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Abstract

This paper presents a new method for computing the tree edit distance problem with uniform edit cost. We com-

mence by showing that any tree obtained with a sequence of cut operations is a subtree of the transitive closure of the

original tree, we show that the necessary condition for any subtree to be a solution can be reduced to a clique problem

in a derived structure. Using this idea we transform the problem of computing tree edit distance into a series of

maximum weight clique problems. We, then use relaxation labeling to find an approximation to the tree edit distance.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inexact or error-tolerant graph-matching is a

problem of pivotal importance in the manipulation

of relational structures that arises in many areas of

machine intelligence (Eshera and Fu, 1986). One

of the key issues which underlies the problem is
how to measure the similarity of different graph

structures. This task is frequently posed as that of

computing the graph edit distance. Unfortunately,

the reliable computation of edit distance has

proved to be an elusive task (Wang et al., 1994).

However, in a recent series of papers, Bunke has

shown the intimate relationship between the size of

the maximum common subgraph and edit dis-
tance (Bunke and Kandel, 2000). In particular, he

demonstrated that MCS and graph edit distance

computation are equivalent. This is an impor-

tant observation since it has been established by

Barrow and Burstall (1976) that the maximum

common subgraph problem (MCSP) may be

transformed into a maximum clique problem using

a derived structure referred to as the association
graph.

Transforming a graph matching problem into a

max clique problem opens up to a wide spectrum

of new possibilities. A diverse array of very power-

ful heuristics and theoretical results are available

for solving the max clique problem. To this effect,

a particularly important result is the Motzkin–

Straus theorem (Motzkin and Straus, 1965) which
allows the symbolic graph-matching problem to

be embedded in a continuous space and to be

solved via quadratic programming. Moreover, the

method returns the size of the maximum common

subgraph.
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The observation underpinning this paper is that

the Motzkin–Straus theorem provides a route

to the computation of edit distance via a contin-

uous means. Specifically, we are interested in how

the observation may be applied to tree matching.

While trees are a special case of graphs, the con-
nectivity and partial order constraints that they

represent require adaptation to be made to generic

graph matching techniques so that they may be

applied to trees. Furthermore, specific character-

istics of trees suggest that posing the tree-matching

problem as a variant on graph matching is not the

best approach. In particular, both tree isomor-

phism and subtree isomorphism problems have
efficient polynomial time solutions. Moreover, Tai

(1979) has proposed a generalization of the string

edit distance problem from the linear structure of a

string to the non-linear structure of a tree. The

resulting tree edit distance differs from the general

graph edit distance in that edit operations are

carried out only on nodes and never directly on

edges. Zhang and Shasha (1989) have investigated
a special case which involves adding the constraint

that the solution must maintain the order of the

children of a node. With this order among siblings,

they showed that the tree-matching problem is still

in P and gave an algorithm to solve it. In subse-

quent work they showed that the unordered case

was indeed an NP hard problem (Zhang et al.,

1992). The problem, though, returns to P when we
add the constraint of strict hierarchy, that is when

separate subtrees are constrained to be mapped to

separate subtrees (Zhang, 1996).

For the general case we have to resort to non-

linear search algorithms. For instance, Pelillo et al.

(1999) transform the tree isomorphism problem

into a single max clique problem, a technique al-

ready used for the generic graph isomorphism
problem. They use relaxation labeling to obtain a

maximal solution to the max clique problem, and,

with it, a maximal tree match.

We draw a number of observations from this

review of the relevant literature. First, we see that

the computation of the unordered tree edit dis-

tance still presents a computational bottleneck.

Most of the work reported in the literature
investigates the simpler problems of subtree

isomorphism or ordered tree edit distance. These

problems are addressed in both exact and ap-

proximate settings. The goal of our work is

therefore to introduce a framework in which we

can efficiently approximate the computation of

unordered tree edit distance. The approach is as

follows. We commence by providing a divide and
conquer method for the maximum common sub-

tree by searching for maximal cliques of the di-

rected association graph. With this representation

to hand, we follow Bomze et al. (2000) and use a

variant of the Motzkin Straus theorem to convert

the maximum weighted clique problem into a

quadratic programming problem which can be

solved by relaxation labeling. The new tree-
matching method is evaluated on the problem of

shock-tree matching.

