it guarantees that any node in

any tree matches to a node in this structure. Assigning to each node a

coordinate in a vector space X, we can associate to tree t the vector x ∈ X

so that xi = wi, where wi is the weight of the node of t associated with

coordinate i.

6.1 Embedding Space

Formally, we place the nodes of the union structure G in any arbitrary order.

To each sample tree t we associate a pattern-vector ~xt = (x1, · · · , xn)T ∈ R
n,

where n is the number of nodes in the union G. The component xt
i of vector

~xt is:

xt
i =



















wt
i if the tree has a node mapped to the i-th

node of the sample

0 otherwise.

(6.2)

6 Structural Embedding Through Tree Union 128

In other words, we associate a pattern-vector ~xt with the sample tree whose

components are equal to the weight of the corresponding node in the union

tree, if the node is present, and are zero otherwise.

6.2 Union of Two Trees

As was the case with edit-distance, the edit-union of two trees is completely

determined by the set of matched nodes. Start with the two trees and iter-

atively merge nodes that are matched. Upon completion of this procedure,

the result is a directed acyclic graph with multiple paths connecting various

nodes (see Figure 6.2). This structure, thus, has more links than necessary

and in order to obtain the original trees using node removal operations alone,

the superfluous edges need to be removed. If in Figure 6.2 we eliminate the

edges connecting node b to nodes e,f and g, we obtain a tree. Starting from

this tree, we can obtain either one of the original trees by node removal op-

erations alone. Furthermore, the order relation defined by this tree and the

one defined by the unaltered structure are identical.

We would hope that such a structure would always be a tree, so that

we can use the matching technique already described to compare a tree to a

group of trees. Unfortunately, it is not always possible to find a tree such that

we can edit it to obtain the original trees. An example is provided in Figure

6.3. In this figure α and β are subtrees. Because of the constraints posed

by matching subtrees α and subtrees β, nodes b and b′ cannot be matched

and neither one can be a child of the other. The only alternative is to keep

the two paths separate. In this way we can obtain the first tree by removing

the node b′ and the second tree by removing node b. Actually, removing the

nodes is not enough: shortcutting edges need to be removed. However, once

6 Structural Embedding Through Tree Union 129

g

f d

h

h

f

a

dc

e f

b

e g

b

a

e g

c d

a

b

Figure 6.2: Edit-union of two trees.

again, the transitive closure of the union minus node b′ is identical to the

closure of the first tree.

6.3 Matching a Tree to a Union

As shown above, the union of two trees is, in general, a directed acyclic

graph. Our approach can only match trees, and would fail on structures

with multiple paths from one node a to a descendent node b, since it would

count any match in the subtree rooted at b twice. Hence, we cannot directly

use our approach to compare a tree to a tree-set or a distribution of trees.

Fortunately, we do not need to perform a match between two generic

directed acyclic graphs. The reason for this is that in an edit-union we have

multiple paths between node a and node b, but each tree can have only one;

hence multiple paths are mutually exclusive. If we constrain our search to

matching nodes in one path only, we can match any tree to the union, being

still guaranteed not to count the same subtree multiple times. Interestingly,

6 Structural Embedding Through Tree Union 130

α β

α β

α

βα

β

UnionIntersection

b

b

a

c

a

b’

c

a

b’

c

a

c

Figure 6.3: Edit-union is not always a tree.

this constraint can be merged with the obtainability constraint. We say that

a match is obtainable if for each node v there cannot be two children a and

b and a node c such that there is one path, possibly of length 0, from a to c

and another from b to c. This constraint is reduced to the previously defined

obtainability for trees when c = b, but it also makes it impossible for a and

b to belong to two separate paths joining at c. Hence, from a node where

multiple paths fork, we can extract matches from one path only.

We wish to find the match consistent with the obtainability constraint

that minimizes the sum of the edit-distances between the new tree and each

tree in the set. For this purpose we can maximize the sum of the utilities.

U(M) =
∑

t′∈T

∑

(u,v)∈M,u∈N t′

(

rt
u + rt′

v −mt′

uv

)

. (6.3)

Here M ⊂ N t ×N T is the set of matches between the nodes N t of the tree

t and the nodes N T , where T is the union structure of the set of trees T .

Furthermore, rt
u is the cost of removing node u from tree t, rt′

v is the cost

of removing node v from t′, and mt′

u,v is the cost of matching node u of t

6 Structural Embedding Through Tree Union 131

UnionIntersection

1

1

1

1 1

1

1

2

2

1

Figure 6.4: The weight of a node in the union account for every node mapped

to that node.

to node v of t′. When the edit-distance is uniform (all weights are unity),

the utility produced by a single match is equal to the number of trees that

have an instance of that node (see Figure 6.4). On the other hand, when

we use the weights described in Chapter 5 and the relative edit-costs, we

have rt
u + rt′

v − mt′

uv = wu + wt′

v − |wu − wt′

v | = min(wu, w
t′

v), where wu is

the weight associated to node u and wt′

v is the weight associated to node

v in t′. By solving the modified weighted clique problems, we obtain the

correspondence between the nodes in the new tree and the nodes in each tree

in the set. Moreover, the edit-distance obtained is the sum of the distances

from the new tree to each tree in the set T .

To be able to calculate this quantity, we keep the weights of the matched

nodes for each node in the union structure. A way to do this is to assign to

each node v in the union a vector ~xv = (x1, . . . , xm)T ∈ R
n, where m is the

6 Structural Embedding Through Tree Union 132

number of trees in the set T . The component xv
i of vector ~xv is:

xv
i =











wti
v if node v is present in tree ti

0 otherwise.

(6.4)

This representation also makes it easy to obtain the coordinate of each

tree in the embedding space induced by the union: if X = (~x1| · · · |~xm) is the

a matrix whose columns are equal to he vectors ~xv, the columns of XT will

correspond to the embedding vectors of the trees in T . This embedding is

defined modulo reordering of the trees and of the nodes.

It is worth noting that this approach can be extended to match two union

structures, as long as at most one has multiple paths to a node. To do this

we iterate through each pair of weights drawn from the two sets. In other

words, we define the utility as:

U(M) =
∑

t∈T1,t′∈T2

∑

(i,j)∈M

(

rt
u + rt′

v −mtt′

uv

)

, (6.5)

where M ⊂ N T1 ×N T2 is the set of matches between the nodes of the union

structures T1 and T2, rt
u is the cost of removing node v from tree t, and mtt′

uv

is the cost of matching node u of tree t in T1 to node v of t′ in T2. The

requirement that no more than one union has multiple paths to a node is

necessary to avoid double counting.

6.4 Joining Multiple Trees

In the previous paragraph we have seen that it is possible to construct the edit

union of a set of trees, and we have considered how a tree can be compared to

this superstructure. We now want to show how to construct such a structure.

Finding the super-structure that minimizes the total distance between the

6 Structural Embedding Through Tree Union 133

trees in a set is computationally infeasible, but we propose a suboptimal

iterative approach which at each iteration extends the union by adding a

new tree to it. This is done by matching the tree to the union and then using

the matched nodes to construct the union of the two structures. That is, we

select a new tree t∗ and we match it against the current union T (t), to obtain

the updated union T (t+1). We proceed in this way until we have joined every

tree.

In order to increase the accuracy of the approximation, we wish to merge

the trees with the smaller distance first. The reason for this is that the smaller

the distance between two trees, the higher is our confidence regarding the

extracted correspondences. We start with the full set of trees, merge them

and replace them with the union. We reiterate this procedure until we obtain

a single structure. At each iteration we select two trees t1 and t2 such that

the distance d(t1, t2) is minimal, merge the two tree and reinsert the union

structure T1,2 in the set of trees to be merged. Unfortunately, since we

have no guarantee that the edit-union is a tree, we might attempt to merge

two graphs with multiple paths to a node, and this is something that our

matching algorithm cannot cope with. For this reason, we discard any union

that is not a tree and attempt to merge the next-best match. When no trees

can be merged without duplicating paths, we randomly select one union and

merge the remaining structures to it in random order. In this way we are

guaranteed to merge at most one multi-path structure at each step.

6.5 Experimental Results

We evaluate the application of the new graph embedding approach on the

problem of shock tree matching. First, we compare the embedding obtained

6 Structural Embedding Through Tree Union 134

using the union approach to 2D multi-dimensional scaling of the pairwise

edit-distances. Then we compare the clusters obtained using the L1 norm

defined on the union with those obtained using pairwise edit-distances. The

clusters are extracted using the algorithm presented in Appendix A.

By forcing the matches to be consistent across shapes, we enable the em-

bedding to better capture the structural information present in the shapes,

yielding better spatial distribution than that obtained with multi-dimensional

scaling.

6.5.1 Embedding

We perform principal components analysis on the embedding space defined

by the union . To do this we compute the covariance matrix for the pattern

vectors, and project the pattern vectors onto the space spanned by the leading

eigenvectors of the covariance matrix.

We run three experiments with 4, 5, and 9 shapes each. In each ex-

periment the shapes belong to two or more distinct visual clusters. Let

T = {t1, · · · , tn} be a set of n trees and T their union. We extract the em-

bedding vectors ~xt1 , · · · , ~xtn in the way described in Section 6.1. In order to

avoid scaling effects due to the difference in the number of nodes, we nor-

malize the embedding vectors so that they have L1 norm equal to 1. That

is, we calculate the new vectors

~yi =
~xi

∑

j |xi
j|

. (6.6)

Then, we compute the mean pattern-vector

~̂y = 1
n

∑

t∈T

~yt (6.7)

6 Structural Embedding Through Tree Union 135

and covariance matrix

Σ = 1
n

∑

t∈T

(~yt − ~̂y)(~yt − ~̂y)T . (6.8)

Suppose that the eigenvectors (ordered by decreasing eigenvalue) are ~e1,~en.

The leading l eigenvectors are used to form the columns of the matrix E =

(~e1| · · · |~el). We perform PCA on the sample trees by projecting the pattern

vectors onto the leading eigenvectors of the covariance matrix. The projection

of the pattern vector for the sample tree indexed t is ~zt = ET~yt. We confront

the spatial distribution obtained with the 2 principal components of the union

embedding with that obtained with 2D multi-dimensional scaling.

Figure 6.5: Left: embedding through union. Right: multi-dimensional scal-

ing of pairwise distances.

Figure 6.5 shows a clear example where the embedding obtained through

edit-union is better than that obtained through multi-dimensional scaling

of the pairwise distances. In this case the pairwise distance algorithm con-

sistently underestimates the distance between shapes belonging to different

clusters. This is a general problem of pairwise matching. The method works

very well when the shapes are close and the extracted correspondence is

reliable, but as the shapes move further apart the advantage the correct cor-

respondence has over alternative ones diminishes, until, eventually, another

6 Structural Embedding Through Tree Union 136

Figure 6.6: Left: embedding through union. Right: multi-dimensional scal-

ing of pairwise distances.

