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Abstract—We address the problem of comparing attributed trees and propose four novel distance measures centered around the

notion of a maximal similarity common subtree. The proposed measures are general and defined on trees endowed with either

symbolic or continuous-valued attributes and can be applied to rooted as well as unrooted trees. We prove that our measures satisfy

the metric constraints and provide a polynomial-time algorithm to compute them. This is a remarkable and attractive property, since the

computation of traditional edit-distance-based metrics is, in general, NP-complete, at least in the unordered case. We experimentally

validate the usefulness of our metrics on shape matching tasks and compare them with (an approximation of) edit-distance.

Index Terms—Metrics, tree matching, polynomial-time algorithms, shape recognition.
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1 INTRODUCTION

GRAPH-BASED representations have long been used with
considerable success in computer vision and pattern

recognition in the abstraction and recognition of objects and
scene structure. Concrete examples include the use of shock
graphs to represent shape-skeletons [14], [26], the use of
trees to represent articulated objects [12], [44], and the use of
aspect graphs for 3D object representation [8]. The attractive
feature of structural representations is that they concisely
capture the relational arrangement of object primitives in a
manner which can be invariant to changes in object
viewpoint. Using this framework, we can transform a
recognition problem into a relational matching problem.
Indeed, the problem of how to measure the similarity (or
distance) of pictorial information using graph abstractions
has been a widely researched topic for over 20 years.

Early work on the topic included Barrow and Burstall’s

idea of characterizing the similarity of two graphs using the

cardinality of their maximum common subgraphs [2] and

the extension of the concept of string edit-distance to graph-

matching by Eshera and Fu [9]. Shapiro and Haralick [23]

described a relational distance measure between structural

descriptions. There have also been attempts to use an

information theoretic approach. Here, Wong and You [39]

computed the entropy for random graphs, while Boyer and

Kak [4] used mutual information. More recently, Christmas

et al. [7] and Wilson and Hancock [38] developed probabil-

istic measures of graph-similarity. Unfortunately, with the

notable exception of edit-distance, the resulting measures

are not metrics, i.e., they are either nonsymmetric, negative,

or violate the triangular inequality. The lack of metric

properties makes undistorted embedding in a vector space

impossible and does not provide a natural ordering within
a database of graphs.

The idea behind edit-distance [9], which has become the
standard metric approach to graph comparison, is that it is
possible to identify a set of basic edit operations on nodes
and edges of a structure and to associate a cost with these
operations. The edit-distance is found by searching for
sequences of edit operations that make the two graphs
isomorphic to one another and the distance between the
two graphs is then defined to be the minimum over all the
costs of these sequences. By making the evaluation of
structural modification explicit, edit-distance provides a
very effective way of measuring the similarity of relational
structures. Moreover, the method has considerable potential
for error tolerant object recognition and indexing problems.
Unfortunately, the task of calculating edit-distance is a
computationally hard problem [42], hence, goal-directed
approximations are necessary to calculate it. The result is
that the approximation almost invariably breaks the
theoretical metric properties of the measure.

Recently, a new and more principled approach to the
definition of distance measure has emerged. In [6], Bunke
and Shearer introduced a distance measure on unattributed
graphs based on the maximum common subgraph and
proved that it is a metric. Wallis et al. [35] introduced a
variant of this distance based on the size of the minimum
common supergraph. Finally, Fernández and Valiente [10]
defined a metric based on the difference in size between
maximum common subgraph and minimum common
supergraph. More recently, in [11], Hidovi�cc and Pelillo
extended these metrics to the case of attributed graphs.
Unfortunately, all these metrics require the calculation of
the maximum common subgraph, which is computationally
equivalent to the calculation of edit-distance [5].

In many computer vision and pattern recognition
applications, such as shape recognition [22], [44], [25], [29],
pattern recognition [16], and image processing [21], the
graphs at hand have a peculiar structure: They are
connected and acyclic, i.e., they are trees, either rooted or
unrooted, ordered or unordered, and, frequently, they are
endowed with symbolic and/or continuous-valued attri-
butes. Most metrics on trees found in the literature are
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defined in terms of edit-distance [32], [36]. Zhang and

Shasha [41] have investigated a special case of edit-distance

which involves trees with an order relation among sibling

nodes in a rooted tree. This special case constrains the

solution to maintain the order of the children of a node. They

showed that this constrained tree-matching problem is

solvable in polynomial time and gave an algorithm to solve

it. Recently, Sebastian et al. [22] used a similar algorithm to

compare shock trees. Other constrained solutions proven to

be solvable in polynomial time have been proposed (see, for

example, [40]), yet, in the general case, the problem is NP-

complete both for rooted [42] and unrooted trees [43].

Recently, Valiente [33] introduced a bottom-up distance

measure between trees that is an extension to trees of the

graph metric introduced by Bunke and Shearer [6], proving

that the measure can be calculated in polynomial time on

trees, but falling short of proving that the measure is a

metric. While this measure can be calculated efficiently both

on ordered and unordered trees, it is limited to rooted and

unattributed trees. Another bottom-up method for comput-

ing the distance between trees has also been proposed by

Tanaka [27].
Motivated by the work described in [11], in this paper,

we propose four distance measures, two normalized and

two nonnormalized, for trees equipped with either sym-

bolic or continuous-valued attributes. We prove that all our

measures fulfill the properties of a metric and provide a

polynomial-time algorithm to compute them. This is an

important property which makes them particularly attrac-

tive. In fact, as mentioned above, traditional metrics on

trees, which are based on edit-distance, are computationally

hard unless we confine ourselves to special cases. At an

abstract level, our approach involves the computation of a

maximum similarity common subtree. This allows us to

define equivalent variations of the metrics on (unordered)