2. Inexact tree matching as a common substructure

problem

The idea behind edit distance (Tsai and Fu,

1979) is that it is possible to identify a set of basic

edit operations on nodes and edges of a structure,

and to associate with these operations a cost. The
edit distance is found by searching for the se-

quence of edit operations that will make the two

graphs isomorphic with one another and which

has minimum cost. The set of edit operations can

be problem specific, but a common choice is:

• node removal: remove a node and link the chil-

dren to its parent,
• node insertion: the dual of node removal,

• node relabel: change the label associated with a

node.

There is a strong connection between the com-

putation of maximum common subtree and the

tree edit distance. In (Bunke and Kandel, 2000)

Bunke showed that, under certain constraints ap-
plied to the edit-cost function, the MCSP and the

graph edit distance problem are computationally

equivalent. This is not directly true for trees,

because of the added constraint that a tree must

be connected. But, extending the concept to the

common edited subtree, we can use common
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substructures to find the minimum cost edited tree

isomorphism.

The constraint on the edit-cost function pro-

posed by Bunke in (Bunke and Kandel, 2000) is

that the cost of deleting and reinserting the same

element with a different label is not greater than
the cost of relabeling it. In this way we can find an

optimal edit sequence without the need for a re-

label operation. We will assume a similar con-

straint applies to tree edit cost.

Hierarchical graphs have an order relation in-

duced by paths: given two nodes a and b, ða; bÞ
belongs to this relation if and only if there is a path

from a to b. When the directed graph is acyclical,
this relation can be shown to be an (irreflexive)

order relation. The requirement that matches re-

spect this relation and that the edited trees be

connected, prevents us from applying Bunke�s re-

sult directly to tree matching and the search for a

common subgraph.

With the constraint described above on relabel

cost, we are left with only node removal and node
insertion operations to be performed on the data

tree. Since a node insertion on the data tree is dual

to a node removal on the model tree, we can fur-

ther reduce the number of operations to be per-

formed to only node removal, as long as we

perform the operations on both trees. This allows

us to use only structure reducing operations. This,

in turn, means that the optimal matching is com-
pletely determined by the subset of nodes left after

the minimum edit sequence. Hence, we can pose

the edit distance problem as a particular sub-

structure isomorphism problem. Since node

removal operations respect the order relation im-

plicit in the hierarchy, we can reduce the sub-

structure isomorphism problem into subproblems

in a divide and conquer approach. This approach
derives from a number of observations. First,

given two trees T1 and T2, there are two subtrees T 0
1

and T 0
2 rooted at nodes v and v0 such that the

matching that minimizes edit distance between

those two nodes is equivalent to that obtained with

the original trees. Hence the best match between T1

and T2 is equivalent to the best match given the

association of root nodes ðv; v0Þ. Furthermore, this
match can be found by examining only descen-

dents of v and v0.

If we can express the best match given the as-

sociation of root nodes ðv; v0Þ as a function of

lower level matches of the descendants of v and v0,
we can build the solution to our matching problem

bottom up. This approach immediately gives us a

divide and conquer solution to the maximum
common subtree problem. We can solve the

matching problem rooted at v and v0 given the

solutions of rooted at the children w1; . . . ;wn of v
and w0

1; . . . ;w
0
n of v0. This solution is obtained by

solving a bipartite match problem: The nodes

of the bipartite matching problem are children

w1; . . . ;wn of v and children w0
1; . . . ;w

0
n of v0. The

weight of the edge connecting wi with w0
j is the

cardinality of the match of between the subtrees

rooted at wi and w0
j respectively. It is clear that the

edges in the maximum bipartite match represent

the optimal correspondences between the children

of v and the children of v0 and that the cardinality

of the match rooted at v, v0 is equal to the value of

the maximum bipartite match plus one (the sum of

the cardinality of the matches rooted at the cor-
responding children plus one since we are adding v
and v0). In the following sections we will introduce

a similar divide and conquer approach to the tree

edit distance problem.

