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In this paper we investigate the connection between quantum walks and graph symmetries. We begin by
designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without
causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum
Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon divergence between the
evolution of two quantum walks with suitably defined initial states is maximum when the graph presents
symmetries. Hence, we assign to each pair of nodes of the graph a value of the divergence, and we average over
all pairs of nodes to characterize the degree of symmetry possessed by a graph.
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I. INTRODUCTION

Recently, there has been increasing interest in using
quantum walks as a primitive for designing novel quantum
algorithms [1–4] on graph structures. Quantum walks on
graphs represent the quantum mechanical analog of the
classical random walk on a graph. Despite being similar in their
definition, the dynamics of the two walks differ remarkably.
This is mainly due to the fact that while the state vector
of the classical random walk is real valued, in the quantum
case the state vector is complex valued. This property allows
different paths of the walk to interfere with each other in
both constructive and destructive ways. In the classical case
the evolution of the walk is governed by a double stochastic
matrix, while in the quantum case the evolution is governed
by a unitary matrix, thus rendering the walk reversible. This
in turn implies that the quantum walk is nonergodic and, most
importantly, it does not have a limiting distribution. Quantum
walks have been extensively studied on a wide variety of
graphs [5,6], such as the infinite line, cycles, regular lattices,
star graphs, and complete graphs. Because of these properties,
quantum walks have been shown to outperform their classical
analog in a number of specific tasks, leading to polynomial and
sometimes even exponential speedups over classical computa-
tion [7,8]. For example, Farhi and Gutmann [8] have shown that
if we take two co-joined n-level binary trees that are connected
at their leaves, a quantum walk commencing from the root of
the first tree can hit the root of the second tree exponentially
faster than a similarly defined classical random walk. The
major contribution of Farhi and Gutmann’s work [8] is to
show that one may achieve an exponential speedup without
relying on the quantum Fourier transform.

In the case of the co-joined trees graph described above,
the presence of a symmetrical structure is of key importance
to the speedup. Given a graph G = (V,E), an automorphism
is a permutation τ of the set of vertices V of the graph
which preserves the adjacency relations, i.e., if (u,v) ∈ E,
then (τ (u),τ (v)) ∈ E. The set of symmetries of G thus can
be represented by its automorphism group Aut(G). Figure 1
shows an example of a symmetric graph. Whenever the
graph possess some kind of symmetry, the constructive
interference between certain paths will lead to faster hitting

times. A number of recent works have further investigated
the connection between the structural symmetries of the graph
and the evolution of the quantum walk. For instance, Krovi
and Brun [9] have proved that the phenomenon of infinite
hitting times is generally a consequence of the symmetry
of the graph and its automorphism group. Emms et al. [10]
showed that there is a link between symmetries in the
graph structure and a quasiquantum analog of the commute
time. Specifically, the authors define a quasiquantum analog
of the commute time associated with the continuous-time
quantum walk and then explore the possibility of using it
to embed the nodes of the graph into a low-dimensional
vector space. Their work reveals that the symmetries of the
graph correspond to degenerate directions in the quantum
commute time embedding space. However, their analysis is not
based on a principled observable and is, hence, semiclassical.
Finally, Rossi et al. [11] have recently proposed a way to
detect approximate axial symmetries in networks by measuring
the interference patterns of continuous-time quantum walks.
However, their analysis requires the observation of each of the
possible states and thus is semiclassical, too.

The classical Jensen-Shannon divergence [12] is a measure
of similarity between probability distributions that has its
routes in information theory. Unlike the Kullback-Liebler
divergence [13], it is both symmetric and directly linked to a
metric (it is the square of a metric). Moreover, it can be used to
define positive semidefinite kernels. As a result, the underlying
metric space of probability distributions can be isometrically
embedded in a real valued Hilbert-space. The quantum
Jensen-Shannon divergence has recently been developed as
a generalization of classical Jensen-Shannon divergence to
quantum states by Majtey, Lamberti, and Prato [14–16]. For
mixed quantum states they show that the quantum Jensen-
Shannon divergence has good distinguishability properties.
The quantum Jensen-Shannon divergence (QJSD) is defined
in terms of the Von Neumann entropy and as such is not
directly a quantum-mechanical observable, i.e., there is no
operator whose expected value is the QJSD. However, it can
be computed from density matrices whose entries are indeed
observables.