Figure 6.7: Left: embedding through union. Right: multi-dimensional scal-

ing of pairwise distances.

match is selected, which reports a lower distance. The result of this is a con-

sistent underestimation of the distance as the shapes move farther apart in

shape-space. Figures 6.6 and 6.7 show examples where the distance in shape-

space is not large enough to allow us to observe the described behavior, yet

the embedding obtained through union fares well against the embedding ob-

tained through multi-dimensional scaling of the pairwise edit-distances. In

particular, Figure 6.7 shows a better ordering of the shapes, with brushes

being so tightly packed that they overlap. It is interesting to note how the

union embedding puts the monkey wrench (at the top) somewhere in between

the pliers and the wrenches. The algorithm is able to consistently match the

6 Structural Embedding Through Tree Union 137

head to the heads of the wrenches, and the handles to the handles of the

pliers.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

L1 norm in the union-space

e
d
i
t
-
d
i
s
t
a
n
c
e

Figure 6.8: Edit-union vs pairwise distances.

Figure 6.8 plots the distances obtained through edit-union of weighted

shock trees (x axis) versus the corresponding pairwise edit-distances (y axis).

The plot clearly highlights that the pairwise distance approach tends to un-

derestimate the distances between shapes.

6.5.2 Clustering

Figure 6.9 shows the results of applying the pairwise clustering presented

in Appendix A to the distances obtained with edit-distance and to the dis-

6 Structural Embedding Through Tree Union 138

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

a) Weighted edit-distance. b) Union of attributed trees.

Figure 6.9: Clusters extracted from edit-distances versus those obtained from

the L1 norm defined on the union.

tances obtained through edit-union. When applied to the reduced database

of 25 shapes, edit-union clearly outperforms the pairwise distance approach.

Unfortunately the union approach does not scale, and fails as the database

becomes larger and the number of shape classes present increases.

6.5.3 Synthetic Data

To augment these real world experiments, we have computed the union using

synthetic data. The aim of the experiments is to characterize the ability of the

approach to generate an embedding space for tree structures. To meet this

goal we have randomly generated some prototype trees and, from each tree,

we have generated five or ten structurally perturbed copies. The procedure

for generating the random trees was the same as described in Section 5.5.3.

We commenced with an empty tree (i.e. one with no nodes) and we iteratively

added the required number of nodes. At each iteration nodes were added as

children of one of the existing nodes. The parent was randomly selected

6 Structural Embedding Through Tree Union 139

12

3
4

5

6
7

8910

1
2

3
45

6
7

8

9
10

12

345

6

7

8

9
10

11

12
1314
151617
1819

20

Figure 6.10: Synthetic clusters.

with uniform probability from among the existing nodes. The weight of the

newly added nodes was selected at random from an exponential distribution

with mean 1. To perturb the trees we simply added nodes using the same

6 Structural Embedding Through Tree Union 140

approach.

In our experiments the size of the prototype trees varied from 5 to 20

nodes. As we can see from Figure 6.10, the algorithm was able to clearly

separate the clusters of trees generated by the same prototype. Figure 6.10

shows three experiments with synthetic data. The top and middle images are

produced by embedding 5 structurally perturbed trees per prototype. Hence,

trees 1 to 5 are perturbed copies of the first prototype, 6 to 10 of the second.

The bottom image shows the result of the experiment with 10 structurally

perturbed trees per prototype. Hence, trees 1 to 10 belong to one cluster and

trees 11 to 20 to the other. In each image the clusters are well separated.

6.6 Conclusions

In this chapter we investigated a technique to extend the tree edit-distance

framework to allow for the simultaneous matching of multiple tree structures.

With this approach we can impose a consistency of node correspondences

between matches, avoiding the underestimation of the distance typical of

pairwise edit-distance approaches. Furthermore, through this method we

obtain a “natural” embedding space of tree structures that can be used to

analyze how tree representations vary in our problem domain.

In a set of experiments we apply this algorithm to match shock graphs.

The results of these experiments are very encouraging, as they show that the

algorithm is able to group similar shapes together in the generated embed-

ding space. Yet the approach fails when confronted with larger databases

containing several shape classes. This is due to the fact that the union

is capable of capturing the structural variation present in a class, but has

problems with multiple classes. The next chapter of the thesis presents a

6 Structural Embedding Through Tree Union 141

development of this result, in which the union is used to describe various

single classes. Hence, the matching problem is cast as one of learning the

structural representations that best describe a set of trees. We present an

information theoretic approach for learning these representations.

Chapter 7

Classification Using a

Probabilistic Mixture of Tree

Unions

The previous chapter presented the tree union. This is a structural archetype

that can be used to represent the ensemble of sample trees present in a set.

However, the construction of the archetype was done in a goal-directed man-

ner, without direct link to how the tree samples are distributed in the set.

The aim in this chapter is to develop an information theoretic framework for

the unsupervised learning of generative models of tree-structures from sets of

examples. We pose the problem as that of learning a mixture of union-trees.

Central to this approach is the realization that each tree union constitutes

an archetype that represents a class of trees as well as the probability dis-

tribution of trees within the class. We work under conditions in which the

node correspondences required to perform merges are unknown and must be

located by minimizing tree edit-distance. Associated with each node of the

union structure is a probability. This way the tree archetypes provide us with

7 Classification Using a Probabilistic Mixture of Tree Unions 143

generative models. There are hence three quantities that must be estimated

in order to construct this generative model. The first of these is the set of

correspondences between the nodes in the training examples and the nodes

in the estimated union structure. The second is the union structure itself.

The third is the set of node probabilities.

We cast the estimation of these three quantities in an information the-

oretic setting. The problem is that of learning a mixture of union-trees to

represent the classes of trees present in the training data. We use as our

information criterion the description length for the union structure [64]. The

entities to be described are the union structures themselves and the proba-

bilities associated with their nodes, conditioned to the set of correspondences

with the training samples. An important contribution of this research is the

proof that the description length is related to the edit-distance between the

union structure and the training examples. Our approach essentially involves

three computational ingredients. First, we locate correspondences in such a

way as to minimize the edit distance. Secondly, we construct the union struc-

ture using a set of tree merge operations that minimize the description length.

Thirdly, we make maximum likelihood estimates of the node probabilities. It

is important to note that the union model underpinning our method assumes

node independence on the training samples. This is why the straightforward

union approach described in the previous chapter does not work well with

multiple classes. Using a mixture of unions we condition this independence

to the class. This conditional independence assumption, while often unreal-

istic, is at the basis of the naive Bayes model [44] which has proven to be

robust and effective for a wide range of classification problems.

7 Classification Using a Probabilistic Mixture of Tree Unions 144

7.1 Generative Tree Model

Consider the data set D consisting of sample trees D = {t1, t2, . . . , tn}. Our

aim is to cluster these trees, i.e. to perform unsupervised learning of the

class structure of the data. We pose this problem as that of learning a

mixture of generative class archetypes. Each class archetype is constructed

by merging sets of sample trees together to form a set of union-trees. This

merge process requires node correspondence information, and we work under

conditions in which this information is unknown and must be inferred as part

of the learning process. The class archetypes are generative models since they

capture in an explicit manner the structural variations for the sample trees

belonging to a particular class in a probabilistic manner. In Section 6.3

we will focus in more detail on how the class archetypes are learned, i.e.

how the tree merge operations are effected. Now we detail the probabilistic

ingredients of our model.

To commence, suppose that the set of class archetypes constituting the

mixture model is denoted by H = {T1, T2, . . . , Tk}. For the class c, the

tree model Tc is a structural archetype derived from the tree-union obtained

by merging the set of trees Dc constituting the class. Associated with the

archetype is a probability distribution which captures the variations in tree

structure within the class. Hence, the learning process involves estimating the

union structure and the parameters of the associated probability distribution

for the class model Tc.

The estimation of the required class models is effected using a simple

greedy optimization method. The quantity to be optimized is the descriptor

length for the sample data set D. The parameters to be optimized include the

structural archetype of the model T as well as the node correspondences C
between the samples in the set D and the archetype. Hence, the inter-sample

7 Classification Using a Probabilistic Mixture of Tree Unions 145

node correspondences are not assumed to be known a priori. Since the cor-

respondences are uncertain, we must solve two interdependent optimization

problems. These are the optimization of the union structure given a set

of correspondences, and the optimization of the correspondences given the

tree structure. These dual optimization steps are approximated by greedily

merging similar tree-models.

We characterize uncertainties in the structure obtained by tree merge

operations by assigning probabilities to nodes. We present two node proba-

bility models. The first model is used when the sample trees are unweighted,

i.e. when the nodes have no attributes associated with them. In this case

the node probability is estimated using the sample frequency of the nodes.

The second model is used when the samples have continuous attributes, or

weights, associated with them. By adopting an information theoretic ap-

proach we demonstrate that the tree edit-distance, and hence the costs for

the edit operations used to merge trees, are related to the entropies associated

with the node probabilities.

7.1.1 Probabilistic Framework

More formally, the basis of the proposed structural learning approach is a

generative tree model which allows us to assign a probability distribution to

a sample of hierarchical trees. Each hierarchical tree t is defined by a set of

nodes N t, a tree-order relation Ot ⊂ N t × N t between the nodes, and, in

the case of weighted trees, a weight set W t = {wt
i|i ∈ N t} where wt

i is the

weight associated with node i of tree t.

Our aim is to construct a generative model for a class of trees Dc ⊂ D.

The structural component of this model Tc consists of a set of nodes Nc and

an associated tree order relation Oc ⊂ Nc × Nc. Additionally, there is a set

7 Classification Using a Probabilistic Mixture of Tree Unions 146

Θc = {θc
i , i ∈ Nc} of sampling probabilities θc

i for each node i ∈ Nc. Hence

the model is the triple Tc = (Nc,Oc, Θc). A sample from this model is a

hierarchical tree t = (N t,Ot) with node set N t ⊂ Nc and a node hierarchy

Ot that is the restriction to N t of Oc. In other words, the sample tree is just

a subtree of the class archetype, and it can be obtained using a simple set of

edit operations that prune the archetype.

To develop our generative model, we make a number of simplifying as-

sumptions. First, we drop the class index c to simplify notation. Second,

we assume that the set of nodes for the union structure T spans each of the

trees encountered in the set of sample trees D, i.e. N =
⋃

t∈DN t. Third,

we assume that the sampling error acts only on nodes, while the hierarchical

relations are always sampled correctly. That is, if nodes i and j satisfy the

relation iOj, then node i will be an ancestor of node j in each tree-sample

that has both nodes.

Our assumptions imply that two nodes will always satisfy the same hier-

archical relation whenever they are both present in a sample tree. A conse-

quence of this assumption is that the structure of a sample tree is completely

determined by the restriction of the order relation O to the nodes observed

in the sample tree. The sampling process is equivalent to the application of a

set of node removal operations to the archetypical structure T = (N ,O, Θ),

and this makes the archetype a union of the set of all possible tree samples.

The following subsections, we describe how to construct a node probabil-

ity distribution over the set of trees when the nodes are weighted and when

they are unweighted.