rooted/unrooted and attributed/unattributed trees. They

can also be viewed as variants of the metrics developed by

Bunke and Shearer [6], Wallis et al. [35], and Fernández and

Valiente [10] on arbitrary graphs. Since edit-distance on

ordered trees can be computed in polynomial time, in the

paper, we focus on the unordered case only, where our

approach provides a clear computational advantage. Note,

however, that the ordered case can be dealt with in a

straightforward way within our framework by using classic

ordered tree isomorphism algorithms [34]. To show the

validity of the proposed measures, we present experiments

on various shape matching tasks and compare our results

with those obtained using edit-distance metrics. Prelimin-

ary versions of this paper were presented in [30], [31].
The outline of the paper is as follows: Section 2

introduces formalisms and concepts required throughout

the paper. In Section 3, we define our measures and prove

that they satisfy the metric properties. In Section 4, we

present a polynomial-time algorithm to calculate the

maximum similarity common subtree needed to compute

all our metrics. Finally, Section 5 provides experimental

validation of the usefulness of the metrics and, in Section 6,

we draw our conclusions.

2 PRELIMINARIES

Let G ¼ ðV ;EÞ be a graph, where V is the set of nodes (or
vertices) and E is the set of undirected edges. Two nodes
u; v 2 V are said to be adjacent (denoted u � v) if they are
connected by an edge. A path is any sequence of distinct
nodes u0u1 . . .un such that, for all i ¼ 1 . . .n, ui�1 � ui; in
this case, the length of the path is n. If un � u0, the path is
called a cycle. A graph is said to be connected if any
two nodes are joined by a path. Given a subset of nodes
C � V , the induced subgraph G½C� is the graph having C as
its node set and two nodes are adjacent in G½C� if and only if
they are adjacent in G. With the notation jGj, we shall refer
to the cardinality of the node-set of graph G.

A connected graph with no cycles is called an unrooted
tree. A rooted (or hierarchical) tree is a tree with a special
node that can be identified as the root. In what follows, when
using the word “tree” without qualification, we shall refer to
both the rooted and unrooted cases. Trees have a number of
interesting properties. One which turns out to be very useful
is that, in a tree, any two nodes are connected by a unique
path. Given two nodes u; v 2 V in a rooted tree, u is said to be
an ancestor of v (and, similarly, v is said to be a descendent of u)
if the path from the root node to u is a subpath of the path
from the root to v. Furthermore, if u � v, u is said to be the
parent of v and v is said to be a child of u. Both ancestor and
descendent relations are order relations in V .

Let T1 ¼ ðV1; E1Þ and T2 ¼ ðV2; E2Þ be two trees. Any
bijection � : H1 ! H2, with H1 � V1 and H2 � V2, is called a
subtree isomorphism if it preserves both the adjacency
relationships between the nodes and the connectedness of
the matched subgraphs. Formally, this means that, given
u; v 2 H1, we have u � v if and only if �ðuÞ � �ðvÞ and, in
addition, the induced subgraphs T1½H1� and T2½H2� are
connected. Two trees or rooted trees T1 and T2 are isomorphic
andwewrite T1 ffi T2 if there exists an isomorphism between
them that maps every node in T1 to every node in T2. It is
easy to verify that isomorphism is an equivalence relation.
We shall use the notations Domð�Þ and Imð�Þ to denote the
domain and the image of �, respectively.

A word of caution about terminology is in order here.
Despite name similarity, we are not addressing the
standard subtree isomorphism problem, which consists of
determining whether a given tree is isomorphic to a subtree
of a larger one. In fact, we are dealing with a generalization
thereof, the maximum common subtree problem, which
consists of determining the largest isomorphic subtrees of
two given trees. We shall continue to use our own
terminology, however, as it emphasizes the role of the
isomorphism �.

Formally, an attributed tree is a triple T ¼ ðV ;E; �Þ,
where ðV ;EÞ is the “underlying” tree and � is a function
which assigns an attribute vector �ðuÞ to each node u 2 V .
It is clear that, in matching two attributed trees, our
objective is to find an isomorphism which pairs nodes
having “similar” attributes. To this end, let � be any
similarity measure on the attribute space, i.e., any
(symmetric) function which assigns a positive number to
any pair of attribute vectors. If � : H1 ! H2 is a subgraph
isomorphism between two attributed trees T1 ¼ ðV1; E1; �1Þ
and T2 ¼ ðV2; E2; �2Þ, the overall similarity between the
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induced subtrees T1½H1� and T2½H2� can be defined as
follows:

W�ð�Þ ¼
X
u2H1

�ðu; �ðuÞÞ; ð1Þ

where, for simplicity, we define �ðu; �ðuÞÞ � �ð�1ðuÞ;
�2ð�ðuÞÞÞ. The isomorphism � is called a maximum similarity
subtree isomorphism if W�ð�Þ is largest among all subtree
isomorphisms between T1 and T2. For the rest of the paper,
we will omit the subscript � when the node-similarity used
is clear from the context. Two isomorphic attributed trees,
T1 ¼ ðV1; E1; �1Þ and T2 ¼ ðV2; E2; �2Þ, with isomorphism �,
are said to be attribute-isomorphic if, for all u 2 V1, we have
�1ðuÞ ¼ �2ð�ðuÞÞ. In this case, we shall write T1 ffia T2.
Attribute-isomorphism is clearly an equivalence relation.

We note that, although our treatment has started from
the assumption that explicit attributes are available on each
node, the framework is more general and can well be
applied to situations where this is not the case but, rather,
only pairwise measures are known.

Note that the problem of determining a maximum
similarity subtree isomorphism is a direct extension of the
standard problem of finding a maximum (cardinality)
common subtree; in fact, the two problems are equivalent
when the similarity � is degenerate, i.e., �ðu; vÞ ¼ 1, for all
pairs of vertices u and v.