In this work, we intend to investigate further the connection
between quantum walks and graph symmetries, and, in
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FIG. 1. An example of a graph displaying a symmetrical struc-
ture, where we highlighted the pairs of symmetrical vertices. Note
that by permuting the pairs of linked nodes the adjacency relations
are preserved.

particular, we study the quantum Jensen-Shannon diver-
gence [15,16] between the evolution of two quantum walks on
a graph with suitably defined initial states. Note, however, that
while this analysis is fully based on observable properties and
is not, thus, semiclassical like the one by Emms et al., it is not
meant to provide an algorithm exhibiting quantum speedup
with respect to classical counterparts but rather to highlight
how quantum walks can be used to provide information about
the symmetric structure of a network.

The paper is organized as follows: Section II provides a
brief introduction to continuous-time quantum walks, while
Sec. III reviews the concepts of von Neumann entropy and
quantum Jensen-Shannon divergence. In Sec. IV we introduce
the link between graph symmetries and quantum walks and
then propose a method to quantify the presence of symmetries
in a graph based on the quantum Jensen-Shannon divergence.
Section V illustrates the experimental results, while the
conclusions are presented in Sec. VI.

II. CONTINUOUS-TIME QUANTUM WALKS

The continuous-time quantum walk [8] is a natural quantum
analog of the classical random walk. Classical random walks
model a diffusion process on a graph and have proven to be a
useful tool in the analysis of its structure. Let G = (V,E) be
an undirected graph, where V is a set of n vertices and E =
(V × V ) is a set of edges. Diffusion on the graph is modeled as
a Markovian process defined over V , with transitions restricted
to adjacent vertices. More formally, we define the general state
for the walk at time t as a probability distribution over V , i.e., a
vector, pt ∈ Rn, whose uth entry gives the probability that the
walk is at vertex u at time t . Recall that the adjacency matrix
of the graph G is the symmetric matrix with elements

Auv =
{

1 if (u,v) ∈ E

0 otherwise
(1)

and let D be the diagonal matrix with elements du =∑n
v=1 A(u,v), where du is the degree of the node u. The

continuous-time random walk on G then will evolve according

to the equation

pt = e−Ltp0, (2)

where L = D − A is the graph Laplacian, a combinatorial
analog of the Laplace-Beltrami operator [17].

The continuous-time quantum walk, i.e., the quantum
counterpart of the continuous-time random walk, is similarly
defined as a dynamical process over the vertices of the graph.
By contrast to the classical case where the state vector is
constrained to lie in a probability space, here the state of the
system is defined through a vector of complex amplitudes over
V whose squared norm sums to unity over the nodes of the
graph, with no restriction on their sign or complex phase. These
phase differences allow interference effects to take place.
Moreover, in the quantum case the evolution of the state vector
of the walker is governed by a complex valued unitary matrix,
whereas the dynamics of the classical random walk is governed
by a stochastic matrix. Hence, the evolution of the quantum
walk is reversible, implying that quantum walks are nonergodic
and do not possess a limiting distribution. As a result, the
behavior of classical and quantum walks differs significantly,
and quantum walks possess a number of interesting properties
not exhibited by classical random walks.

More formally, using the Dirac notation, we denote the basis
state corresponding to the walk being at vertex u ∈ V as |u〉.
A general state of the walk is a complex linear combination
of the basis states, such that the state of the walk at time t is
defined as

|ψt 〉 =
∑
u∈V

αu(t)|u〉, (3)

where the amplitude αu(t) ∈ C and |ψt 〉 ∈ C|V | are both
complex.

At each instant in time the probability of the walker being
at a particular vertex of the graph is given by the square of
the norm of the amplitude of the relative state. Let Xt be a
random variable giving the location of the walker at time t .
The probability of the walker being at the vertex u at time t

then is given by

Pr (Xt = u) = αu(t)α∗
u(t), (4)

where α∗
u(t) is the complex conjugate of αu(t). Moreover,∑

u∈V αu(t)α∗
u(t) = 1 and αu(t)α∗

u(t) ∈ [0,1] for all u ∈ V ,
t ∈ R+.

The evolution of the walk is then given by the Schrödinger
equation, where we take the time-independent Hamiltonian of
the system to be the graph Laplacian, yielding

∂

∂t
|ψt 〉 = −iL|ψt 〉. (5)

Given an initial state |ψ0〉, we can solve Eq. (5) to determine
the state vector at time t ,

|ψt 〉 = e−iLt |ψ0〉. (6)

Finally, we can compute the spectral decomposition of the
graph Laplacian L = ����, where � is the n × n matrix
� = (φ1|φ2| . . . |φj | . . . |φn) with the ordered eigenvectors φj s
of L as columns and � = diag(λ1,λ2, . . . ,λj , . . . ,λn) is the
n × n diagonal matrix with the ordered eigenvalues λj of
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L as elements, such that 0 = λ1 � λ2 � · · · � λn. Using the
spectral decomposition of the graph Laplacian and the fact that
exp[−iLt] = �exp[−i�t]��, we then can write

|ψt 〉 = �e−i�t��|ψ0〉. (7)