2.1. Editing the transitive closure of a tree

In this section we show the relations between
the graph theoretic concept of transitive closure of

a DAG and the edit distance. An immediate re-

mark is that for each node removal operation Ev

by removing node v from the tree t, we can define

the corresponding edit operation Ev on the closure

CðtÞ of the tree t. In both cases the edit operation

removes the node v, all the incoming edges, and all

the outgoing edges. It is important to note that the
transitive closure operation and the node removal

operation commute, that is we have:

Lemma 1. EvðCðtÞÞ ¼ CðEvðtÞÞ

Proof. If a node is in EvðCðtÞÞ it is clearly also in

CðEvðtÞÞ. What is left is to show that an edge ða; bÞ
is in EvðCðtÞÞ if and only if it is in CðEvðtÞÞ.

If ða; bÞ is in CðEvðtÞÞ then neither a nor b is v
and there is a path from a to b in EvðtÞ. Since the
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edit operation Ev preserves connectedness and the

hierarchy, there must be a path from a to b in t
as well. This implies that ða; bÞ is in CðtÞ. Since

neither a nor b is v, the operation Ev will not delete

ða; bÞ. Thus ða; bÞ is in EvðCðtÞÞ.
If ða; bÞ is in EvðCðtÞÞ, then it is also in CðtÞ,

because EvðCðtÞÞ is obtained from CðtÞ by simply

removing a node and some edges. This implies that

there is a path from a to b in t. This, in turn, im-

plies that there is a path from a to b in EvðtÞ as

well. Thus ða; bÞ is in CðEvðtÞÞ. Since ða; bÞ is in

EvðCðtÞÞ, both a and b must be nodes in EvðCðtÞÞ
and, thus, neither can be v.

We call a subtree s of CðtÞ obtainable if for each
node v of s if there cannot be two children a and b
so that ða; bÞ is in CðtÞ. In other words, s is ob-

tainable if and only if there is no path from a to b
in t for every two siblings nodes a and b. We can,

now, prove the following: �

Theorem 1. A tree t̂t can be generated from a tree
t with a sequence of node removal operations if
and only if t̂t is an obtainable subtree of the DAG
CðtÞ.

Proof. Let us assume that there is an edit sequence

fEvig that transforms t into t̂t, then, by virtue of the

above lemma, the dual edit sequence fEvig trans-

forms CðtÞ into Cðt̂tÞ. By construction we have that

t̂t is a subtree of Cðt̂tÞ and Cðt̂tÞ is a subgraph of CðtÞ.
Thus t̂t is a subtree of CðtÞ. Furthermore, since the

node removal operations respect the hierarchy, t̂t is

a consistent subtree of CðtÞ.
To prove the converse, assume that t̂t is a con-

sistent subtree of CðtÞ. If ða; bÞ is an edge of t̂t, then

it is also an edge on CðtÞ, i.e., there is a path from a
to b in t and we can define a sequence of edit op-

erations fEvig that removes any node between a
and b in such a path. Showing that the nodes fvig
deleted by the edit sequence cannot be in t̂t we show

that all the edit operations defined this way are

orthogonal. As a result they can be combined to

form a single edit sequence that solves the prob-

lem.