Now, given a set S, a function d : S � S ! IR is a metric
on S if the following properties hold for any x; y; z 2 S:

1. dðx; yÞ � 0 (nonnegativity),
2. dðx; yÞ ¼ 0 , x ¼ y (identity and uniqueness),
3. dðx; yÞ ¼ dðy; xÞ (symmetry), and
4. dðx; yÞ þ dðy; zÞ � dðx; zÞ (triangular inequality).
Furthermore, if the function satisfies dðx; yÞ 	 1, it is said

to be a normalized metric.
If d : S � S ! IRþ is a normalized metric, then the

similarity function derived from �, defined as

�ðx; yÞ ¼ 1� dðx; yÞ; ð2Þ

is symmetric, nonnegative, normalized, and fulfills the
property �ðx; yÞ ¼ 1 , x ¼ y (identity and uniqueness).
Furthermore, it also fulfills the following variant of the
triangular inequality:

�ðx; yÞ þ �ðy; zÞ � �ðx; zÞ 	 1: ð3Þ

This property can be obtained from (2) and the triangular
inequality:

�ðx; yÞ þ �ðy; zÞ � �ðx; zÞ 	 1 ,
ð1� dðx; yÞÞ þ ð1� dðy; zÞÞ � ð1� dðx; zÞÞ 	 1 ,
� dðx; yÞ � dðy; zÞ þ dðx; zÞ 	 0 , dðx; yÞ þ dðy; zÞ � dðx; zÞ:

In the rest of the paper, we shall assume that all similarity
functions are indeed derived from normalized metrics. It is
straightforward to show that, with this assumption, we
have

T1 ffia T2 , jT1j ¼ jT2j ¼ Wð�Þ; ð4Þ

where � is a maximum similarity isomorphism between T1

and T2.

3 DISTANCE METRICS

In this section, we present the main contribution of this
paper. We define our measures for comparing attributed
trees and prove that they fulfill the metric properties. First,
we prove a lemma that turns out to be instrumental to
prove our results. Second, we introduce two nonnormalized
metrics and, finally, we present the normalized versions of
the previous measures.

Lemma 1. Let T1, T2, and T3 be three trees and �12, �23, and �13

be maximum similarity subtree isomorphisms between T1 and

T2, T2 and T3, and T1 and T3, respectively. Then, we have:

jT2j �Wð�12Þ þWð�23Þ�Wð�13Þ (and also jT1j� Wð�12Þ þ
Wð�13Þ �W ð�23Þ and jT3j � Wð�13Þ þWð�23Þ �Wð�12Þ).

Proof. We only need to prove jT2j � W ð�12Þ þWð�23Þ �
W ð�13Þ, as the other two inequalities can be reduced to it

with a change of variables. Let V 1
2 ¼ Imð�12Þ � V2, V

3
2 ¼

Domð�23Þ � V2 be the sets of nodes in V2 mapped by the

isomorphisms �12 and �23, respectively. Furthermore, let

V̂V2 ¼ V 1
2 \ V 3

2 be the set of vertices inV2 that aremapped by

both isomorphisms. It is clear that the subtrees T̂T1 ¼
T1½��1

12 ðV̂V2Þ� and T̂T3 ¼ T3½�23ðV̂V2Þ� are isomorphic to each

other, with isomorphism �̂�13 ¼ �12 
 �23, where 
 denotes

the standard function composition operator, restricted to

the nodes of T̂T1. The similarity of this isomorphism is

Wð�̂�13Þ ¼
X
v2V̂V2

�ð��1
12 ðvÞ; �23ðvÞÞ :

Since �13 is a maximum similarity subtree isomorphism

between T1 and T3, we have Wð�13Þ � Wð�̂�13Þ. Hence,

W ð�12Þ þWð�23Þ �Wð�13Þ 	 Wð�12Þ þWð�23Þ �Wð�̂�13Þ ¼X
v2V 1

2

�ð��1
12 ðvÞ; vÞ þ

X
v2V 3

2

�ðv; �23ðvÞÞ �
X
v2V̂V2

�ð��1
12 ðvÞ; �23ðvÞÞ ¼

X
v2V 1

2
nV 3

2

�ð��1
12 ðvÞ; vÞ þ

X
v2V 3

2
nV 1

2

�ðv; �23ðvÞÞþ

X
v2V̂V2

�ð��1
12 ðvÞ; vÞ þ �ðv; �23ðvÞÞ � �ð��1

12 ðvÞ; �23ðvÞÞ
� �

	

jV 1
2 n V 3

2 j þ jV 3
2 n V 1

2 j þ jV 1
2 \ V 3

2 j ¼ jV 1
2 [ V 3

2 j 	 jT2j;

where the inequality follows from the normalized

property and the triangular inequality for metric-derived

similarities (3). tu

3.1 Nonnormalized Metrics

Let T be the quotient set of trees modulo attribute-
isomorphism, that is, the set of trees on which two trees
are considered the same if they are attribute-isomorphic.1

For any T1; T2 2 T , we define the following distance
functions:

d1ðT1; T2Þ ¼ maxðjT1j; jT2jÞ �Wð�12Þ; ð5Þ

d2ðT1; T2Þ ¼ jT1j þ jT2j � 2Wð�12Þ; ð6Þ
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where �12 is a maximum similarity common subtree
isomorphism between T1 and T2. Note that the calculation
of �12 and, consequently, the optimal value of Wð�12Þ, is
going to be different for rooted and unrooted trees.
Nevertheless, once the optimal similarity is at hand, the
definition of the distance and the analysis of its properties
are independent of whether the trees are rooted or not.

Theorem 1. d1 and d2 are metrics in T .

Proof.

1. d1ðT1; T2Þ � 0 and d2ðT1; T2Þ � 0.