The observation process for a quantum system is defined in
terms of projections onto orthogonal subspaces associated with
operators on the quantum state space called observables. Let
O be an observable of the system, with spectral decomposition

O =
∑

i

aiPi, (8)

where the ai are the (distinct) eigenvalues of O and the Pi the
orthogonal projectors onto the corresponding eigenspaces. An
observation of a quantum state |ψ〉 is one of the eigenvalues
ai of O, which is observed with probability

P (ai) = 〈ψ |Pi |ψ〉, (9)

leaving the system in the state

|ψ̄〉 = Pi |ψ〉
||Pi |ψ〉|| , (10)

where |||ψ〉|| = √〈ψ | ψ〉 is the norm of the vector |ψ〉.
The density operator (or density matrix) is introduced in

quantum mechanics to describe a system whose state is an
ensemble of pure quantum states |ψi〉, each with probability
pi . The density operator of such a system is defined as

ρ =
∑

i

pi |ψi〉〈ψi |. (11)

Density operators are positive unit-trace matrices directly
linked with the observables of the (mixed) quantum system.
The expectation value of the measurement can be calculated
from the density matrix ρ,

〈O〉 = tr(ρO), (12)

where tr is the trace operator. Similarly, the observation
probability of ai can be expressed in terms of the density
matrix ρ as

P (ai) = tr(ρPi). (13)

Finally, after the measurement, the corresponding density
operator will be

ρ ′ =
∑

i

PiρPi. (14)

III. QUANTUM JENSEN-SHANNON DIVERGENCE

In this paper we intend to investigate how the presence
of symmetries in the graph structure can alter the behavior
of the quantum walker. To this end, for each walk we would
like to study how the probability distribution over the state
space varies with time. Unfortunately, when a measurement
is made the wave function collapses and, with a probability
equal to the squared norm of its amplitude, only one of
the possible basis states is observed. In other words, if the
state |u〉 is observed, after the measurement the new state
of the quantum walk will be |ψ〉 = |u〉. This implies that all

further information previously contained in the state is lost and
further measurements will not yield any additional information
about the premeasurement state. Hence, we need to design
an experiment that will allow us to analyze the behavior
of the quantum walk without causing the wave function
collapse. In this section we will review the QJSD [14–16],
a recently introduced distinguishability measure between
quantum states. In Sec. IV we will use the QJSD to investigate
the relation between graph symmetries and quantum walks.

The von Neumann entropy [18] HN of a mixture is defined
in terms of the trace and logarithm of the density operator ρ,

HN = −tr (ρ log ρ) = −
∑

i

ξi ln ξi, (15)

where ξ1, . . . ,ξn are the eigenvalues of ρ. If 〈ψi |ρ|ψi〉 = 1,
i.e., the quantum system is a pure state |ψi〉 with probability
pi = 1, then the von Neumann entropy HN (ρ) = −tr(ρ log ρ)
is zero. On other hand, for a mixed state described by the
density operator σ we have a nonzero von Neumann entropy
associated with it.

With the von Neumann entropy to hand, the quantum
Jensen-Shannon divergence between two density operators ρ

and σ is defined as

DJS(ρ,σ ) = HN

(
ρ + σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ ). (16)

This quantity is always well defined, symmetric, and positive
definite.

It can also be shown that DJS(ρ,σ ) is bounded, i.e.,
0 � DJS(ρ,σ ) � 1. Let ρ = ∑

i piρi be a mixture of quantum
states ρi , with pi ∈ R+ such that

∑
i pi = 1, and then one can

prove that

HN

(∑
i

piρi

)
� HS(pi) +

∑
i

piHN (ρi), (17)

where HS indicates the Shannon entropy and the equality is
attained if and only if the states ρi have support on orthogonal
subspaces. By setting p1 = p2 = 0.5, we see that

DJS(ρ,σ ) = HN

(
ρ + σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ ) � 1. (18)

Hence, DJS is always less than or equal to 1, and the equality is
attained only if ρ and σ have support on orthogonal subspaces.