Let v in t̂t be a node in the edited path and let p
be the minimum common ancestor of v and a in t̂t.
Furthermore, let w be the only child of p in t̂t that is

an ancestor of v in t̂t and let q be the only child of p

in t̂t that is an ancestor of a in t̂t. Since a is an an-

cestor of v in t, an ancestor of v can be either a

descendant of a, an ancestor of a, or a itself. This

means that w has to be in the edited path. Were

this not the case, then w had to be a or an ancestor

of a against the hypothesis that p is the minimum
common ancestor of v and a. Since q is an ancestor

of a in t and a is an ancestor of w in t, it follows

that q is an ancestor of w in t. On the other hand,

q and w are siblings in t̂t, against the hypothesis

that t̂t is consistent.

Using this result, we can show that the mini-

mum cost edited tree isomorphism between two

trees t and t0 is a maximum common consistent
subtree of the two DAGs CðtÞ and Cðt0Þ, provided

that the node removal cost is uniform. The result

can be extended to non-uniform cost, but in this

paper we will restrict our scope to the uniform cost

case.

The minimum cost edited tree isomorphism is a

tree that can be obtained from both the model tree

t and the data tree t0 with node removal opera-
tions. By virtue of the theorem above, this tree is

an obtainable subtree of both CðtÞ and Cðt0Þ. The

tree must be generated with minimum combined

edit cost, and, since the node removal cost is uni-

form, this implies the minimum number of nodes

removed. Hence the common consistent subtree

must retain most nodes, i.e., it must be the maxi-

mum common consistent subtree of the two
DAGs. �

2.2. Cliques and common obtainable subtrees

In this section we show how to use these results

to induce a divide and conquer approach to edited

tree matching. Given two trees t and t0 to be

matched, we calculate the transitive closures CðtÞ
and Cðt0Þ and look for a common obtainable tree

that induces the optimal matches. The maximum

such tree corresponds to the maximum common
obtainable subtree of CðtÞ and Cðt0Þ.

For each pair of nodes v and w of the two trees

to be matched, we divide the problem into a

maximum common obtainable subtree rooted at v
and w. That is, we fix the matching of v to w and

we look for the maximum edited subtree common
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to the two subtrees rooted at v and w. We show

that, given the cardinality of the subtree rooted at

each child of v and w, we can transform the search

for the maximum common substructure into the

search for a max weighted clique. Solving this

problem for each pair of nodes, and looking for
the maximum among each node pair, we can find

the isomorphism linked to the minimum edit dis-

tance.

Let us assume that we know the cardinality of

the isomorphism for every descendent of v and w.

We want to find the set of siblings with greatest

total cardinality. To do this we make use of a

derived structure similar to the association graph
introduced by Barrow and Burstall (1976). The

nodes of this structure are pairs drawn from the

Cartesian product of the descendents of v and w.

Each pair corresponds to a particular association

between a node in one tree to a node in the other.

We connect two such associations if and only if

there is no inconsistency between the two associ-

ation and the corresponding subtree is obtainable.
That is, we connect nodes ðp; qÞ and ðr; sÞ if and

only if there is no path connecting p and r in t and

there is no path connecting q and s in t0. Further-

more, we assign to each association node ða; bÞ a

weight equal to the cardinality of the maximum

common obtainable subtree rooted at a and b. The

maximum weight clique of this graph is the set of

consistent siblings root of the common substruc-
tures with maximum total cardinality. That is, the

clique identifies set of children of nodes v and w
that guarantee the maximum isomorphism. The

cardinality of the maximum common consistent

subtree rooted at v and w will be the weight of the

isomorphisms rooted at the children of v and w
plus the contribution of v and w, that is the weight

of the clique plus one. Given a solution for the
maximum weight clique problem, we can build

the solution to our isomorphism problem bottom

up.