We have

Wð�12Þ 	 minðjT1j; jT2jÞ 	 jT1j þ jT2j
2

	 maxðjT1j; jT2jÞ:

Hence, d1ðT1; T2Þ ¼ maxðjT1j; jT2jÞ �W ð�12Þ � 0

and d2ðT1; T2Þ¼jT1j þ jT2j� 2Wð�12Þ � 0.
2. d1ðT1; T2Þ ¼ 0 () T1ffia T2 and d2ðT1; T2Þ ¼ 0

() T1 ffia T2.
Let us consider the direction of implication (

(identity). From(4),wehaveT1 ffia T2 ) jT1j ¼ jT2j
¼ W ð�12Þ. Hence, d1ðT1; T2Þ ¼ max ðjT1j; jT2jÞ � W
ð�12Þ ¼ 0 and d2ðT1; T2Þ¼jT1j þ jT2j�2W ð�12Þ¼ 0.

For the reverse implication (uniqueness), we

have d1ðT1; T2Þ ¼ 0 ) W ð�12Þ ¼ maxðjT1j; jT2jÞ.
Since Wð�12Þ	 minðjT1j; jT2jÞ	 maxðjT1j; jT2jÞ, we

haveW ð�12Þ ¼ minðjT1j; jT2jÞ ¼ maxðjT1j; jT2jÞ.
Hence, (4) yields T1 ffia T2.

Similarly, d2ðT1; T2Þ¼ 0 )2W ð�12Þ ¼ jT1j þ jT2j
and, since 2Wð�12Þ 	 2minðjT1j; jT2jÞ 	 jT1j þ jT2j,
we haveWð�12Þ ¼ jT1j ¼ jT2j or T1 ffia T2.

3. d1ðT1; T2Þ ¼ d1ðT2; T1Þ and d2ðT1; T2Þ ¼ d2ðT2; T1Þ.
This follows directly from the symmetry of the
similarity of a subtree isomorphism and of the
function max .

4. d1ðT1; T2Þ þ d1ðT2; T3Þ � d1ðT1; T3Þ and d2ðT1; T2Þ þ
d2ðT2; T3Þ � d2ðT1; T3Þ.

Toprove the triangular inequality of d1, weneed

to separately analyze each of the six possible cases:

a. jT1j � jT2j � jT3j,
b. jT1j � jT3j � jT2j,
c. jT2j � jT1j � jT3j,
d. jT2j � jT3j � jT1j,
e. jT3j � jT1j � jT2j, and
f. jT3j � jT2j � jT1j.
However, the roles of T1 and T3 in our proofs are

symmetric, hence, we can use this symmetry to re-

duce the analysis to three cases: jT1j � jT2j � jT3j,
jT1j � jT3j � jT2j, and jT2j � jT1j � jT3j.

a. jT1j � jT2j � jT3j

d1ðT1; T2Þ þ d1ðT2; T3Þ � d1ðT1; T3Þ
¼ jT1j �Wð�12Þ þ jT2j �Wð�23Þ � jT1j þW ð�13Þ
¼ jT2j � ðWð�12Þ þWð�23Þ �Wð�13ÞÞ � 0:

b. jT1j � jT3j � jT2j

d1ðT1; T2Þ þ d1ðT2; T3Þ � d1ðT1; T3Þ
¼ jT1j �Wð�12Þ þ jT3j �Wð�23Þ � jT1j þWð�13Þ
¼ jT3j � ðWð�12Þ þWð�23Þ �W ð�13ÞÞ
� jT2j � ðWð�12Þ þWð�23Þ �W ð�13ÞÞ � 0:

c. jT2j � jT1j � jT3j

d1ðT1; T2Þ þ d1ðT2; T3Þ � d1ðT1; T3Þ
¼ jT2j �Wð�12Þ þ jT2j �Wð�23Þ � jT1j þWð�13Þ
¼ ðjT2j � jT1jÞ þ ½jT2j � ðWð�12Þ þW ð�23Þ
�Wð�13ÞÞ� � 0:

On the other hand, for d2, we have

d2ðT1; T2Þ þ d2ðT2; T3Þ � d2ðT1; T3Þ

¼ jT1j þ jT2j � 2Wð�12Þ þ jT2j þ jT3j � 2W ð�23Þ

� jT1j � jT3j þ 2Wð�13Þ

¼ 2 jT2j � ðWð�12Þ þW ð�23Þ �Wð�13ÞÞ½ � � 0:

ut

3.2 Normalized Metrics

The metrics introduced above are unbounded and provide
an absolute measure of dissimilarity between two attributed
trees, in the sense that a particular perturbation on a tree
“moves” it in tree-space by a distance which is independent
of the whole tree mass. Therefore, it is sometimes useful to
have a metric which is bounded from above and provides a
measure of relative dissimilarity. For these reasons, we now
introduce the following measures:

d3ðT1; T2Þ ¼ 1� W ð�12Þ
maxðjT1j; jT2jÞ

; ð7Þ

d4ðT1; T2Þ ¼ 1� W ð�12Þ
jT1j þ jT2j �Wð�12Þ

; ð8Þ

which are the normalized counterparts of the metrics
introduced previously.

Theorem 2. d3 and d4 are normalized metrics in T .

Proof. We need to prove the properties defined in Section 2.
Indeed, the normalization property is trivial and the proof
of the first three metric properties (nonnegativity, identity
and uniqueness, and symmetry) is similar to that of the
nonnormalized metrics and, therefore, we omit them.

With simple algebraic operations, the triangular
inequality d3ðT1; T2Þ þ d3ðT2; T3Þ � d3ðT1; T3Þ can be sim-
plified to

maxðjT1j; jT2jÞmaxðjT2j; jT3jÞmaxðjT1j; jT3jÞ
� Wð�12ÞmaxðjT2j; jT3jÞmaxðjT1j; jT3jÞ
þW ð�23ÞmaxðjT1j; jT2jÞmaxðjT1j; jT3jÞ
�W ð�13ÞmaxðjT1j; jT2jÞmaxðjT2j; jT3jÞ:

ð9Þ

As was the case for the proof for metric d1, due to the
symmetry of our proof, we need to analyze the three cases:
jT1j � jT2j � jT3j, jT1j � jT3j � jT2j, and jT2j � jT1j � jT3j.
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1. jT1j � jT2j � jT3j.
Equation (9) reduces to jT1jjT2j � Wð�12ÞjT2j þ

W ð�23ÞjT1j �Wð�13ÞjT2j.

jT1jjT2j ¼ jT2jðjT1j � jT2jÞ þ jT2j2 �
Wð�23ÞðjT1j � jT2jÞ þ jT2j2 �
Wð�23ÞðjT1j � jT2jÞ þ jT2jðWð�12Þ þWð�23Þ �W ð�13ÞÞ ¼
Wð�12ÞjT2j þWð�23ÞjT1j �W ð�13ÞjT2j:
2. jT1j � jT3j � jT2j.