7 Classification Using a Probabilistic Mixture of Tree Unions 147

Unweighted model

To define a probability distribution over the union structure T , we require

the correspondences between the nodes in each sample tree t and the nodes

in the class-model T . Therefore, we define a map C : N t → N from the

set N t of the nodes of t to the nodes of the class model T . The mapping

induces a sample correspondence for each node i ∈ N . The correspondence

probability for the node i is

φ(i|t, T , C) =











θi if there exists j ∈ N t such that C(j) = i

1− θi otherwise.

(7.1)

The probability of sampling the tree t from the model T given the set of

correspondences C is

Φ(t|T , C) =











∏

i∈N t φ(i|t, T , C) if ∀v, w ∈ N t, v 99K w ⇐⇒ C(v) 99K C(w)

0 otherwise.

(7.2)

That is, the order relation is respected as a hard constraint on the choice of

the correspondences.

Weighted model

When the nodes of the sample trees have weights associated with them, we

would expect the sampling likelihood to reflect the distribution of weights.

Hence, the simple probability distribution described above, based on uni-

form sample node probability, is not sufficient because it does not take into

account the weight distribution. To overcome this shortcoming, in addition

to the set of sampling probabilities Θ, we associate with the union model a

weight distribution function. Here we assume that the weight distribution is

7 Classification Using a Probabilistic Mixture of Tree Unions 148

a rectified Gaussian. For the node i of the union tree the weight probability

distribution is given by

p(wj|C(j) = i) =











1
θiσi

√
2π

exp
(

−1
2

(wj−µi)2

σi
2

)

if wj ≥ 0

0 otherwise,

(7.3)

where the weight distribution has mode µi and standard deviation σi. The

sampling probability is the integral of the distribution over positive weights,

i.e.

θi =

∫ ∞

0

exp
(

−1
2

(w−µi)2

σi
2

)

σi

√
2π

dw = 1− erfc(τi), (7.4)

where τi = µi/σi and erfc is the complementary error function

erfc(x) =

∫ ∞

x

1√
2π

exp(−1

2
s2) ds. (7.5)

In the weighted case, the complete structural model is represented by the

tuple T = (N ,O, τ̄ , σ̄), where τ̄ = {τi; i ∈ N} and σ̄ = {σi; i ∈ N} are sets of

node parameters. Taking into account the correspondences, the probability

for node i induced by the mapping is

φ(i|t, T , C) =











θip(wj|C(j) = i) if there exists j ∈ N t such that C(j) = i

1− θi otherwise.

(7.6)

Using this node probability, we can compute the tree sample probability

Φ(t|T , C) in the same way as in the unweighted case.

7.1.2 Estimating Node Parameters

Using either the weighted or the unweighted node model, we can compute the

log-likelihood of the sample data D given the tree-union model T and the

correspondence mapping function C. Assuming that the sampling process

7 Classification Using a Probabilistic Mixture of Tree Unions 149

acts independently on the nodes of the structure, the log-likelihood function

is

L(D|T , C) =
∑

t∈D

∑

i∈N t

ln [φ(i|t, T , C)] . (7.7)

Our ultimate aim is to optimize the log-likelihood with respect to the cor-

respondence map C and the tree-union model T . These variables, however,

are not independent, since they both depend on the node-set N . A vari-

ation in the actual identity and number of the nodes does not change the

log-likelihood. Hence the dependency on the node-set can be lifted by simply

assuming that the node set is the image of the correspondence map Im(C).
As we will see later, the reason for this is that those nodes that remain

unmapped do not affect the maximization process.

We defer details of how we estimate the correspondence map C and the

order relationO to later sections of the chapter. However, assuming estimates

of them are to hand, we can make maximum likelihood estimates of the

selected node model. That is, the set of sampling probabilities Θ in the

unweighted case, and the node parameters τ̄ and σ̄ in the weighted case.

To proceed, let Ki = {j ∈ N t|t ∈ D, C(j) = i} be the set of nodes in the

different trees for which C maps a node to i and let pi = |Ki| be the number

of trees satisfying this condition. Further, let ni be the number of trees in D
for which C results in no mapping to the node i. For the unweighted node-

model, the sampling probability θi that maximizes the likelihood function

is θi = pi

m
, where m = ni + pi is the total number of tree samples. When

these optimal sampling probabilities are substituted into the log-likelihood

function, we have

L̂(D|T , C) =
∑

i∈N
m
[ni

m
log
(ni

m

)

+
(

1− ni

m

)

log
(

1− ni

m

)]

= −
∑

i∈N
mI(θi),

(7.8)

7 Classification Using a Probabilistic Mixture of Tree Unions 150

where I(θi) = − [θi log(θi) + (1− θi) log(1− θi)] is the entropy of the sam-

pling distribution for node i. This equation holds provided that there exists

an order relation that is respected by every hierarchical tree in the sample

set D. If this is not the case then the log-likelihood function takes on the

value −∞.

Using the weighted node model, we are unable to express the log-likelihood

function as the sum of the per node entropies. However, we can express it as

the sum of the per-node log-likelihood functions:

L(D|T , C) =
∑

i∈N φ(i|t, T , C)
=
∑

i∈N ni log(erfc(τ i))− pi

2
log(2πσ2

i)− 1
2

∑

j∈Ki

(

wt
j

σi
− τi

)2

=
∑

i∈N log

(

erfc(τi)
ni(2πσ2

i)
− pi

2 exp

[

−1
2

∑

j∈Ki

(

wt
j

σi
− τi

)2
]

)

.

(7.9)

To estimate the parameters of the weight distribution, we take the deriva-

tives of the log-likelihood function with respect to σi and τi and set them to

zero. As a result

σi = −τi

2
W +

√

(τi

2
W
)2

+ W 2 (7.10)

ni erfc′(τi) + pi erfc(τi)

(

W

σi

− τi

)

= 0, (7.11)

where W = 1
pi

∑

j∈Ki
wt

j and W 2 = 1
pi

∑

j∈Ki

(

wt
j

)2
.

It is clear that when ni = 0 then the likelihood function is maximized by

σi =

√

W 2 −W
2

and τi = W
σi

. When ni > 0, we maximize the log likelihood

by setting τi
0 = erfc−1

(

ni

ni+pi

)

, and iterating the recurrence:

σi
(k) = −τi

(k)

2
W +

√

(

τi
(k)

2
W

)2

+ W 2 (7.12)

τi
(k+1) = τi

(k) − f(τi
(k), σi

(k))
d

dτi
(k) f(τi

(k), σi
(k))

, (7.13)

7 Classification Using a Probabilistic Mixture of Tree Unions 151

where f(τi, σi) = ni erfc
′(τi) + pi erfc(τi)

(

W
σi
− τi

)

.

7.2 Mixture Model

We now commence our discussion of how to estimate the order relation O
for the tree union T , and the set of correspondences C needed to merge the

sample trees to form the tree union. We pose the problem as that of fitting

a mixture of tree unions to the set of sample trees. Each tree union may be

used to represent the distribution of the trees that belong to a single class

Dc. The defining characteristic of the class is the fact that the nodes present

in the sample trees satisfy a single order relation Oc. However, the sample

set D may have a complex class structure, and it may be necessary to de-

scribe it using multiple tree unions. Under these conditions the unsupervised

learning process must allow for multiple classes. We represent the distribu-

tion of sample trees using a mixture model and applying it to separate union

structures. Suppose that there are k tree unions, that the tree union for the

class c is denoted by Tc, and that the mixing proportion for this tree-union

is αc. The mixture model for the distribution of sample trees is

P (t|T̄ , C) =
k
∑

c=1

αc

∏

t∈D

∏

i∈N t

φ(i|t, Tc, C). (7.14)

The expected log-likelihood function for the mixture model over the

sample-set D is:

L(D|T̄ , C, z̄) =
∑

t∈D

∑

i∈N t

k
∑

c=1

zt
cαc ln φ(i|t, Tc, C), (7.15)

where zt
c is an indicator variable that takes on the value 1 if tree t belongs

to the mixture component c and is 0 otherwise.

7 Classification Using a Probabilistic Mixture of Tree Unions 152

We require an information criterion that can be used to select the set of

tree-merge operations over the sample set D that results in the optimal set of

tree unions. It is well known that the maximum likelihood criterion cannot

be used directly to estimate the number of mixture components, since the

maximum of the likelihood function is a monotonic function on the number

of components. In order to overcome this problem, we use the Minimum

Description Length (MDL) principle [64], which asserts that the model that

best describes a set of data is the one that minimizes the combined cost of

encoding the model and encoding the error between the model and the data.

The MDL principle allows us to select from a family of possibilities the model

that is most parsimonious and that best approximates the underlying data.

More formally, the expected description length of a data set D generated

by an estimate H of the true, or underlying, model H∗ is

E [LL(D,H)] = −
∫

P (D|H∗) log [P (D|H)P (H)] dD =

− 1

P (H∗)

∫

P (D,H∗) log [P (D,H)] dD =

− 1

P (H∗)

[
∫

P (D,H∗) log (P (D,H∗)) dD +

∫

P (D,H∗) log

(

P (D,H)

P (D,H∗)

)

dD
]

=

1

P (H∗)
[I(P (D,H∗)) + KL(P (D,H∗), P (D,H))] , (7.16)

where

I(P (D,H∗)) = −
∫

P (D,H∗) log (P (D,H∗)) dD (7.17)

is the entropy of the joint probability of the data and the underlying model

H∗, and

KL(P (D,H∗), P (D,H)) = −
∫

P (D,H∗) log

(

P (D,H)

P (D,H∗)

)

dD (7.18)

is the Kullback-Leiber divergence between the joint probabilities using the

underlying model H∗ and the estimated model H. This quantity is clearly

7 Classification Using a Probabilistic Mixture of Tree Unions 153

minimized when H = H∗, and hence P (D,H) = P (D,H∗). Under these

conditions, KL(P (D,H∗), P (D,H)) = 0 and E[LL(D,H)] = I(P (D,H)). In

other words, the description length associated with the maximum likelihood

set of parameters is simply the expected value of the negative log likelihood,

i.e. the Shannon entropy.

Our model is described by the set of mixing proportions ᾱ and the set

of union structures H = {T1, . . . , Tc, . . . , Tk}. The union structure Tc =

{Nc,Oc, Θc} for the mixture component indexed c consists of a set of nodes

Nc, a set of order relations Oc and a set of node probabilities Θc = {θc
i , i ∈

Nc}, where θc
i is the probability for the node n in the union-tree indexed c.

To describe or encode the fit of the model to the data, for each tree sample

t we use the indicator variables z̄t
c which indicates from which tree model

the sample was drawn. Additionally, for each node in the model, we need to

describe or encode whether or not the node was present in the sample and, in

the case of the weighted model, we need to specify the value of the sampled

weight within a given precision.

In the following subsections, we analyze the description length criterion

for the unweighted and weighted node models.