2.3. Heuristics for the maximum weighted clique

In 1965, Motzkin and Straus (1965) showed

that the (unweighted) maximum clique problem
can be reduced to a quadratic programming

problem on the n-dimensional simplex D ¼ fx 2

Rnjxi P 0 for all i ¼ 1 . . . n;
P

i xi ¼ 1g, where xi
are the components of the vector x. With this re-

duction, maximal cliques could be put in corre-

spondence with local maxima of a quadratic

function. The result has since been generalized to

the weighted case (Bomze et al., 2000; Gibbons
et al., 1997). Under such generalization, the qua-

dratic problem is:

minimize f ðxÞ ¼ xTCx

subject to x 2 D
ð1Þ

where the elements of the matrix matrix C ¼
ðcijÞi;j2V are defined as

cij ¼

1

2wi
if i ¼ j;

kij P cii þ cjj if ði; jÞ 62 E; i 6¼ j;
0 otherwise;

8>><
>>:

ð2Þ

where wi is the weight associated with node i.
Given a set of nodes S and its characteristic

vector xS defined as

xSi ¼
wðiÞP
j2S wðjÞ

if i 2 S;

0 otherwise;

8<
:

then S is a maximum (maximal) weight clique if

and only if xS is a global (local) minimizer for the

quadratic problem. Furthermore, if x is a mini-

mum then it is the characteristic vector for a set of

nodes.

To solve the quadratic problem we transform it

into the equivalent maximization problem:

maximize xTðceeT � CÞx
subject to x 2 D;

ð3Þ

where e ¼ ð1; . . . ; 1ÞT is the vector with every

component equal to 1 and c is a positive scaling
constant. Given the equivalent maximization for-

mulation, we follow Bomze et al. (2000) and use

relaxation labeling as a local maximizer for the

problem.

Relaxation labeling is a evidence combining

process developed in the framework of constraint

satisfaction problems. Its goal is to find a classifi-

cation p that satisfies pairwise constraints and in-
teractions between its elements. The process is

governed by the update rule
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ptþ1
i ðkÞ ¼ ptiðkÞqtiðkÞP

l p
t
iðlÞqtiðlÞ

;

where the compatibility component is

qiðkÞ ¼
Xn

j¼1

Xm
l¼1

rijðk; lÞpjðlÞ;

where the ri;jðk; lÞ are coefficients that represent

mutual consistency between hypothesis piðkÞ and

pjðlÞ.
In (Pelillo, 1997), Pelillo showed that the func-

tion

AðpÞ ¼
X
ik

piðkÞqiðkÞ;

is a Lyapunov function for the process, i.e.,

Aðptþ1ÞPAðptÞ, with equality if and only if pt is

stationary.

We use relaxation labeling dynamics to solve

each instance of clique subproblem. For each

subproblem the compatibility coefficients are ini-

tialized as Rðv;wÞ ¼ ceeT � C. Starting from the

leaves we propagate the solutions upwards in the
trees using the weight of the extracted clique to

initialize the compatibility matrix of every higher

level subproblem.

A common approach with relaxation labeling is

to initialize the assignment vector with a uniform

distribution so that there is an initial assignment

close to the baricenter of the simplex. A problem

with this approach is that the dimension of the
basin of attraction of one maximal clique grows

with the number of nodes in the clique, while with

our problem decomposition the wider cliques are

the ones that map nodes at lower levels. As a result

the solution will be biased towards matches that

are very low on the graph, even if these matches

require cutting a lot of nodes and are, thus, less

likely to give an optimum solution.
A way around this problem is to choose an

initialization that assigns a higher initial likelihood

to matches that are higher up in the subtree. In our

experiments we decided to initialize the probability

of the association ða; bÞ for the subproblem rooted

at ðu; vÞ as

pðu;vÞða; bÞ ¼ e�ðdaþdbþ�Þ;

where da is the depth of a with respect to u, db is the

depth of b with respect to v, and � is a small per-

turbation. Of course, we then renormalize pðu;vÞ to

ensure that it is still in the simplex.

3. Experimental results

We evaluate the new tree-matching method on

the problem of shock-tree matching.

Here we follow Zucker, Siddiqi, and others, by

labeling points on the skeleton using so-called

shock-labels (Siddiqi et al., 1999). According to this
taxonomy of local differential structure, there are

different classes associated with the behavior of the

radius of the maximal circle inscribed in the shape.