We have jT1jjT3j � Wð�12ÞjT3j þ Wð�23ÞjT1j �
jT3jWð�13Þ.

jT1jjT3j � jT1jjT2j � jT2jjT3j þ jT2jjT3j �
Wð�23ÞðjT1j � jT3jÞ þ jT3jjT2j �
Wð�23ÞðjT1j � jT3jÞ þ jT3jðWð�12Þ þWð�23Þ�
Wð�13ÞÞ ¼
Wð�12ÞjT3j þWð�23ÞjT1j � jT3jWð�13Þ:

3. jT2j � jT1j � jT3j.
The triangular inequality reduces to jT1jjT2j �

W ð�12ÞjT1j þWð�23ÞjT1j �Wð�13ÞjT2j. From Lem-

ma 1, we have

jT1jjT2j � jT1j
�
Wð�12Þ þW ð�23Þ �Wð�13Þ

�
�

W ð�12ÞjT1j þWð�23ÞjT1j �Wð�13ÞjT2j:

In order to prove the triangular inequality formetric d4,

we define the quantity w13 ¼ minðWð�13Þ; Wð�12Þ þ
Wð�23ÞÞ. Clearly, we have jT2j � W ð�12Þ þWð�23Þ � w13

� 0. Furthermore, we have d4ðT1; T3Þ 	 1� w13

jT1jþjT3j�w13
.

Hence, to prove the inequality, it is sufficient to prove:

1� W ð�12Þ
jT1j þ jT2j �Wð�12Þ

þ 1� W ð�23Þ
jT2j þ jT3j �Wð�23Þ

�

1� w13

jT1j þ jT2j � w13
:

Let us define the quantities

x ¼ jT1j þ jT2j þ jT3j �Wð�12Þ �Wð�23Þ � 0
x1 ¼ jT1j �Wð�12Þ � 0

x2 ¼ jT2j � ½Wð�12Þ þWð�23Þ � w13� � 0
x3 ¼ jT3j �Wð�23Þ � 0:

ð10Þ

Clearly, we can rewrite the triangular inequality as:

1�W ð�12Þ
x� x3

þ 1�Wð�23Þ
x� x1

� 1� w13

x� x2
:

This inequality holds if and only if the following holds

ðx� x1Þðx� x2Þðx� x3Þ �Wð�12Þðx� x1Þðx� x2Þ
�Wð�23Þðx� x2Þðx� x3Þ þ w13ðx� x1Þðx� x3Þ � 0:

The left-hand side of this inequality can be expanded to

the polynomial

x2 x� x1 � x2 � x3 �Wð�12Þ �Wð�23Þ þ w13½ �
þ x½Wð�12Þðx1 þ x2Þ þWð�23Þðx2 þ x3Þ
� w13ðx1 þ x3Þ þ x1x3�
þ x1x2 x�Wð�12Þ � x3½ � þ x2x3 x�W ð�23Þ½ � þ x1x3w13:

This polynomial is a sum of nonnegative terms and,
hence, it will be greater than or equal to 0. In fact, by
expanding the definition, we have:

x� x1 � x2 � x3 �Wð�12Þ �Wð�23Þ þ w13 ¼ 0;

x�Wð�12Þ � x3 ¼ ðjT1j �Wð�12ÞÞ
þ ðjT2j �W ð�12ÞÞ � 0; and

x�Wð�23Þ ¼ ðjT1j �Wð�12ÞÞ þ ðjT2j �W ð�23ÞÞ
þ ðjT3j �W ð�23ÞÞ � 0:

Finally, to prove that

W ð�12Þðx1 þ x2Þ þWð�23Þðx2 þ x3Þ
� w13ðx1 þ x3Þþx1x3� 0;

we distinguish between the cases where w13 � W ð�12Þ
and w13 < W ð�12Þ. In the former case, the term can be

expanded to:

½jT1j�ðWð�12Þ þ w13�Wð�23ÞÞ�½jT3j�ðw13 þWð�23Þ�Wð�12ÞÞ�
þ ðWð�12Þ þW ð�23Þ � w13Þ jT2j � ðWð�12Þ þW ð�23Þ � w13Þ½ �
þ ðjT2jw13 �Wð�12ÞWð�23ÞÞ:

This expression is nonnegative since it is a sum of
nonnegative terms. In fact, for Lemma 1, we have:

jT1j � ðW ð�12Þ þ w13 �Wð�23ÞÞ �
jT1j � ðW ð�12Þ þWð�13Þ �Wð�23ÞÞ � 0;

jT3j � ðw13 þWð�23Þ �Wð�12ÞÞ �
jT3j � ðW ð�13Þ þWð�23Þ �Wð�12ÞÞ � 0; and

jT2j � ðW ð�12Þ þWð�23Þ � w13Þ � 0;

while, by construction, we have: W ð�12Þ þWð�23Þ �
w13 � 0. Furthermore, since we assume w13 � Wð�12Þ, we
have

jT2jw13 �Wð�12ÞWð�23Þ � jT2jWð�12Þ �W ð�12ÞWð�23Þ � 0:

On the other hand, if w13 < Wð�12Þ, we can write the
term as:

jT1j � ðWð�12Þ þ w13 �Wð�23ÞÞ½ �ðjT3j �Wð�23ÞÞþ
ðWð�12Þ þW ð�23ÞÞ jT2j � ðW ð�12Þ þWð�23Þ � w13Þ½ �þ
ðjT1j �Wð�12ÞÞðWð�12Þ � w13Þ � 0;

where the inequality holds because the expression is the

sum of nonnegative terms. Hence, the triangular inequal-

ity holds. tu
The four metrics involve two independent dichotomies,

one deriving from the decision as to whether or not to use a

normalized measure, the other involving a choice between

the maximum and the average tree-size as a balancing

factor. The decision concerning normalization depends

mainly on the specific application at hand and on whether

there is a need for an upper bound on the measure. On the

other hand, using the average size as a balancing factor

allows us to take into account the size of the smaller tree,

information which is completely discarded when using the

maximum size as a balancing term.
A natural question arises as to when the proposedmetrics

are to be preferred over edit-distance measures. Typically,
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real-world problems approached via graph-theoretic techni-
ques involve two complementary types of noise: one which
acts on the attribute space byaltering the attributes separately
on each vertex and one which instead affects the topology of
the whole structure by modifying the vertex relations. Our
metrics, being based on the notion of subtree isomorphism,
are designed to be robust under attribute perturbations as
well as peripheral structural noise, whereas edit-distance
measures copewellwithmore severenoise affecting the inner

part of the structures being matched. Clearly, in general, it is
not easy to understandwhat the typical noise for the problem
at hand is and, hence, to make an informed decision as to the
metric to use.

4 EXTRACTING A MAXIMUM SIMILARITY COMMON

SUBTREE

In this section, we give a polynomial-time algorithm for
finding a maximum similarity subtree. The algorithm is
based on the subtree isomorphism algorithm presented by
Matula [15] (see also [34]), extending it to deal with
attributed trees. We give an algorithm to solve the
maximum similarity common subtree problem for rooted
trees and, then, we show how the same algorithm can be
used for the unrooted tree case as well.

Let T1 ¼ ðV1; E1Þ and T2 ¼ ðV2; E2Þ be two rooted trees and
let u 2 V1 and w 2 V2. We say that a subtree isomorphism
between T1 and T2 is anchored at nodes u andw if the subtrees
of T1 and T2 induced by the isomorphism are rooted at u and
w, respectively. In this case,we shallwrite�ðu;wÞ to refer to any
isomorphism anchored at u andw. Clearly, if � is amaximum
similarity subtree isomorphism, we have

Wð�Þ ¼ max
ðu;wÞ2V1�V2

max
�ðu;wÞ

Wð�ðu;wÞÞ :

In fact, since, if neither u nor w is a root of T1 or T2, we can
add the parents of u and w to the mapping without
reducing the similarity, we have:

Wð�Þ ¼ max
ðu;wÞ2ðfr1g�V2Þ[ðV1�fr2gÞ

max
�ðu;wÞ

Wð�ðu;wÞÞ;

where r1 and r2 are the roots of T1 and T2, respectively.
To determine the maximum similarity subtree isomorph-

ism anchored at nodes u and w, we adopt a divide-and-
conquer approach. Let u1; � � � ; un be the children of node u in
T1 and w1; � � � ; wm the children of node w in T2. Without loss
of generality, we can assume n 	 m. Moreover, let us
assume that we know, for each i ¼ 1; � � � ; n and j ¼ 1; � � � ;m,
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Fig. 1. A polynomial-time algorithm for computing the maximum

similarity between two trees.

Fig. 2. An example of a shape, its skeleton, and the corresponding shock tree.



a maximum similarity subtree isomorphism b��ðui;wjÞ an-

chored at ui and wj. Let Wij be the similarity of b��ðui;wjÞ, then

the computation of a maximum similarity subtree isomorph-

ism anchored at u and w can be reduced to an assignment

problem on the children of u and w, i.e.,

Wð�ðu;wÞÞ ¼ �ðu;wÞ þmax
�2�m

n

Xn
i¼1

Wi�ðiÞ; ð11Þ

where �m
n is the space of all possible assignments between a

set of cardinality n and one of cardinality m. As a

consequence, if � is the optimal assignment, the function

�ðu;wÞ, defined as:

�ðu;wÞðxÞ ¼ w if x ¼ ub��ðui;w�ðiÞÞðxÞ if x 2 Domðb��ðui;w�ðiÞÞÞ;

�
ð12Þ

turns out to be a maximum similarity subtree isomorphism

anchored at u and w.
Fig. 1 shows the resulting algorithm for determining a

maximum similarity subtree isomorphism of two rooted

attributed trees. Since, in the rest of the paper, we only need

themaximum similarity induced by an isomorphism and not

the isomorphism itself, for simplicity, the main procedure

MaxSimilarity accepts as input a pair of attributed rooted

trees and returns only the similarity value. It makes use of a

recursive procedure AnchoredSimilarity that accepts as
input two vertices, one from T1 and the other from T2, and
returns the similarity of the maximum isomorphism an-
chored at the input vertices, according to (11). To this end, it
needs a procedure for solving an assignment (or, equiva-
lently, a bipartite matching) problem, which the algorithms
literature abound in (see., e.g., [17]). The calculation of the
maximum similarity common subtree of two trees with N

and M nodes, respectively, is reduced to at most NM

weighted assignment problems of dimension at most b,
where b is the maximum branching factor of the two trees.
The computational complexity of our algorithm heavily
depends on the actual implementation of the assignment
procedure. A popular way of solving it, and the one we
actually employed, is the so-called Hungarian algorithm,
which has complexity Oðn2mÞ, n andm being the number of
children of u and v as used in (11), with n 	 m. It is simple to
show that, using the Hungarian algorithm, our algorithm
has overall complexity of OðbNMÞ. Of course, the algorithm
can be sped up by using more sophisticated assignment
procedures [1].