7.2.1 Unweighted Samples

As noted above, the cost incurred in describing or encoding the model T̄
is − log

[

P (T̄)
]

, while the cost of describing the data D using that model

is − log
[

P (D|T̄)
]

. If we make the dependence on the correspondences C
explicit, we see that the description length is

LL(D|T) = −L(D|T̄ , C). (7.19)

7 Classification Using a Probabilistic Mixture of Tree Unions 154

Asymptotically, the cost of describing the set of mixing components ᾱ =

{αc; c = 1, ..., k} and the set of indicator variables z̄ = {zt
c|t ∈ D, c = 1, ..., k}

is bounded by mI(ᾱ), where m is the number of samples in D and I(ᾱ) =

−∑k

c=1 αc log(αc) is the entropy of the mixture distribution ᾱ. The cost of

describing the structure of a union model is proportional to the number of

nodes contained within it, while the cost of describing the sampling prob-

ability θc
i of node i for model c and the existence of this node in each of

the mαc samples generated by union c is asymptotically equal to mαcI(θc
i).

Here I(θc
i) = −θc

i log(θc
i)− (1− θc

i) log(1− θc
i) is the entropy associated with

the node sampling probability. Hence, given a model H consisting of k tree-

unions, where the component Tc has dc nodes and a mixing proportion αc,

the descriptor length for the model, conditioned to the set of correspondences

C is:

LL(D|H, C) = mI(ᾱ) +

k
∑

c=1

dc
∑

i=1

[mαcI(θc
i) + l] , (7.20)

where l is the description length per node of the tree-union structure, which

we set to 1. Given that mc =
∑

t∈Dc
zt

c is the number of trees mapped to

model c, the sampling frequency αc is estimated using αc = mc

m
. Furthermore,

given that pc
i = |{j ∈ N t|t ∈ D, C(j) = i}| is the number of nodes from all

the sample trees in D that are mapped by C to node i of model c, the node

probability θc
i is estimated using θc

i =
pc

i

mc
.

7.2.2 Weighted Samples

We now turn our attention to the case of weighted trees. To pursue our

analysis of the description length criterion, we encode the weight distribution

as a histogram: we divide the weight space of the samples associated with

node i of union-tree c into buckets of width kσc
i . As a result, the probability

7 Classification Using a Probabilistic Mixture of Tree Unions 155

that a weight falls in a bucket centered at x is, for infinitesimally small k

bi
c(x) = k

exp

[

−1
2

(

x
σc

i
− τ c

i

)2
]

θc
i

√
2π

. (7.21)

Again, the asymptotic cost of describing the node parameters τ c
i and σc

i and,

at the same time, describing within the specified precision the nαc samples

associated to node i in union c, is

LLi
c(D|Tc, C) = −(mαc − pi) log(1− θb

i)−
pi
∑

j=1

log
(

bi
c(w

i
j)
)

, (7.22)

where θc
i = 1 − erfc(τi) is the sampling probability for node i and pi is the

number of times the correspondence C maps a sample node to i. Hence

(mαc− pi) is the number of times node i has not been sampled according to

the correspondence map C. As a result

LL(D|H, C) = mI(ᾱ) +
k
∑

c=1

∑

i∈Nc

[

LLi
c(D|Tc, C) + l

]

. (7.23)

7.3 Learning the Mixture

With the description length criterion to hand, our aim is to locate tree-merge

operations that give rise to the set of tree unions that optimally partition

the training data D into non-overlapping classes. Unfortunately, locating

the global minimum of the description length in this way is an intractable

combinatorial problem. Moreover, we can not make use of the Expectation-

Maximization algorithm. This is because the complexity of the maximization

step grows exponentially with the number of sample trees. Hence, we resort

to a local search technique, which allows us to limit the complexity of the

maximization step. The approach is as follows:

7 Classification Using a Probabilistic Mixture of Tree Unions 156

• Commence with an overly-specific model. Use one structural model per

sample-tree, where each model is equiprobable and structurally identi-

cal to the respective sample tree and each node has sample probability

equal to 1.

• Iteratively generalize the model by merging pairs of tree-unions. Choose

the candidates for merging in such a way that they maximally decrease

the description length.

• Stop the algorithm when there are no merges remaining that can de-

crease the description length.

This algorithm bears some resemblance with the spanning tree clustering

algorithm [39]. Both algorithms iteratively merge samples or clusters that

satisfy a minimum distance or a maximum similarity criterion. The main

difference is that, in our algorithm, the similarity matrix cannot be assumed

to be fixed, as is the case with the spanning tree algorithm. Rather, it changes

after each merge to reflect the changes in the joint model. These changes in

the distance matrix will limit the amount of chaining allowed in the clusters.

This is due to the fact that the tree unions describing the two clusters that

are merged are replaced by a single union which must be able to describe

the variation present in both clusters. As a result, its mean must be placed

in pattern-space somewhere between the means of the two tree unions. This

implies that the distance to the remaining clusters must vary. Regardless

of these differences, our algorithm is still guaranteed to converge to a local

minimum with at most a linear number of merges.

The main requirement of our description length minimization algorithm

is that we can optimally merge two tree models. That is, we can find a

structure from which it is possible to sample every tree previously assigned

7 Classification Using a Probabilistic Mixture of Tree Unions 157

to the two models. From Equations 7.20 and 7.23 we see that the descriptor

length is linear with respect to the contribution from each component of the

mixture. In fact, the description cost of the component c and of the nαc data

samples assigned to it is

LLc(D|Tc, C) =
∑

i∈Nc

[mαcI(θc
i) + l] (7.24)

for the unweighted node-model, and

LLc(D|Tc, C) = −
∑

i∈Nc

(mαc − pi) log(1− θb
i)−

∑

i∈Nc

pi
∑

j=1

log
(

bi
c(w

i
j)
)

(7.25)

for the weighted node model. The total description cost, thus, becomes:

LL(D|T̂ , C) = mI(ᾱ) +

k
∑

c=1

LLc(D|Tc, C). (7.26)

Furthermore, the description length per component LLc(D|Tc, C) is linear

in the number of model nodes. This allows us to pose the minimization of

the description length as a linear optimization problem with a combinatorial

constraint. In particular, as we will show in the next section, we can pose the

model-merging problem as an instance of a particular minimum edit-distance

problem.

Given two tree models T1 and T2, we wish to construct a union T̂ whose

structure respects the hierarchical constraints present in both T1 and T2, and

which minimizes the quantity LL(T̂). Since the trees T1 and T2 already assign

node correspondences C1 and C2 from the data samples to the model, we can

simply find a mapM from the nodes in T1 and T2 to T̂ and transitively extend

the correspondences from the samples to the final model T̂ in such a way

that, given two nodes v ∈ N1 and v′ ∈ N2, then Ĉ(v) = Ĉ(v′)⇔ v′ =M(v).

Posed as the merge of two structures, the correspondence problem is

reduced to one of finding the set of nodes in T1 and T2 that are common to

7 Classification Using a Probabilistic Mixture of Tree Unions 158

both trees. Starting with the two structures, we merge the set of nodes that

reduces the description length by the largest amount while still satisfying the

hierarchical constraint. That is to say, we merge nodes u and v of T1 with

node u′ and v′ of T2 respectively if and only if u 99K v ⇔ u′
99K v′, where

a 99K b indicates that a is an ancestor of b.

Let m1 and m2 be the number of tree samples fromD that are respectively

assigned to T1 and T2. Further, let pv and pv′ be the number of times the

nodes v and v′ in T1 and T2 are respectively in correspondence with nodes of

trees in the data sample D. With the unweighted model, if the two nodes are

not merged then the sampling probabilities are θv = pv

m1+m2
and θv′ = p′v

m1+m2

respectively, while the sampling probability of the merged node is θ(vv′) =

pv+pv′

m1+m2
. Hence, the advantage in description length obtained by merging the

nodes v and v′ is

A(v, v′) = (m1 + m2)
[

I(θv) + I(θv′)− I(θ(vv′))
]

+ l. (7.27)

When using the weighted model, we can still estimate the sampling prob-

abilities using the formulae θv = 1− erfc(τv), θv′ = 1− erfc(τv′), and θ(vv′) =

1 − erfc(τ(vv′)), where the node parameters τv, τv′ , and τ(vv′) are estimated

by fitting the node weight model to the unmerged and merged node data.

The combined cost incurred in describing these models is LLv′(D|Tc, C) +

LLv′(D|Tc, C) + 2l. Hence, in the weighted case the advantage in description

length obtained by merging the nodes v and v′ is:

A(v, v′) = LLv(D|Tc, C) + LLv′(D|Tc, C)− LL(vv′)(D|Tc, C) + l. (7.28)

In both the unweighted and the weighted cases, the set of merges M that

minimizes the description length of the combined tree union also maximizes

7 Classification Using a Probabilistic Mixture of Tree Unions 159

Figure 7.1: Merging sample trees into a single tree-model.

the advantage function

A(M) =
∑

(v,v′)∈M
A(v, v′). (7.29)

At the end of the node merging operation we are left with a set of nodes

that respects the original partial order relation defined by all the hierarchies

in the sample trees. Unfortunately, as stated in the previous chapter, the

hierarchy of the merged model is not guaranteed to be a tree order. An

illustration of this problem is provided in Figure 6.3. When the merged

model does not provide a tree order, we simply reject the merge and search

for another pair of trees to be merged.

We initialize our algorithm by calculating the description length of a

model in which there is one mixing component per tree sample in D. For each

pair of initial mixture components we calculate the union and the description

length of the merged structure. From the set of potential merges, we can

identify the one which reduces the descriptor cost by the greatest amount.

7 Classification Using a Probabilistic Mixture of Tree Unions 160

The mixing proportion for this optimal merge is equal to the sum of the

proportions of the individual unions. At this point we calculate the union

and the description cost that result from merging the newly obtained model

with each of the remaining components. We iterate the algorithm until no

more merges that reduce the description length can be found.

To conclude this section, Figure 7.1 illustrates an example merge of 6

sample trees. The figure shows the structural archetype of the merged mod-

els after each stage. The shading of the nodes represents their sampling

probabilities: the higher the probability the darker the node.

7.4 Tree Edit-Distance

As noted earlier, the advantage in description length is related to the edit-

distance between tree structures. This is an important observation. One

of the difficulties with graph edit-distance [68, 25] is that there is no clear

methodology for assigning costs to edit operations. By contrast, in the work

reported here the description length changes associated with tree merge op-

erations are determined by the node probabilities, and these in turn may be

estimated from the available sample of trees. By establishing a link between

tree edit-distance and description length, we provide a means by which edit

costs may be estimated.

Pivotal to our approach is the observation that locating the correspon-

dences that result in the optimal tree merge is equivalent to computing the

edit-distance. The reason for this is that both processes share the same hi-

erarchical constraints and the same objective function. Hence, the set of

common nodes obtained through the edit-distance approach is equal to the

set of nodes that must be optimally merged to form the tree unions.

7 Classification Using a Probabilistic Mixture of Tree Unions 161

We can identify the cost associated with node removal and node matching

operations by equating the utility U defined in Equation 5.3 with the advan-

tage in description length A. The costs that allow the unweighted problem

to be posed as an edit-distance problem are rv = (m1 + m2)I(θv) + l for the

removal of node v, and m(vv′) = (m1 + m2)I(θ(vv′)) + l for matching node

v with node v′. In the weighted case, the corresponding edit costs are rv =

LLv(D|Tc, C) + l for the removal of node v, and m(vv′) = LL(vv′)(D|Tc, C) + l

for matching node v with node v′.