The so-called shocks distinguish between the cases

where the local maximal circle has maximum ra-

dius, minimum radius, constant radius or a radius

which is strictly increasing or decreasing. We ab-

stract the skeletons as trees in which the level in the
tree is determined by the time of shock formation

(Siddiqi et al., 1999). The later the time of forma-

tion, and hence their proximity to the center of the

shape, the higher the shock in the hierarchy. While

this temporal notion of relevance can work well

with isolated shocks (maxima and minima of the

radius function), it fails on monotonically in-

creasing or decreasing shock groups. To give an
example, a protrusion that ends on a vertex will

always have the earliest time of creation, regardless

of its relative relevance to the shape.

Fig. 1 provides an illustration of the extraction

of shock graphs from binary images. In the left

Fig. 1. Two shapes with their skeletons and shock trees.
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hand column, we show the binary images with the

skeleton superimposed. The center column shows

the branches of the skeleton with the segment

labels appended. Finally, the third column shows

the resulting shock-trees with the nodes labeled
with the segment number.

In Fig. 2 we show 25 shapes from our shape

database and their top six matches. The similarity

index we show is the average ratio of matched

nodes over total nodes. Our edit distance approach

compares favorably against the similar shock

graph experiments in (Pelillo et al., 1999). In par-

ticular our approach seems to capture better the
perceptual similarity between the shapes of horses

and hands. In fact, initial results with multi-

dimensional scaling show that the different shape

classes form distinct pairwise clusters, and similar

shape classes are in close proximity to one-another

(Luo et al., 2001).

4. Sensitivity study

To augment these real world experiments, we

have performed a sensitivity analysis. The aim is to
characterize the effects of structural errors.

Our analysis tests the capability of the method

to cope with structural modification caused by

node removal. To do this we remove an increasing

fraction of nodes from a randomly generated tree.

We then match the modified tree against its un-

edited version. Since we remove nodes only from

one tree, every node of the edited tree will match
against a node of the unedited version. Hence, the

optimum number of nodes matched is equal to the

cardinality of the edited tree.

We performed the experiments on trees with 10,

15, 20, 25, and 30 nodes. For each experimental

run we used 10 randomly generated trees. The

procedure for generating the random trees was as

Fig. 2. Shapes and their top six matches in the shape database.
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follows: we commence with an empty tree (i.e., one

with no nodes) and we iteratively add the required

number of nodes. At each iteration nodes are

added as children of one of the existing nodes.

The parents are randomly selected with uniform

probability from among the existing nodes. This

procedure will tend to generate trees in which the

branch ratio is highest closest to the root. This is
quite typical of real-world situations, since shock

trees tend to have the same property. The fraction

of nodes removed was varied from 0% to 60%.

Fig. 3 plots the average ratio of the computed

cardinality of the maximum common edited sub-

tree to the optimal value as a function of frac-

tion of nodes removed and the size of the original

tree.
The main conclusion that can be drawn from

these two plots is as follows. First, the effect of

increasing structural error is to cause a systematic

underestimation of the weighted edit distance. The

different curves all exhibit a minimum value of the

ratio. The reason for this is that the matching

problem becomes trivial as the trees are decimated

to extinction.

5. Conclusions

In this paper we have investigated a purely

structural approach to tree matching. We based

the work on the tree edit distance framework

constraining it to uniform edit cost. We show that

any tree obtained with a sequence of cut operation

is a subtree of the transitive closure of the original

tree. Furthermore, we show that the necessary

condition for any subtree to be a solution can be
reduced a clique problem in a derived structure.

Using this idea we transform the tree edit distance

problem into a series of maximum weight clique

problems and then we use relaxation labeling to

find an approximate solution.

In a set of experiments we apply this algorithm

to match shock graphs, a graph representation of

the morphological skeleton. The results of these
experiments are very encouraging, showing that

the algorithm is able to match similar shapes

together. Moreover, we provide some sensitivity

analysis of the method.
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