Finally, if we have two unrooted trees T1 ¼ ðV1; E1Þ and
T2 ¼ ðV2; E2Þ, we can pick two nodes r1 2 V2 and r2 2 V2

and consider the trees Tr1
1 ¼ ðV1; E1Þ and Tr2

2 ¼ ðV2; E2Þ
rooted at r1 and r2, respectively. Note that, if � is an
isomorphism between Tr1

1 and Tr2
2 with similarity W , then it

is an isomorphism between T1 and T2 with the same
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Fig. 3. Distance matrices from the first experiment. Top to bottom, left to

right: d1, d2, d3, d4, and edit-distance.

Fig. 4. Multidimensional scaling from the first experiment. Top to bottom,

left to right: d1, d2, d3, d4, and edit-distance.



similarity. This yields a straightforward OðbN3MÞ algo-
rithm for unrooted trees, which consists of iteratively
calling MaxSimilarity(Tu

1 ; T
w
2 ) for all u 2 V1 and w 2 V2

and taking the maximum. However, it is a well-known
result that we do not actually need to try all possible pairs
of roots since, by simply fixing the root in one tree and
leting the other vary among all possible vertices in the other
tree, the algorithm is still guaranteed to achieve the
maximum similarity [34]. This follows easily from the
observation made above that there always exists a max-
imum similarity (rooted) subtree isomorphism mapping at
least one of the roots of the two trees. Indeed, without loss
of generality, let us root T1 on an arbitrary node u. Then,
either u is mapped (say, to node w 2 V2) by a maximum
similarity isomorphism or it remains unmapped. In the
former case, we clearly obtain the optimum by applying the
rooted algorithm to Tu

1 and Tw
2 . In the latter case, a

maximum similarity isomorphism � will induce a subtree

in Tu
1 rooted at, say, v 2 V1. Clearly, the algorithm called on

Tu
1 and T

�ðvÞ
1 will return the optimum. This yields an

OðbN2MÞ algorithm for unrooted trees. A similar approach

has been recently used in [37].

5 EXPERIMENTAL RESULTS

We evaluated the new metrics on three different tree-based

shape representations. The first is the shock tree representa-

tion used by Pelillo et al. in [19], which is based on the

differential structure of the boundary of a 2D shape. It is

obtained by extracting the skeleton of the shape, deter-

mined as the set of singularities (shocks) arising from the

inward evolution of the shape boundary, and then examin-

ing the differential behavior of the radius of the bitangent

circle to the object boundary as the skeleton is traversed.

This yields a classification of local differential structure into

four different classes [25]. The so-called shock-classes
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Fig. 5. Clusters obtained with Normalized Cut in the first experiment.

Fig. 6. Clusters obtained with Dominant Sets in the first experiment.



distinguish between the cases where the local bitangent
circle has maximum, minimum, constant, or monotonic
radius. The labeled shock-groups are then abstracted using
an unordered rooted tree where two vertices are adjacent if
the corresponding shock-groups are adjacent in the skeleton
and the distance from the root is related to the distance from
the shape barycenter. Note that, here, order need not be
preserved since articulation or pose variation might change
the relative position of parts. Fig. 2 shows an example
silhouette, its morphological skeleton divided into its
constituent shock groups, and the extracted shock tree.
Here, we used the same attributes and node-distances
employed in [19]. Each shock was attributed with its
coordinates, distance from the border, and propagation
velocity and direction. The distance between two nodes was
defined as a convex combination of the (normalized)
Euclidean distances of length, distance to the border,
propagation speed, and curvature.

Due to computational complexity, we could not compare
our metrics to exact edit-distance, but we had to resort to an
approximation. To this end, we used the relaxation labeling
algorithm presented in [29]. While this algorithm provides a
reasonable approximation of edit-distance, it is clear that a
comparison with exact edit-distance might provide slightly
different results. Nonetheless, since the approximation error
was empirically shown to be small in this application
domain and any practical application would have to resort
to some approximation, we believe the comparison to still be
meaningful. In this experiment, the edit costs were defined
as follows: The cost of matching node u to node wwas set to
be equal to the distance between their attributes, while the
cost of removing any node was set to be equal to 1. Note that,
with these costs, edit-distance is not normalized.

Our shape database contained 29 shapes from eight diff-
erent classes. The size of the trees in this set ranged from 8 to
40 vertices, with an average size of 14.2 vertices. Fig. 3 shows
the distance matrices obtained using our metrics and edit-
distance. The first row contains our nonnormalizedmatrices,
the second row their normalized counterparts, and the last
one edit-distance. Here, lighter colors represent lower
distances while darker colors represent higher distances.
As can be seen, the same block structure emerges in all five
matrices. In particular, the main diagonal blocks are almost
identical in all five cases, while the off-diagonal blocks
present a wider variation. Essentially, the most significant
differences among the five metrics are the dark bands clearly
visible in the nonnormalizedmatrices. To better visualize the
distances,weperformed 2Dmultidimensional scaling (MDS)
on the five matrices. The results can be observed in Fig. 4.

In order to assess the ability of the distances to preserve
class structure, we performed pairwise clustering. In
particular, we used two pairwise clustering algorithms:
Shi and Malik’s Normalized Cut [24], which has become a
standard benchmark among pairwise clustering algorithms
and is commonly used in the vision community, and
Dominant Sets, a powerful and simple pairwise clustering
approach recently introduced by Pavan and Pelillo [18].
Fig. 5 shows the clusters obtained with Normalized Cut,
displayed in order of extraction, and Fig. 6 presents the
clusters obtained with the Dominant Sets approach. While

the performance of the clustering algorithms on this shape
recognition task varied significantly, the dependency on the
choice of the distance measure was less pronounced.
Nonetheless, some differences can be observed. In parti-
cular, we notice how Normalized Cut exhibits a well-
known tendency to oversegment the data, a behavior
particularly visible on the nonnormalized metrics d1 and
d2. A particularly interesting example is from the classifica-
tion of the two horses: The shock-tree representation of the
horses has the largest average number of nodes of all shape
classes and they present the highest variation in terms of
number of nodes. For this reason, as can be seen by looking
at the MDS results, the nonnormalized measures strongly
separate the two instances, while the normalized versions
are able to keep them close together. The clusters obtained
with the Dominant Sets approach are much better, with our
normalized metrics providing results almost identical to
edit-distance.