Hence, our union-tree approach can be viewed as a means of learning tree-

edit costs. This has been a longstanding problem since Fu and his co-workers

introduced the idea of graph edit-distance in the early 1980’s [68, 25].

7.5 Experimental Results

We illustrate the usefulness of the tree-clustering algorithm on sets of shock

trees. Our experiments are divided into three parts. We commence by illus-

trating qualitative examples of the clusters obtained with the two variants

of our algorithm. The results suggest that the weighted version is the most

effective. We then focus in more detail on some of the quantitative proper-

ties of the weighted version. Finally, we carry out a sensitivity analysis on

synthetic data.

7.5.1 Clustering

To illustrate the clustering process, we begin with a study on a small database

of 25 shapes. In order to assess the quality of the method, we compare the

clusters defined by the components of the mixture with those obtained with

the methods described in the previous chapters. In the previous methods the

7 Classification Using a Probabilistic Mixture of Tree Unions 162

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

a) Mixture of tree unions b) Weighted edit-distance c) L1 norm in union-space

Figure 7.2: Comparison of three clustering approaches. a) Mixture of trees

b) pairwise clustering of edit-distance c) pairwise clustering of the Union-

induced L1 norm.

clusters are obtained by applying the pairwise clustering algorithm described

in Appendix A to the set of distances obtained with plain edit-distance and

to the set obtained by embedding the trees in a union structure.

Figure 7.2 shows the clusters extracted from the database of 25 shapes.

The first column shows the clusters extracted through the mixture of tree

unions approach applied to unweighted trees. The second column displays

the clusters extracted from the weighted edit-distances between shock trees.

Here the structural information is enhanced with the measure described in

Chapter 4. The third column shows the clusters extracted from the distances

obtained by embedding the shock trees in a single tree-union. Although there

is some merge and leakage, the clusters extracted with the mixture of tree

unions compare favorably with those obtained using the alternative clustering

algorithms, even though these are based on data enhanced with geometrical

information.

7 Classification Using a Probabilistic Mixture of Tree Unions 163

•
•
•
•
•
•
•
•
•

•
•
•
•
•

a) Mixture of tree models b) Pairwise clustering from edit-

distance

Figure 7.3: Comparison of clusters obtained from non-attributed edit-

distance and mixture of trees.

Figure 7.3 compares the results obtained through mixture of tree unions,

and pairwise clustering of edit-distances, applied to unweighted trees. The

clusters obtained using the mixture of tree unions are shown on the left, while

those obtained through the pairwise clustering of unweighted edit-distances

are shown on the right. These results suggest that the mixture of tree-unions

method outperforms pairwise clustering of edit-distance on purely structural

data.

7.5.2 Quantitative Analysis

We now turn our attention to the properties of the weighted variant of our

mixture-of-tree-unions clustering method when applied to a larger database

of 150 trees. The database consists of 150 shapes divided into 10 shape

classes containing 15 shapes each.

Figure 7.4 recalls the multi-dimensional scaling applied to the weighted

7 Classification Using a Probabilistic Mixture of Tree Unions 164

11

1

1

1 1
1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4
4

4

4

4

44

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5
5 5

6

6

66

6

6

6

6

6
6

6

6

6

6

6

7

7

7

7

777

7

7

7

7

7

7

7

7

8
8

8
8

88

8

8

8

8

88

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

10
10

10

Figure 7.4: 2D multi-dimensional scaling of the pairwise distances of the

shock graphs. The numbers correspond to the shape classes.

7 Classification Using a Probabilistic Mixture of Tree Unions 165

40%

50%

60%

70%

80%

90%

100%

 40 60 80 100 120

tree-union
paiwise clustering

number of shapes

p
r
o
p
o
r
t
i
o
n
o
f
c
o
r
r
e
c
t
c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

Figure 7.5: Proportion of correct classifications obtained with the mixture of

tree versus those obtained with pairwise clustering.

edit-distances of between the shock graphs in this database.

To asses the ability of the clustering algorithm to separate the shape

classes, we performed experiments on an increasing number of shapes. We

commenced with 30 shapes from two shape classes, and then increased the

number of shape classes under consideration up to a set of 120 shapes, forming

8 classes. Each experiment was performed four times with different choices

of shape groups in order to provide some error analysis. Figure 7.5 plots the

proportion of shapes correctly classified as the number of shapes is increased.

The dashed line plots the result obtained using the mixture of weighted

tree unions, while the dotted line displays the results obtained with pairwise

clustering of the weighted edit-distances between the shapes. The mixture

7 Classification Using a Probabilistic Mixture of Tree Unions 166

of tree unions clearly outperforms the pairwise clustering algorithm.

We now turn our attention to the results of applying PCA to the union-

trees, as described in Section 6.5.1. Figure 7.6 displays the first two principal

components of the distribution of sample trees within six of the extracted

shape classes. In most cases there appears to be a tightly packed central

cluster with a few shapes scattered farther away. This separation is linked

to substantial variations in the structure of the shock trees. For example, in

the shape-space formed by the class of pliers the outlier is the only pair of

pliers with the prongs closed. In the case of shape-space for the horse class,

the outliers appear to be the cart-horses while the inliers are the ponies.

7.5.3 Synthetic Data

To augment these real world experiments, we have fitted the mixture of

weighted tree unions to synthetically generated data. Our aim here has been

to characterize the sensitivity of the algorithm to cluster merging. We have

randomly generated a number of unweighted prototype trees and, from each

tree, we have generated structurally perturbed copies. The procedure for

generating the random trees was the one described in Section 5.5.3. The

trees were perturbed by randomly adding the required number of nodes.

The sample of trees used in our study was controlled by increasing the

number of prototypes, and increasing the degree of structural perturbation

to which they were subjected. We tested the performance of the mixture of

weighted tree unions on samples generated from 2, 3, and 4 prototypes of

10 nodes each. The amount of perturbation or noise was increased from an

initial 10% to a maximum of 50% of the total number of nodes. Figure 7.7

plots the fraction of pairs of trees that are correctly classified as belonging to

the same or different clusters as the noise is increased. From this plot, it is

7 Classification Using a Probabilistic Mixture of Tree Unions 167

Figure 7.6: Principal components analysis of the union embedding of the

clusters.

7 Classification Using a Probabilistic Mixture of Tree Unions 168

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%

2 prototypes
3 prototypes
4 prototypes

structural noise

p
r
o
p
o
r
t
i
o
n

o
f
c
o
r
r
e
c
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

Figure 7.7: Percentage of correct classifications under increasing structural

noise.

clear that the method works well with compact and well separated clusters.

However, the algorithm undergoes a sudden drop in performance when the

structural variability of the class reaches 40% of the total number of nodes

of the prototypes. Furthermore, when a greater number of prototypes are

used, the distance between the clusters becomes smaller and, consequently

the classes become harder to separate.

7.6 Conclusions

In this chapter we present an information theoretic framework for clustering

trees and for learning a generative model of the variation in tree structure.

The problem is posed as that of learning a mixture of tree unions. We demon-

strate how the three sets of operations needed to learn the generative model,

namely node correspondence, tree merging and node probability estimation,

7 Classification Using a Probabilistic Mixture of Tree Unions 169

can each be cast in terms of minimizing a description length criterion. We

provide variants of the algorithm that can be applied to samples of both

weighted and unweighted trees. Moreover, we illustrate the relationship be-

tween classical tree edit-distance, and the node entropy in our model. We

illustrate the method in relation to the problem of learning shape-classes

from sets of shock trees.

There are clearly a number of ways in which this work may be extended.

First, we have concentrated on trees, and there is scope for generalizing the

method to graphs. Second, the method only accommodates node proba-

bilities, and an important priority would be to incorporate structures with

weighted edges and to allow for edge-probabilities. Third, the optimization

process is extremely simplistic, and prone to convergence to local optima.

Hence, there is a need to investigate the use of more sophisticated methods

such as mean field annealing or evolutionary search. Finally, we have ex-

plored only a single application of the method, and more extensive testing is

needed. Studies aimed at addressing these points are underway, and will be

reported on in future studies.

Chapter 8

Conclusions

The overall goal of this thesis was to learn the class structure of informa-

tion abstracted in terms of hierarchical trees. To this end, we a) developed

an algorithm to approximate tree edit-distance, b) developed a structural

archetype capable of capturing the modes of variation of a set of trees, and

c) presented an information-theoretic approach to learning these structural

archetypes from tree samples. The proposed techniques were analyzed on

the problem of unsupervised classification of shapes abstracted in terms of

their shock trees.

While the skeletal abstraction of shape was chosen mainly as a experimen-

tal vehicle, nonetheless we made some contributions to the fields of skeleton

extraction and its graph representation.

8.1 Skeleton Extraction

First, we presented a skeletonization method that corrects curvature effects

in the Hamilton-Jacobi framework. Our approach addresses a shortcoming

of the Hamilton-Jacobi method for skeleton extraction, namely its sensitiv-

8 Conclusions 171

ity to high curvature due to curvature-related error terms in the differential

analysis. To overcome this problem, we have presented an analysis which

takes into account variations of density due to boundary curvature. This

yields a skeletonization algorithm that is both better localized and less sus-

ceptible to boundary noise than the Hamilton-Jacobi method. Despite the

improvements, our analysis of the effects of boundary noise show that noise

still affects the extraction algorithm. This is due to the intrinsic sensitiv-

ity of the skeletal representation, and is hence present in every extraction

algorithm. This intrinsic sensitivity is compounded with a higher incidence

of discretization error associated with high frequency in the boundary fea-

tures. To counter this we smooth the boundary by approximating a diffusion

operator. However, in degenerate cases, this could lead to the creation of

spurious branches. There is clearly room for improvement in the way we

handle boundary noise. One promising direction of investigation is the use

of interpolation techniques to compute the flux with sub-pixel precision.

8.2 Shape Measure

A second contribution is in the analysis of the ability of the ratio of boundary-

length to skeleton-length as a means to gauge the similarity between shapes

abstracted through skeletal representations. The contribution is as follows.

Although this ratio that has been known for some time, it has not been used

for shape comparison. The novelty of our work resides in the use of the mea-

sure to characterize shape similarity and in the analysis of its behavior as

the shapes are deformed and the skeleton undergoes a topological transition.

The shape-measure has a number of interesting properties that allows it to

distinguish between structurally similar shapes. In particular, the measure

8 Conclusions 172

a) changes smoothly through topological transitions of the skeleton, b) is

able to distinguish between ligature and non-ligature points and to weight

them accordingly, and c) exhibits invariance under “bending”. The use of

this measure is particularly interesting for its simplicity. For instance, it does

not require explicit boundary comparison. Moreover, it can be computed di-

rectly using the presented skeleton extraction algorithm. From a theoretical

perspective, the contribution is to demonstrate the relationship of the mea-

sure to the divergence, and to illustrate a number of important properties

that it possesses. Clearly, this measure alone in not enough to completely

discriminate arbitrary shapes. For example, the experiments clearly show

that the measure has problems with articulated objects. However, it can be

a part of a richer description of the shape and can be used for a fast first-tier

discrimination between shape groups. Furthermore, the analysis carried out

on the measure provides a template for other shape measures. In particular,

the requirement that any shape measure must vary in a continuous way when

the skeleton undergoes a topological transition is a very important one.