Our interest in the quantum Jensen-Shannon divergence
lies in the fact that it verifies several interesting properties
which are required for a good distinguishability measure be-
tween quantum states [15,16]. The problem of discriminating
between two quantum states |φ〉 and |ψ〉 of a given physical
system is of central importance in quantum computation and
quantum information, and it is based on the definition of a
suitable distance measure. Recall that a function

d = X × X −→ R (19)

defined over a set X is a distance if, for every x,y ∈ X,

d(x,y) � 0 with d(x,y) = 0 ⇐⇒ x = y (20)

and it is symmetric, i.e.,

d(x,y) = d(y,x). (21)
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Moreover, d is said to be a metric forX if it satisfies the triangle
inequality

d(x,y) + d(y,z) � d(x,z) (22)

for every x,y,z ∈ X.
In his seminal paper, Wootters [19] investigates the problem

of distinguishability and defines the concept of statistical
distance between pure quantum states. Here the distance
between two different preparations |φ〉 and |ψ〉 of the same
physical system is computed by counting the number of
distinguishable states between |φ〉 and |ψ〉. The main result of
Wootters’s work is to show that this distance is equal to the
angle in Hilbert space between |φ〉 and |ψ〉. As a consequence,
Wootter’s distance is defined as

dW (|φ〉,|ψ〉) = arccos(|〈φ | ψ〉|), (23)

where |〈φ | ψ〉| denotes the modulus of the inner product for φ

and ψ . It can be proved that this distance satisfies the triangle
inequality and is thus a metric.

Wootters’s work is fundamentally based on the extension
of a distance over the space of probability distributions to the
Hilbert space of pure quantum states. Similarly, attempts to
define a distance measure between pure and mixed quantum
states are typically based on the generalization of divergence or
distance measures commonly used in the space of probability
distributions. This is the case of the relative entropy [20], which
is a generalization of information theoretic Kullback-Leibler
divergence. However, the relative entropy is neither a distance,
as it is not symmetric, nor does it not satisfy the triangle
inequality, and, most importantly, it is unbounded.

The square root of the QJSD, on the other hand, is bounded,
it is a distance, and, as proved by Lamberti et al. [16], it satisfies
the triangle inequality. In particular, the authors give a formal
proof for the case of pure states, while for the case of mixed
states they support their claim with numerical evidence. Note
that alternative metrics have been proposed in the literature,
such as the Bures distance [21], which is defined as

B(ρ,σ ) =
√

2[1 − tr ((ρ1/2σρ1/2)1/2)]1/2. (24)

The Bures distance and the QJSD require the same number
of observations, since they both need the full density matrices
to be computed. However, the QJSD turns out to be faster to
compute than the Bures distance. In fact, the latter involves
taking the square root of matrices, usually computed through
matrix diagonalization which scales as O(n3), where n is the
number of vertices in the graph. On the other hand, to compute
the QJSD only the eigenvalues of ρ, σ , and ρ+σ

2 are needed,
which can be computed in O(n2). In the next section we
propose to use the QJSD to measure the distance between
suitably prepared quantum states to highlight the presence of
symmetries in the structure of a graph.

IV. MEASURING SYMMETRIES

Given a pair of nodes u ∈ V and v ∈ V in an undirected
graph G = (V,E), we define two independent quantum walks
with starting states

|ψ−
0 〉 = |u〉 − |v〉√

2
|ψ+

0 〉 = |u〉 + |v〉√
2

, (25)

where, and to recap our earlier definition, the basis state
corresponding to the walk being at vertex u ∈ V is denoted
as |u〉. Intuitively, by setting the initial amplitude on the two
nodes to be respectively in antiphase and in phase, we allow the
walk to highlight the presence of destructive and constructive
interference patterns on the graph. We then let the two quantum
walks evolve under Eq. (6) until a time T and we define the
average density operators ρT and σT over this time as

ρT = 1

T

∫ T

0
|ψ−

t 〉〈ψ−
t | dt σT = 1

T

∫ T

0
|ψ+

t 〉〈ψ+
t | dt.

(26)

In other words, our system has equal probability of being in
any of the pure states |ψ−

t 〉 (|ψ+
t 〉 respectively) defined by the

quantum walk evolution.
Given this setting, we are now able to compute the

quantum Jensen-Shannon divergence DJS(ρT ,σT ) between the
two walks using Eq. (16). Due to the interference effect,
we expect the mixed states for the two walks to have maximum
divergence when the two initial nodes are symmetrically
located in the graph. This is a consequence of the way in
which we have initialized the two walks. Specifically, we
aim to use the destructive and constructive interference effect
by setting the initial node amplitudes to be respectively in
antiphase and in phase. On the other hand, when the two
nodes are not symmetrically located, then we expect the two
resulting mixed states to be similar, thus yielding a low value
of DJS(ρT ,σT ). In the following theorem we prove that when u

and v are symmetrically placed, then ρT and σT have support
on orthogonal subspaces, which implies DJS(ρT ,σT ) = 1.