8.3 Edit-Distance

The presented approach to shape recognition and classification using a skele-

tal representation requires several components. After extracting the skeleton

and labeling the branches with some measure of shape-similarity, we need

a way to estimate the global similarity of two shapes abstracted in terms

of shock trees. We opted to cast the correspondence problem in terms of

edit-distance. First, we transformed the tree edit-distance problem into a

series of maximum weight clique problems. Then we adopted an optimiza-

tion approach to approximate the optimal set of correspondence. We have

8 Conclusions 173

done this by casting the clique problems in a continuous setting by using the

Motzkin-Strauss theorem and then using relaxation labeling to find an ap-

proximate solution to the continuous problem. There are a number of ways in

which this research can be improved upon. The method can be extended to

graphs, and different approximation algorithms for the maximum weighted

clique problem can be studied.

With the edit-distances to hand, we showed how pairwise clustering can

be applied to the set of edit-distances in order to perform unsupervised clas-

sification of the graphs. The combination of edit-distance and pairwise clus-

tering proved to suffer from the high level of noise present that is typical

of skeletal representations. In fact, the approach was capable of extracting

the shape-classes present in the database only when presented with a limited

number of shapes. Indeed, too great a number of shapes saturates the shock-

tree space and compromises the performance of the approach. The main

reason for this is that pairwise graph matching does not enforce node consis-

tency across different matches. This results in a consistent underestimation

of the distance of strongly dissimilar shapes.

8.4 Class Archetypes for Graphs

To overcome this problem, we developed a technique to extend the tree edit-

distance framework to allow for the simultaneous matching of multiple tree

structures. This was done by merging all the trees into a union structure.

Using this approach we can impose node correspondence consistency be-

tween matches, avoiding underestimation of the distance, typical of pair-

wise edit-distance approaches. Furthermore, the union provides a “natural”

embedding space for tree structures that can be used to analyze how tree

8 Conclusions 174

representations vary in our problem domain. There are two problems with

the direct use of union structures for performing unsupervised classification

from sample trees. First, while the archetype is capable of capturing the

modes of variation present in a single shape class, the approach fails when

confronted with large numbers of shape classes. The second problem is that

purely structural methods do not provide a principled approach to what in

effect is a learning problem.

Central to our search for a more principled approach to the unsupervised

learning of tree-classes is the realization that each tree union can be used

to represent the probability distribution of trees within a single class, thus

providing us with a generative model of trees. This is done by represent-

ing the process of sampling from the distribution in terms of edit-distance.

The learning problem is, hence, posed as that of learning a mixture of tree

unions. We demonstrated how the three sets of operations needed to learn

the generative model, namely node correspondence, tree merging and node

probability estimation, can each be cast in terms of minimizing a description

length criterion.

There are clearly a number of ways in which this work may be extended.

First, we have concentrated on trees, and there is scope for generalizing the

method to graphs. Second, the method only accommodates node proba-

bilities, and an important priority would be to incorporate structures with

weighted edges and to allow for edge-probabilities. Third, the optimization

process is extremely simplistic, and prone to convergence to local optima.

Hence, there is a need to investigate the use of more sophisticated methods

such as mean field annealing or evolutionary search. In particular, we are

interested in reestimating the current set of extracted correspondences after

a number of tree merges. Finally, we have explored only a single applica-

8 Conclusions 175

tion of the method, and more extensive testing is needed. Studies aimed

at addressing these points are underway, and will be reported on in future

studies.

Appendix A: Pairwise

Clustering

The process of pairwise clustering is somewhat different to the more familiar

one of central clustering. Whereas central clustering aims to characterize

cluster-membership using the cluster mean and variance, in pairwise cluster-

ing it is the relational similarity of pairs of objects which is used to establish

cluster membership. Although less well studied than central clustering, there

has recently been renewed interest in pairwise clustering aimed at placing the

method on a more principled footing using techniques such as mean-field an-

nealing [36].

To commence, we require some formalism. We are interested in grouping

a set of graphs G = {G1,, G|M |} whose index set is M . The set of graphs

is characterized using a matrix of pairwise similarity weights. The elements

of this weight matrix are computed using the approximate tree edit distance

di,j between the shock trees indexed i and j.

Similarity Matrix

We adopt the following picture of the graph clustering process. The pic-

ture revolves around the idea that the graphs can be embedded in an n-

Appendix A 177

dimensional space Rn. Here we treat the embedding space as a latent repre-

sentation. Hence we are not concerned with a specific embedding procedure.

However, a number of concrete possibilities exist. For instance, features could

be extracted from the graph adjacency structure and subjected to principal

components analysis, or the pattern of pairwise distances could be subjected

to multi-dimensional scaling. In this way each graph would become a point in

the embedding space. We assume that for each distinct cluster of graphs the

embedded position vectors follow a spherically symmetric Gaussian distribu-

tion. For the cluster with index ω, the covariance matrix is σωIn where n is

the n×n identity matrix. Suppose that xiω and xjω represent the embedded

position vectors for the graphs Gi and Gj, and that the graphs both belong

to the cluster indexed ω. The difference in position between the graphs, i.e.

xiω−xjω will be drawn from the normal distribution N (0, 4σ2
ωI). As a result

the distance measure
∥

∥

∥

∥

xiω − xjω

2σω

∥

∥

∥

∥

=
d2

ij

4σ2
ω

≈ χ2
n (1)

will follow a χ2 distribution with n degrees of freedom.

Given a distance dij between two points i and j, we can estimate the

probability that the two points belong to the same cluster ω ′ using the χ2

distribution, provided that we know the cluster variance σ2
ω′ . The estimated

probability is:

P{i ∈ ω′ and j ∈ ω′} = P

{

χ2
n >

d2
ij

4σ2
ω′

}

. (2)

Using this simple model, we can define the similarity matrix W setting

its coefficients Wij to the probability that the graphs i and j belong to the

same cluster. In other words:

Wij = P

{

χ2
n >

d2
ij

4σ2
ω′

}

. (3)

Appendix A 178

Clustering

The aim in graph-clustering is to update a set of similarity weights which

partition the set of graphs into disjoint subsets. Let Sω represent the index-

set of the cluster of graphs indexed ω. Since the different clusters are disjoint

Sω′ ∩ Sω′′ = ∅ if ω′ 6= ω′′.

Here, we are interested in using matrix factorization methods to locate

the clusters. One way of viewing this is to search for the permutation matrix

which re-orders the elements of W into non-overlapping blocks. However,

when the elements of the matrix W are non-binary in nature, then this is

not a straightforward task. However, Sarkar and Boyer [69] have shown how

the same-sign eigenvectors of the matrix of similarity-weights can be used

for clustering. Using the Rayleigh-Ritz theorem, they observe that the scalar

quantity vtWv, where W is the weighted adjacency matrix, is maximized

when v is the leading eigenvector of W . Moreover, each of the subdominant

eigenvectors corresponds to a disjoint cluster. We confine our attention to

the same-sign eigenvectors (i.e. those whose corresponding eigenvalues are

real and positive, and whose components are either all positive or are all

negative in sign). If a component of a same-sign eigenvector is non-zero,

then the corresponding node belongs to the cluster associated with the eigen-

modes of the similarity weight matrix. The eigenvalues λ1, λ2.... of W are

the solutions of the equation |W −λI| = 0 where I is the |M | × |M | identity

matrix. The corresponding eigenvectors vλ1
,vλ2

, are found by solving the

equation Wvλi
= λivλi

. Let the set of same-sign eigenvectors be represented

by Ω = {ω|λω > 0 ∧ [(v∗
ω(i) > 0∀i) ∨ v∗

ω(i) < 0∀i])}. Since the same-sign

eigenvectors are orthogonal, this means that there is only one value of ω for

which v∗
ω(i) 6= 0. In other words, each node i is associated with a unique

cluster. We denote the set of nodes assigned to the cluster with modal index

Appendix A 179

ω as Sω = {i|v∗
ω(i) 6= 0}.

Maximum Likelihood Framework

We are interested in exploiting the factorization property of Sarkar and Boyer

[69] to develop a maximum likelihood method for updating the similarity-

weight matrix W . We commence by facto-rising the likelihood-function over

the set of modal clusters of the similarity-weight matrix. Since the set of

modal clusters are disjoint we can write:

P (W) =
∏

ω∈Ω

P (Φω), (4)

where P (Φω) is the probability distribution for the set of similarity-weights

belonging to the modal-cluster indexed ω. To model the component proba-

bility distributions, we introduce a cluster membership indicator siω which

models the degree of affinity of the graph indexed i to the cluster with modal

index ω.

Using these variables, we develop a model of probability distribution for

the similarity-weights associated with the individual clusters. We assume

that the distribution can be factorized over the set of pairwise associations

Φω = Sω × Sω − {(i, i)|i ∈M} with each cluster and write

P (Φω) =
∏

(i,j)∈Φω

P (Wi,j). (5)

To model the probability distribution for the individual link-weights, we

adopt the Bernoulli distribution

p(Wi,j) = W
siωsjω

i,j (1−Wi,j)
1−siωsjω . (6)

This distribution takes on its largest values either when the similarity weight

Wij is unity and siω = sjω = 1, or when the similarity-weight Wi,j = 0 and

siω = sjω = 0.

Appendix A 180

With these ingredients the log-likelihood function for the observed pattern

of similarity-weights is:

L =
∑

ω∈Ω

∑

(i,j)∈Φω

{

siωsjω ln Wij + (1− siωsjω) ln(1−Wi,j)

}

. (7)

Posed in this way the structure of the log-likelihood function has two

features which are reminiscent of the expectation-maximization algorithm.

First, the modes of the link-weight matrix play the role of mixing compo-

nents. The product of cluster-membership variables siωsjω plays the role of

an a posteriori measurement probability. Second, the similarity-weights are

the parameters which must be estimated. However, there are important dif-

ferences. The most important of these is that the modal clusters are disjoint.

As a result there is no mixing between them.

Based on this observation, we will exploit an EM-like process to update

the similarity-weights and the cluster-membership variables. In the “M” step

we will locate maximum likelihood similarity-weights. In the “E” step we will

use the revised similarity-weight matrix to update the modal clusters. To this

end we index the similarity-weights and cluster memberships with iteration

number and aim to optimize the quantity

Q(W (n+1)|W (n)) =
∑

ω∈Ω

∑

(i,j)∈Φω

{

s
(n)
iω s

(n)
jω ln

W
(n+1)
ij

1−W
(n+1)
ij

+ln(1−W
(n+1)
i,j)

}

. (8)

The revised similarity-weights are indexed at iteration n+1 while the cluster-

memberships are indexed at iteration n.