Theorem 1. Let ρT and σT be defined as in Eq. (26). If u,v

are symmetrically placed and |ψ−
0 〉 and |ψ+

0 〉 are defined as in
Eq. (25), then DJS(ρT ,σT ) = 1.

Proof. We start by noting that if ρT and σT have support on
orthogonal subspaces then

(ρT )†σT = 1

T 2

∫ T

0
ρt1 dt1

∫ T

0
σt2 dt2 = 0, (27)

where 0 is the matrix of all zeros, ρt = |ψ−
t 〉〈ψ−

t | and σt =
|ψ+

t 〉〈ψ+
t |. Note that if ρ

†
t1σt2 = 0 for every t1 and t2, then

(ρT )†σT = 0. We hence can go on to show that if u and v

are symmetric, then 〈ψ−
t1

| ψ+
t2

〉 = 0 for every t1 and t2. Let
Ut = e−iLt . If t1 = t2 = t , then

〈ψ−
0 |(Ut )†Ut |ψ+

0

〉 = 0, (28)

since by definition (Ut )†Ut is the identity matrix (since U is
unitary) and the initial states are orthogonal by construction.

On the other hand, if t1 �= t2, we need to prove that when u

and v are symmetrical, then |ψ−
t1

〉 and |ψ+
t2

〉 are still orthogonal.
In other words,

〈ψ−
0 |Ut |ψ+

0 〉 = 0, (29)

where t = t2 − t1. Recall that ψ−
0 = 1/

√
2(|u〉 − |v〉) and

ψ+
0 = 1/

√
2(|u〉 + |v〉). Then, if we denote by Ut

ij the ij -th
element of Ut , we have that

〈ψ−
0 |Ut |ψ+

0 〉 = Ut
uu − Ut

vv + Ut
uv − Ut

vu , (30)
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FIG. 2. The QJSD between pairs of walks initialized according to Eq. (25). Here the color indicates the value of the QJSD between two
walks and the axes are indexed by the nodes, where the 49 nodes of the grid are numbered from 1 to 49 from left to right and from top to
bottom. Note that the QJSD of the two walks is maximum (equal to 1) when the two walks are initialized on symmetrically placed nodes. If
the symmetry is broken by deleting one edge (b), the QJSD remains considerably higher on approximately symmetrically placed nodes.

which further reduces to

〈ψ−
0 |Ut |ψ+

0 〉 = Ut
uu − Ut

vv (31)

since the matrix Ut is symmetric.
To conclude the proof, we prove that when u and v are

symmetrical we have Ut
uu = Ut

vv . Recall that Ut = e−iLt ,
where L is the graph Laplacian. If u and v belong to a
symmetry orbit [a group of vertices where v1 and v2 belong to
the same orbit if there is an automorphism τ ∈ Aut(G) such
that τ (v1) = v2], then there exists an automorphism of the
graph with a corresponding permutation matrix P such that

L = P�LP (32)

and

P|u〉 = |v〉. (33)

In other words, the graph Laplacian is invariant to symmetries.
As we will show later, the same holds for the unitary operator of
the quantum walk. In fact, given the spectral decomposition of
the graph Laplacian L = ����, we can see that the following
equality holds:

���� = P�(����)P (34)

and thus

� = P��. (35)

Let us now write the unitary operator in terms of the Laplacian
eigendecomposition, which yields

e−iLt = �e−i�t��. (36)

From Eqs. (35) and (36) it follows that

�e−i�t�� = P��e−i�t��P. (37)

This in turn implies that if u and v are symmetrically placed,
then Ut

uu = Ut
vv , which concludes the proof. �

We should stress, however, that the converse of Theorem
1 does not hold. Note, in fact, that if we were able to prove
the converse, then we could give a polynomial-time solution
to the graph isomorphism problem.

The proof of Theorem 1 basically relies on the fact that
whenever two nodes u and v are symmetrical, then Ut

uu = Ut
vv

for each time t , where Ut
xx is the wave kernel signature of

x at time t . However, our analysis relies only on computing
the divergence between two density operators, while directly
observing the wave kernel signature would cause a collapse
of the wave function. Note also that a similar analysis can
be done by comparing the heat kernel signature [22] h(x) =
(Ht1

xx,H
t2
xx, . . . ,H

tk
xx) of u and v, where we denote by Ht

xx the
solution of the heat equation at point x at time t . On a manifold,
it can be shown that if Ht

uu = Ht
vv for each t , then the two points

have the same global geometry, which means they either are
the same point or symmetrically placed, with respect to the
intrinsic geometry. Note, however, that this only holds for
points on a manifold.

Figure 2 shows the value of DJS(ρT ,σT ) for all the possible
pairs of nodes with initial nonzero amplitude on a 7 × 7
grid with reflecting boundary conditions. In the remainder
of the paper we will refer to this matrix as the QJSD matrix.
As expected, the QJSD matrix clearly reveals the presence
of several perfect symmetries, i.e., pair of nodes for which
DJS(ρT ,σT ) = 1. Note that if we randomly delete an edge the
symmetries are very likely to be broken, as we observe in
Fig. 2(b). Although we do not observe any perfect symmetry,
the value of DJS(ρT ,σT ) remains higher on some pairs which
were previously identified as being symmetrical, suggesting a
connection between approximate symmetries and high values
of the quantum Jensen-Shannon divergence.

To further support this claim, in Fig. 3 we show the value of
the QJSD for a star graph with four nodes and a noisy version of
it, where the noise is represented by an additional edge joining
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FIG. 3. (Color online) A star graph with four nodes and a modified version where two leaves are connected by an extra edge representing
structural noise. The bar graph shows that although the symmetry between nodes 2,3 and 2,4 is broken with the addition of an extra edge, the
QJSD is still sensibly higher for those pairs of nodes, suggesting the presence of an approximate symmetry.

nodes 3 and 4. Clearly, in the original star graph the three leaves
are all symmetric with respect to the root node. However, if we
alter the structure of the graph by adding an edge between 3 and
4, this results in breaking the symmetries between 2 and 3 and
between 2 and 4 and, as a consequence, the QJSD between
these nodes decreases. Interestingly, however, the QJSD for
these pairs remains higher than the QJSD between 1 and 2,
which is exactly what we would expect given the original
symmetry.

A. Efficient computation of the QJSD

In this subsection we show how to compute the solution
to Eq. (26) analytically. Let Pλ = ∑μ(λ)

k=1 φλ,kφ
�
λ,k be the

projection operator on the subspace spanned by the μ(λ)
eigenvectors φλ,k associated with the eigenvalue λ of the graph
Laplacian. The evolution operator of the quantum walk can be
then expressed in terms of this set of projectors, i.e.,

Ut =
∑

λ

e−iλtPλ. (38)

Recall that |ψt 〉 = Ut |ψ0〉. According to Eq. (38), we can
rewrite the density operator ρt associated with the pure state
|ψt 〉 as

ρt = Utρ0(Ut )† =
∑
λ1∈�

∑
λ2∈�

e−i(λ1−λ2)tPλ1ρ0P
�
λ2

. (39)

As a consequence, we can reformulate Eq. (26) as

ρT = 1

T

∫ T

0
ρt dt =

∑
λ1∈�

∑
λ2∈�

Pλ1ρ0P
�
λ2

1

T

∫ T

0
e−i(λ1−λ2)t dt.

(40)

Solving the integral in Eq. (40) finally yields

ρT =
∑
λ1∈�

∑
λ2∈�

Pλ1ρ0P
�
λ2

i(1 − eiT (λ2−λ1))

T (λ2 − λ1)
. (41)

Note that if we let T → ∞, then the integral in Eq. (40)
reduces to the Dirac delta function δ(λ1 − λ2). Hence, Eq. (40)
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FIG. 4. (Color online) The average QJSD as a function of the structural (edge) noise for a 5 × 5 grid and a complete graph. Adding by
randomly deleting (inserting) edges has the effect of breaking the symmetries of the original graphs and as a consequence the average QJSD
decreases. Here the solid line indicates the mean, while the dashed lines indicate the standard deviation.
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FIG. 5. (Color online) The average of the QJSD matrix clearly distinguishes between a random graph and a symmetrical graph where
artificial noise is added. Here the solid line indicates the mean, while the dashed lines indicate the standard deviation.

simplifies to

ρ∞ =
∑
λ∈�̃

Pλρ0P
�
λ , (42)

where �̃ is the set of distinct eigenvalues of the graph
Laplacian, i.e., the eigenvalues λ with multiplicity μ(λ) = 1.
A consequence of Eq. (42) is that the infinite-time limit of the
average density matrix is commutes with the graph Laplacian
L, in fact

Lρ∞ =
( ∑

λ∈�̃

λPλP
�
λ

)( ∑
λ∈�̃

Pλρ0P
�
λ

)
=

∑
λ∈�̃

Pλλρ0P
�
λ

=
( ∑

λ∈�̃

Pλρ0P
�
λ

)(∑
λ∈�̃

λPλP
�
λ

)
= ρ∞L. (43)

Hence, given the spectral decomposition of the graph Lapla-
cian L = ����, the density matrix, expressed in the eigen-
vector basis given by �, assumes a block-diagonal form, where
each block corresponds to an eigenspace of L corresponding
to a single eigenvalue. Thus, if L has all eigenvalues distinct,
then ρ∞ expressed in the unique eigenbasis of L will be
diagonal and its diagonal entries will directly correspond to
its eigenvalues. More generally, to compute the eigenvalues of
ρ∞, we need to solve independently for the eigenvalues of each
diagonal block, resulting in a complexity O(

∑
λ∈�̃ μ(λ)2),

where μ(λ) is the multiplicity of the eigenvalue λ.