Expectation

To update the cluster-membership variables we have used a gradient-based

method. We have computed the derivatives of the expected log-likelihood

Appendix A 181

function with respect to the cluster-membership variable

∂Q(W (n+1)|W (n))

∂s
(n+1)
iω

=
∑

j∈Sω

s
(n)
jω ln

W
(n+1)
ij

1−W
(n+1)
ij

. (9)

Since the associated saddle-point equations are not tractable in closed form,

we use the soft-assign ansatz to update the cluster membership assignment

variables. As a result the update equation for the cluster membership indi-

cator variables is:

s
(n+1)
iω =

∏

j∈Sω

{

W
(n+1)
i,j

1−W
(n+1)
ij

}s
(n)
jω

∑

i∈Sω

∏

j∈Sω

{

W
(n+1)
ij

1−W
(n+1)
ij

}s
(n)
jω

. (10)

We initialize the cluster membership variables using the same sign eigenvec-

tors and set

s
(0)
iw =

|v∗
ω0

(i)|
∑

i∈Sω0
|v∗

ω0
(i)| . (11)

Maximization

Once the revised cluster membership variables are to hand, we can apply the

maximization step of the algorithm to update the similarity-weight matrix.

The updated similarity-weights are found by computing the derivatives of

the expected log-likelihood function

∂Q(W (n+1)|W (n))

∂W
(n+1)
ij

=
∑

ω∈Ω

{

s
(n)
iω s

(n)
jω

1

W
(n+1)
ij (1−W

(n+1)
ij)

− 1

1−W
(n+1)
ij

}

(12)

and solving the saddle-point equations

∂Q(W (n+1)|W (n))

∂W
(n+1)
ij

= 0. (13)

Appendix A 182

As a result the updated link-weights are given by

W
(n+1)
ij =

1

|Ω|
∑

ω∈Ω

s
(n)
iω s

(n)
jω . (14)

In other words, the similarity-weight for the pair of nodes (i, j) is simply

the average of the product of individual node cluster memberships. Since

each graph is associated with a unique cluster, this means that the updated

similarity-weight matrix is composed of non-overlapping blocks. Moreover,

the similarity-weights are are guaranteed to be in the interval [0, 1].

Algorithm Description

Finally, to summarize, the iterative steps of the algorithm are as follows:

1. Initialization: Compute the eigenvectors of the initial current link-

weight matrix W (0). Each same-sign eigenvector whose eigenvalue is

positive is used to seed a different component of the mixture model.

2. Expectation: Compute the updated cluster-membership variables using

the E-step (Equation (11)).

3. Maximization: Update the link-weights using the M-step to compute

the updated link weight matrix W (n) (Equation (14)).

4. Repeat steps (2) and (3) until convergence is reached.

Appendix B:

Multi-Dimensional Scaling

Multi-dimensional scaling(MDS)[15] is a procedure which allows data spec-

ified in terms of a matrix of pairwise distances to be embedded in a Eu-

clidean space. The classical multi-dimensional scaling method was proposed

by Torgenson[89] and Gower[32]. Here we intend to use this method to embed

shock trees in a low-dimensional space.

Suppose that di1,i2 is the edit-distance between the shock trees indexed

i1 and i2. The first step of MDS is to calculate a matrix T whose element

with row r and column c is given by

Trc = −1

2
[d2

rc − d̂2
r. − d̂2

.c + d̂2
..], (15)

where

d̂r. =
1

N

N
∑

c=1

drc (16)

is the average dissimilarity value over the rth row, d̂.c is the similarly defined

average value over the cth column, and

d̂.. =
1

N2

N
∑

r=1

N
∑

c=1

dr,c (17)

is the average similarity value over all rows and columns of the similarity

matrix T .

Appendix B 184

We subject the matrix T to an eigenvector analysis to obtain a matrix of

embedding co-ordinates X. If the rank of T is k, k ≤ N , then we will have k

non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending

order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The corresponding ordered eigenvectors

are denoted by ~ei where λi is the ith eigenvalue. The embedding co-ordinate

system for the shock trees is

X = [~f1, ~f2, . . . , ~fk], (18)

where ~fi =
√

λi~ei are the scaled eigenvectors. The vector embedding the

shock tree indexed i in an l-dimensional Euclidean space is:

~xi = (Xi,1, Xi,2, · · · , Xi,l)
T . (19)

Bibliography

[1] C. Arcelli and G. Sanniti di Baja, A width-independent fast thinning

algorithm. IEEE Trans. Pattern Anal. Machine Intell., 7(4):463–474,

1985.

[2] C. Arcelli and G. Sanniti di Baja, Ridge points in euclidean distance

maps. Pattern Recognition Letters, 13:237–243, 1992.

[3] J. August, A. Tannenbaum, and S. W. Zucker, On the evolution of the

skeleton. In Proc. Int. Conf. Computer Vision, pp. 315–322, 1999.

[4] J. August, K. Siddiqi, and S. W. Zucker, Ligature instabilities in the

perceptual organization of shape. Computer Vision and Image Under-

standing, 76(3):231–243, 1999.

[5] H. G. Barrow and R. M. Burstall, Subgraph isomorphism, matching re-

lational structures and maximal cliques. Information Processing Letters,

4:83–84, 1976.

[6] M. Bartoli, M. Pelillo, K. Siddiqi, and S. W. Zucker, Attributed tree

homomorphism using association graphs. In Proc. IEEE Int. Conf. on

Pattern Recognition, pp. 2133–2136, 2000.

[7] H. Blum, Biological shape and visual science (part I). Journal of theo-

retical Biology, 38:205–287, 1973.

Bibliography 186

[8] H. Blum and R. N. Nagel, Shape description using weighted symmetric

axis features. Pattern Recognition, 10:167–180, 1978.

[9] I. M. Bomze, M. Pelillo, and V. Stix, Approximating the maximum

weight clique using replicator dynamics. IEEE Trans. on Neural Net-

works, 11(6):1228–1241, 2000.

[10] G. Borgefors, G. Ramella, and G. Sanniti di Baja, Multi-scale skeletons

via permanence ranking. In Advances in Visual Form Analysis, pp.

31–42. World Scientific, 1997.

[11] S. Bouix and K. Siddiqi, Divergence-based medial surfaces. In European

Conference on Computer Vision, Vol 1, pp. 603–618. Springer, 2000.

LNCS 1842.

[12] H. Bunke and G. Allermann, Inexact graph matching for structural pat-

tern recognition. Pattern Recognition Letters, 1:245–253, 1983.

[13] H. Bunke, P. Foggia, C. Guidobaldi, and M. Vento, Graph cluster-

ing using the weighted minimum common supergraph. In 4th IAPR-

TC15 Workshop on Graph-based Representations in Pattern Recogni-

tion, Springer-Verlag Berlin, LNCS 2727, pp. 235–246, 2003.

[14] H. Bunke and A. Kandel, Mean and maximum common subgraph of two

graphs. Pattern Recognition Letters, 21:163–168, 2000.

[15] C. Chatfield and A. J. Collins, Introduction to multivariate analysis.

Chapman & Hall, 1980.

[16] J. Kittler, W. J. Christmas, and M. Petrou, Structural matching in

computer vision using probabilistic relaxation. IEEE Trans. Pattern

Anal. Machine Intell., 17(8):749–764, 1995.

Bibliography 187

[17] T. F. Cootes, C. J. Taylor, and D. H. Cooper, Active shape models - their

training and application. Computer Vision and Image Understanding,

61:38–59, 1995.

[18] T. F. Cox and M. A. A. Cox, Multidimensional Scaling. Chapman &

Hall, 1994.

[19] J. Crank and P. Nicolson, A practical method for numerical evaluation

of solutions of partial differential equations of the heat conduction type.

In Proc. Cambridge Philos. Soc., Vol. 43, pp. 50–67, 1947.

[20] A. D. J. Cross, R. C. Wilson, and E. R. Hancock. Inexact graph match-

ing using genetic search. Pattern Recognition, 30(6):953–970, 1997.

[21] C. Cyr and B. Kimia, 3D Object Recognition Using Shape Similarity-

Based Aspect Graph. Proc. Int. Conf. Computer Vision, pp. 254–261,

2001.

[22] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, 3-D shape recovery

using distributed aspect matching, IEEE Trans. Pattern Anal. Machine

Intell., 14(2):174–198, 1992.

[23] P. Dimitrov, J. N. Damon, and K. Siddiqi, Flux Invariants for Shape.

In Proc. IEEE Conf. Computer Vision Pattern Recognition, Vol. 1, pp.

835–841, 2003.

[24] R. Englert and R. Glantz, Towards the clustering of graphs. In 2nd

IAPR-TC-15 Workshop on Graph-Based Representations, pp. 125–134,

1999.

Bibliography 188

[25] M. A. Eshera and K.-S. Fu, An image understanding system using

attributed symbolic representation and inexact graph-matching, IEEE

Trans. Pattern Anal. Machine Intell., 8:604–618, 1986.

[26] N. Friedman and D. Koller, Being Bayesian about Network Structure.

Machine Learning, 50:95–126, 2003.

[27] L. Getoor, N. Friedman, D. Koller, and B. Taskar, Learning Probabilistic

models of relational structure. J. Machine Learning Research, 3:679–707,

2002.

[28] L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, Con-

tinuous characterizations of the maximum clique problem. Math. Oper.

Res., 22:754–768, 1997.

[29] P. J. Giblin and B. B. Kimia, On the local form and transitions of

symmetry sets, medial axes, and shocks. In Proc. Int. Conf. Computer

Vision, pp. 385–391, 1999.

[30] S. Gold and A. Rangarajan, A graduated assignment algorithm for

graph matching, IEEE Trans. Pattern Anal. Machine Intell., 18:377–

387, 1996.

[31] P. Golland and E. L. Grimson, Fixed topology skeletons. In Proc. IEEE

Conf. Computer Vision Pattern Recognition, Vol. 1, pp. 10–17, 2000.

[32] J. C. Gower, Some distance properties of latent root and vector methods

used in multivariate analysis. Biometrika, 23:325–328, 1964.

[33] T. Heap and D. Hogg, Wormholes in shape space: tracking through

discontinuous changes in shape, In Proc. Int. Conf. Computer Vision,

pp. 344–349, 1998.

Bibliography 189

[34] D. Heckerman, D. Geiger, and D. M. Chickering, Learning Bayesian

networks: the combination of knowledge and statistical data. Machine

Learning, 20(3):197–243, 1995.

[35] G. R. Hjaltason and H. Samet, Properties of embedding methods for

similarity searching in metric spaces. IEEE Trans. Pattern Anal. Ma-

chine Intell., 25:530–549, 2003.

[36] T. Hofmann and M. Buhmann, Pairwise data clustering by deterministic

annealing. IEEE Trans. Pattern Anal. Machine Intell., 19(1):1–14, 1997.

[37] S. Ioffe and D. A. Forsyth, Human Tracking with Mixtures of Trees. In

Proc. Int. Conf. Computer Vision, Vol. I, pp. 690–695, 2001.

[38] X. Jiang, A. Muenger, and H. Bunke, Computing the generalized

mean of a set of graphs. In Workshop on Graph-based Representations,

GbR’99, pp. 115–124, 2000.