V. EXPERIMENTAL RESULTS

In this section we intend to use the QJSD matrix to
measure the degree of symmetry possessed by a graph. The
basic requirements of this measure should be (a) that its
value increases (decreases) as the number of approximate
symmetries of the graph increases (decreases), (b) that it
is permutation invariant, and (c) possibly easy to compute.
Here we choose to use the average of the QJSD matrix as
a simple yet effective means of characterising the degree of

symmetry possessed by a graph. Although it is known that as
a statistic the average lacks robustness, since it is significantly
affected by outliers, our experiments show that it provides a
fast and permutation invariant way of measuring the degree of
symmetry of a graph. More precisely, we investigate how the
average QJSD over the pair of nodes varies for increasing time
intervals. To this end, we numerically simulate the evolution
of the two quantum walks with starting states as defined in
Eq. (25) using the software package MATLAB.

In our first experiment, we take a 5 × 5 grid with reflecting
boundary conditions and a complete graph of size 10 and
we iteratively add structural noise by deleting an increasing
number of edges at each step. The procedure is repeated 100
times, and for each level of noise we compute the mean over
the 100 trials of the average QJSD on the noisy graphs, where
for each pair of nodes the QJSD is computed as in Eq. (42).
Figure 4 shows the result, where the structural noise affects
from 0% to 25% of the graph edges. Here the solid line
indicates the mean, while the dashed line indicates the standard
deviation over the 100 repeated trials. Note that as the noise
increases, the graphs become less and less symmetric, and at
the same time the average QJSD rapidly decreases. This seems
to fit with our hypothesis that the average QJSD can be used
as a simple indicator of the degree of symmetry of a graph.

iynéR-södrE)  a( (b) Small-World (c) Scale-Free

FIG. 6. Examples of graphs generated by the Erdös-Rényi, Watts-
Strogatz, and Barabási-Albert models, respectively.
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FIG. 7. (Color online) The effects of noise on the mean of the QJSD matrix on different type of networks for time intervals of increasing
length. Note that here the solid line indicates the mean, while the dashed lines indicates the standard error.

As a second experiment, we take the same 5 × 5 grid and we
randomly create noisy versions of it by adding or deleting up to
three edges at random locations. We then compare the average
QJSD (over all pairs of nodes) on these graphs with that of a
set of Erdös-Rényi random graphs. Figure 5 shows the average
of the QJSD matrix for time intervals of increasing length.
Again, the solid line indicates the mean, while the dashed line
indicates the standard deviation over 100 trials. As we can
see, we are able to completely discriminate between the noisy
versions of the 5 × 5 grid and the Erdös-Rényi graphs. This
seems to confirm our intuition that the average QJSD matrix
is able to capture the presence of (approximate) symmetrical
patterns in a graph. We repeat the same experiment, but this
time we perturb the 32-cycle graph where we have added a
central axis of symmetry which connects an opposite pair of
vertices. Again, the perturbed versions of the modified 32-
cycle graph have a higher average QJSD when compared to
Erdös-Rényi random graphs.

As a third experiment, we select three different random
network models, namely the Watts-Strogatz [23], the Barabási-
Albert [24], and the Erdös-Rényi [25] models. The Erdös-
Rényi random graphs are generated by connecting pairs of
nodes in the graphs with a uniform probability p. The Watts-
Strogatz model produces small-world networks with a high
clustering coefficient and a short average path length. Finally,
the preferential attachment algorithm of Barabási and Albert
generates scale-free networks. In this type of random graph
the degree distribution of the vertices follows the power-law
distribution, which is a property observed in many real-world
networks. In Fig. 6, we show some examples of Erdös-Rényi,
small-world, and scale-free random graphs. We add to these
three network models a set of strongly regular graphs. A regular
graph with ν vertices and degree k is said to be strongly regular
if there are two integers ε and θ such that every two adjacent
vertices have ε common neighbors and every two nonadjacent
vertices have θ common neighbors. We choose strongly regular
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graphs because they are known to be highly symmetric and this
should be reflected in the value of the QJSD.

We can see from Fig. 7 that we are able to discriminate
these three types of random graphs by observing the average
QJSD. In particular, due to their nature, the small-world
graphs seem to have more symmetries than the two alternative
models. In fact, the small-world network is constructed by
randomly linking the nodes of a regular ring lattice, thus
yielding an interpolation between an Erdös-Rényi graph and a
regular graph. Note also that the average QJSD is reduced by
adding or deleting random edges, since this amounts to hiding
the symmetrical patterns under increasing levels of noise.
Although reduced, the average QJSD for the small-world
networks remains considerably higher than that of the Erdös-
Rényi and scale-free graphs, where the addition of random
noise does not seem to alter the average QJSD. As expected,
the high number of symmetries possessed by strongly regular
graphs is reflected in the higher value of the average QJSD,
which remains clearly distinct from the three random networks
even in the presence of Erdös-Rényi noise. Note also that if the
graph structure of the strongly regular graph is not perturbed,
the QJSD between each pair of nodes is maximum, i.e., each
pair of nodes is in a symmetrical relation. Finally, although the
behavior of the scale-free and Erdös-Rényi graphs is somewhat
similar under noise, it is still possible to distinguish between
them. In other words, the average QJSD of a scale-free graph
is generally lower than that of an Erdös-Rényi graph.

VI. CONCLUSIONS

Much recent research in the quantum walks domain
has shown the existence of a link between the interesting
properties shown by quantum walks on graphs and the presence
of symmetrical motifs in the graphs structure. This particular
structure, in fact, can lead to remarkable interference effects,
both constructive and destructive. In this paper we have
proposed a way to measure the presence of symmetries in
a graph using the quantum Jensen-Shannon divergence. This
in turn has allowed us to design an experiment to analyze
the behavior of the quantum walk without causing the wave
function collapse. We showed how to define two mixed states
based on two different quantum walks on the graph, and we
used the resulting density operators to measure the distance
between the two quantum states. In particular, we proved that
when the graph possess a symmetry, the QJSD between the
two quantum states is maximum. Our experiments show that
a simple measure such as the average of the QJSD matrix is
able to capture the structural difference between a symmetrical
graph and an Erdös-Rényi random graph, even in the presence
of moderate Erdös-Rényi noise, as well as to distinguish
between different random network models.

ACKNOWLEDGMENT

E.H. was supported by a Royal Society Wolfson Research
Merit Award.

[1] J. Kempe, Contemp. Phys. 44, 307 (2003).
[2] A. Ambainis, Int. J. Quantum. Inform. 1, 507 (2003).
[3] A.M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[4] M. Santha, Lect. Notes Comput. Sc. 4978, 31 (2008).
[5] O. Mülken and A. Blumen, Phys. Rep. 502, 37 (2011).
[6] V. Kendon, Math. Struct. Comput. Sci. 17, 1169 (2007).
[7] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67,

052307 (2003).
[8] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[9] H. Krovi and T. A. Brun, Phys. Rev. A 74, 042334 (2006).

[10] D. Emms, R. Wilson, and E. R. Hancock, Quantum Inf. Comput.
9, 231 (2009).

[11] L. Rossi, A. Torsello, and E. R. Hancock, Lect. Notes Comput.
Sc. 7626, 144 (2012).

[12] J. Lin, IEEE Trans. Inf. Theory 37, 145 (1991).
[13] S. Kullback, Information Theory and Statistics ( Dover, London,

1997).
[14] A. P. Majtey, P. W. Lamberti, M. Martin, and A. Plastino, Eur.

Phys. J. D 32, 413 (2005).

[15] A. P. Majtey, P. W. Lamberti, and D. P. Prato, Phys. Rev. A 72,
052310 (2005).

[16] P. W. Lamberti, A. P. Majtey, A. Borras, M. Casas, and
A. Plastino, Phys. Rev. A 77, 052311 (2008).

[17] J. Jost, Riemannian Geometry and Geometric Analysis
(Springer, Berlin, 2011).

[18] M. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge,
2010).

[19] W. K. Wootters, Phys. Rev. D 23, 357 (1981).
[20] G. Lindblad, Commun. Math. Phys. 33, 305 (1973).
[21] D. Bures, Transact. Am. Math. Soc. 135, 199 (1969).
[22] J. Sun, M. Ovsjanikov, and L. Guibas, In Computer Graphics

Forum, Vol. 28 (Blackwell Publishing Ltd, Oxford, 2009),
pp. 1383–1392.

[23] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[24] A. Barabási and R. Albert, Science 286, 509 (1999).
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