[39] S. C. Johnson, Hierarchical clustering schemes. Psychometrika, Vol.

32(3), pp. 241–254, 1967.

[40] Y. Keselman, A. Shokoufandeh, M. F. Demirci, and S. Dickinson, Many-

to-many graph matching via metric embedding. In Proc. IEEE Conf.

Computer Vision Pattern Recognition, Vol. 1, pp. 850–857, 2003.

[41] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, On the evolution of

curves via a function of curvature, I: the classical case. J. Mathematical

Analysis Applications, 163(2):438–458, 1992.

[42] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, Shapes, shocks,

and deforamtions I. Int. J. Computer Vision, 15:189–224, 1995.

Bibliography 190

[43] P. Klein, S. Tirthapura, D. Sharvit, and B. B. Kimia, A tree-edit-

distance algorithm for comparing simple, closed shapes. In ACM-SIAM

Symp. on Discrete Algorithms, pp. 696–704, 2000.

[44] P. Langley, W. Iba, and K. Thompson, An analysis of Bayesian clas-

sifiers. In Proc. 10th Nat. Conf. on Artificial Intelligence, AAAI Press,

pp. 223–228, 1992.

[45] F. Leymarie and M. D. Levine, Simulating the grassfire transform

using an active contour model. IEEE Trans. Pattern Anal. Machine

Intell.14(1):56–75, 1992.

[46] N. Linial, E. London ,and Y. Rabinovich, The geometry of graphs and

some of its applications. In Proc. 35th Annual Symp. on Foundations of

Computer Science, pp. 169–175, 1994.

[47] T. Liu and D. Geiger, Approximate tree matching and shape similarity.

In Proc. Int. Conf. Computer Vision, pp. 456–462, 1999.

[48] M. A. Lozano and F. Escolano, EM Algorithm for Clustering an Ensem-

ble of Graphs with Comb Matching. In Energy Minimization Methods

in Computer Vision and Pattern Recognition, Springer-Verlag Berlin,

LNCS 2683, pp. 52–67, 2003.

[49] B.Luo, R.C.Wilson, and E.R.Hancock, Spectral Embedding of Graphs.

Pattern Recognition, 36:2213–2233, 2003.

[50] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. W.

Zucker, View-Based 3-D Object Recognition using Shock Graphs. In

Proc. IEEE Int. Conf. on Pattern Recognition, pp. 24–28, 2002.

[51] M. Meilă, Learning with Mixtures of Trees. PhD thesis, MIT, 1999.

Bibliography 191

[52] B. Moayer and K.-S. Fu, A tree system approach for fingerprint pattern

recognition. IEEE Trans. Pattern Anal. Machine Intell., 8(3):376–387,

1986.

[53] F. Mokhtarian and A. K. Mackworth, A theory of multiscale, curvature

based shape representation for planar curves. IEEE Trans. Pattern Anal.

Machine Intell., 14:789–805, 1992.

[54] T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof

of a theorem of Turán. Canadian Journal of Mathematics, 17:533–540,

1965.

[55] A. Munger, H. Bunke, and X. Jiang, Combinatorial search vs. genetic al-

gorithms: A case study based on the generalized median graph problem.

Pattern Recognition Letters, 20(11-13):1271–1279, 1999.

[56] R. L. Ogniewicz, A multiscale mat from Voronoi diagrams: the skeleton-

space and its application to shape description and decomposition. In

Aspects of Visual Form Processing, pp. 430–439. World Scientific, 1994.

[57] R. L. Ogniewicz and O. Kübler, Hierarchic Voronoi skeletons. Pattern

Recognition, 28(3):343–359, 1995.

[58] S. J. Osher and J. A. Sethian, Fronts propagating with curvature de-

pendent speed: Algorithms based on Hamilton-Jacobi formulations. J.

of Computational Physics, 79:12–49, 1988.

[59] C. H. Papadimitriou and K. J. Steiglitz, Combinatorial optimization:

algorithms and complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[60] M. Pelillo, Replicator equations, maximal cliques, and graph isomor-

phism. Neural Computation, 11:1935–1955, 1999.

Bibliography 192

[61] M. Pelillo, The dynamics of relaxation labeling process. J. Math. Imag-

ing Vision, 7:309–323, 1997.

[62] M. Pelillo, K. Siddiqi, and S. W. Zucker, Matching hierarchical struc-

tures using association graphs. IEEE Trans. Pattern Anal. Machine

Intell., 21(11):1105–1120, 1999.

[63] S. W. Reyner, An analysis of a good algorithm for the subtree problem.

SIAM Journal on Computing, 6:730–732, 1977.

[64] J. Rissanen, Stochastic complexity and modeling. Annals of Statistics,

14:1080–1100, 1986.

[65] S. Rizzi, Genetic operators for hierarchical graph clustering. Pattern

Recognition Letters, 19:1293–1300, 1998.

[66] A. Robles-Kelly and E. R. Hancock, A maximum likelihood framework

for iterative eigendecomposition. In Proc. Int. Conf. Computer Vision,

Vol. I, pp. 654–661, 2001.

[67] H. Samet, Distance transform for images represented by quadtrees.

IEEE Trans. Pattern Anal. Machine Intell., 4(3):298–303, 1982.

[68] A. Sanfeliu and K.-S. Fu, A distance measure between attributed rela-

tional graphs for pattern recognition. IEEE Transactions on Systems,

Man and Cybernetics, 13:353–362, 1983.

[69] S. Sarkar and K. L. Boyer, Quantitative measures of change based on

feature organization: Eigenvalues and eigenvectors. Computer Vision

and Image Understanding, 71(1):110–136, 1998.

Bibliography 193

[70] M. Schmitt, Some examples of algorithms analysis in computational

geometry by means of mathematical morphological techniques. In Ge-

ometry and Robotics, 1989. LNCS 391.

[71] S. Sclaroff and A. P. Pentland, Modal matching for correspondence and

recognition, IEEE Trans. Pattern Anal. Machine Intell., 17:545–661,

1995.

[72] T. S. Sebastian, P. N. Klein, and B. B. Kimia, Recognition of shapes

by editing shock graphs. In Proc. Int. Conf. Computer Vision, Vol. 1,

pp. 755–762, 2001.

[73] T. S. Sebastian, P. N. Klein, and B. B. Kimia, Shock-based indexing into

large shape databases. In European Conference on Computer Vision,

Vol. 3, pp. 731–746, 2002.

[74] T. B. Sebastian, P. N. Klein, and B. B. Kimia, Recognition of shapes by

editing their shock graphs. IEEE Trans. Pattern Anal. Machine Intell.,

to appear, 2004.

[75] J. Segen, Learning graph models of shape. In Proc. 5th Int. Conf. on

Machine Learning, pp. 29–25, 1988.

[76] K. Sengupta and K. L. Boyer, Organizing large structural modelbases.

IEEE Trans. Pattern Anal. Machine Intell., 17(4), 1995.

[77] K. Sengupta and K. L. Boyer, Modelbase partitioning using property

matrix spectra. Computer Vision and Image Understanding, 70(2),

1998.

[78] D. Shaked and A. M. Bruckstein, Pruning medial axes. Computer Vision

and Image Understanding, 69(2):156–169, 1998.

Bibliography 194

[79] L. G. Shapiro and R. M. Haralick, Relational models for scene analysis.

IEEE Trans. Pattern Anal. Machine Intell., 4:595–602, 82.

[80] D. Sharvit, J. Chan, H. Tek, and B. B. Kimia, Symmetry-based indexing

of image database. J. Visual Communication and Image Representation,

9(4):366–380, 1998.

[81] A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and S. W. Zucker, In-

dexing using a spectral encoding of topological structure. In Proc.

IEEE Conf. Computer Vision Pattern Recognition, Vol. 2, pp. 2491–

2497, 1999.

[82] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, The Hamilton-

Jacobi Skeleton. In Proc. Int. Conf. Computer Vision, Vol. 2, pp. 828–

834, 1999.

[83] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, Hamilton-

Jacobi Skeletons. Int. J. Computer Vision, 3:215–231, 2002.

[84] K. Siddiqi and B. B. Kimia, A shock grammar for recognition. In Proc.

IEEE Conf. Computer Vision Pattern Recognition, pp. 507–513, 1996.

[85] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, Shock

graphs and shape matching. Int. J. Computer Vision, 35(1):13–32, 1999.

[86] K-C Tai, The tree-to-tree correction problem, J. of the ACM, 26:422–

433, 1979.

[87] H. Tek and B. B. Kimia, Symmetry maps of free-form curve segments

via wave propagation. In Proc. Int. Conf. Computer Vision, Vol. 1, pp.

362–369, 1999.

Bibliography 195

[88] S. Tirthapura, D. Sharvit, P. Klein, and B. B. Kimia, Indexing based

on edit-distance matching of shape graphs. In SPIE International Sym-

posium on Voice, Video, and Data Communications, pp. 25–36, 1998.

[89] W. S. Torgerson, Multidimensional scaling I: theory and method. Psy-

chometrika, 17:401–419, 1952.

[90] W. H. Tsai and K.-S. Fu, Error-correcting isomorphism of attributed

relational graphs for pattern analysis. IEEE Transactions on Systems,

Man and Cybernetics, 9:757–768, 1979.

[91] J. Turner, Generalized matrix functions and the graph isomorphism

problem. SIAM Journal on Applied Mathematics, 16(3):520–526, 1968.

[92] J. R. Ullmann, An algorithm for subgraph isomorphism. J. of the

Association for Computing Machinery, 23(1):31–42, 1976.

[93] S. Umeyama, An eigendecomposition approach to weighted graph

matching problems. IEEE Trans. Pattern Anal. Machine Intell.,

10(5):695–703, 1988.

[94] J. T. L. Wang, K. Zhang, and G. Chirn, The approximate graph match-

ing problem. In Proc. IEEE Int. Conf. on Pattern Recognition, pp. 284–

288, 1994.

[95] M. L. Williams, R. C. Wilson, and E. R. Hancock, Deterministic search

for relational graph matching. Pattern Recognition, 32:1255–1271, 1999.

[96] R. C. Wilson and E. R. Hancock, Structural matching by discrete re-

laxation. IEEE Trans. Pattern Anal. Machine Intell., 19(6):634–648,

1997.

Bibliography 196

[97] A. K. C. Wong and M. You, Entropy and distance of random graphs

with application to structural pattern recognition. IEEE Trans. Pattern

Anal. Machine Intell., 7:599–609, 1985.

[98] K. Zhang, A constrained edit distance between unordered labeled trees.

Algorithmica, 15:205–222, 1996.

[99] K. Zhang and D. Shasha, Simple fast algorithms for the editing distance

between trees and related problems. SIAM J. of Comp., 18:1245–1262,

1989.

[100] K. Zhang, R. Statman, and D. Shasha, On the editing distance be-

tween unorderes labeled trees. Information Processing Letters, 42:133–

139, 1992.

[101] S. C. Zhu and A. L. Yuille, FORMS: a flexible object recognition and

modelling system. Int. J. Computer Vision, 20(3):187–212, 1996.