As for the running times, on a Pentium 4 2.5GHz PC, the
maximum similarity algorithm presented in Section 4, took
around 8 seconds to compute our metrics, while the
relaxation labeling algorithm computed edit-distance in
over 30 minutes.

Our second set of experiments used a larger database of
shapes, abstracted again in terms of shock-trees. Here,
however, we used a different set of attributes introduced in
[3] and recently analyzed in [28], i.e., the proportion of the
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shape boundary generating the corresponding shock-group.
The database consisted of 150 shapes divided into 10 classes
of 15 shapes each and presented a higher structural noise
than the previous one. The tree-size ranged from 4 to
33 vertices, with an average of 13.2 vertices per tree. Here,
the node distance and node-matching cost for edit-distance
was defined as the absolute difference between the
attributes, while the node removal cost was the value of
the attribute itself. With this, edit costs edit-distance is a
normalized metric.

Fig. 7 shows the distance matrices obtained using our
metrics and edit-distance and Fig. 8 shows the results of
MDS applied to them. Note that all measures extract the
same block structure, with nonnormalized metrics showing
the same off-diagonal dark bands as in the previous
experiments. In particular, the metrics d1 and d2 do not
distribute the shapes uniformly, but, rather, on a tight band
along a curve. There are two reasons for this behavior: First,
the metrics are inherently non-Euclidean, while MDS
performs an “optimal” embedding on a Euclidean space.
Second, as previously discussed, the metrics d1 and d3 take

the tree-similarity, which is smaller than the cardinality of

the smallest tree, and balance it against the cardinality of

the maximum tree. The other two proposed metrics balance

the weight against the average cardinality, thereby provid-

ing a “tighter” measure.
Next, we applied the same clustering algorithms used in

the previous series of experiments. In order to assess the
quality of the groupings, we used two well-known cluster-
validation measures [13]. The first is the standard mis-
classification rate. We assigned to each cluster the class that
has most members in the cluster. The members of the
cluster that belong to a different class are considered
misclassified. The misclassification rate is the percentage of
misclassified shapes over the total number of shapes. To
avoid the bias towards higher segmentation that this
measure exhibits, we also used a second validation
measure, i.e., the Rand index. We count the number of
pairs of shapes that belong to the same class that are
clustered together and the number of pairs of shapes
belonging to different classes that are in different clusters.
The sum of these two figures divided by the total number of
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represent class labels.



pairs gives us the Rand index. Here, the higher the value,
the better the classification.

Table 1 summarizes the results obtained using Normal-
ized Cut, while Table 2 presents the results obtained with
the Dominant Sets approach. The Dominant Sets method
provides better results in this case as well, while the
different metrics generate clusters with comparable valida-
tion measures.

The last set of experiments was performed on a tree
representation of Northern Lights [20]. As in the previous
experiments, the representation used is derived from the
morphological skeleton, but the choice of structural
representation was different from the one adopted for
shock-graphs, and the extracted trees tend to be larger.

The database consisted of 1,440 shapes abstracted as trees
having from 4 to 131 vertices with an average of 30.7 vertices.
Using our metrics, we were able to extract the full distance
matrices within a few hours, but it was infeasible to compute
an approximation of the edit-distance on the entire database.
For this reason, in order to be able to compare the resultswith
edit-distance,wealsoperformedexperimentsusing a smaller
database consisting of 50 shapes. The calculation of an
approximation of edit-distance, even on this reduced
database, took a full weekend.

Fig. 9 displays the results of applyingMDS to the distance
matrices obtained with our measures. Here, the gray level of
the point varies uniformly from black on the first shape to
light gray on the last. While there is no clear separation, there
is a clear locality in shape-space of trees with similar indices.

In this case, we did not have the ground truth for the
class memberships, so we needed a different cluster-
validation measure. We opted for a standard measure that
favors compact and well-separated clusters: the Davies-
Bouldin index [13]. Let ei be the average distance between
elements in class i and dij be the average distance between
elements in cluster i and elements in cluster j. The Davies-
Bouldin index is

DB ¼ 1

c

Xc

i¼1

max
j

Rij;

where c is the number of clusters and Rij ¼ eiþej
dij

is the
cluster separation measure. Clearly, lower values corre-
spond to better separated and more compact clusters.
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Fig. 9. Multidimensional scaling of the distances obtained with our metrics from the third experiment. Top to bottom, left to right: d1, d2, d3, and d4.

TABLE 2
Validation Measures of Clusters Obtained with

Dominant Sets in the Second Experiment

TABLE 1
Validation Measures of Clusters Obtained with
Normalized Cut in the Second Experiment



Table 3 provides the values of the Davies-Bouldin index
on the clusters extracted using Normalized Cut, while
Table 4 shows the value obtained using the Dominant Sets
algorithm. As was the case with the previous experiments,
all five metrics produce comparable results.

6 CONCLUSIONS

In this paper, we have presented four novel distance
measures for attributed trees based on the notion of a
maximum similarity subtree isomorphism and have pro-
vided a polynomial-time algorithm to calculate them. We
have proven that these measures satisfy the metric proper-
ties and have experimentally validated their usefulness by
comparing them with an approximation of edit-distance on
three different shape recognition tasks. Our experimental
results show that, in terms of quality, the proposed metrics
compare well with edit-distance, however, their computa-
tion is orders of magnitude faster. As for the choice among
our four metrics, the experimental results, while not
pointing to a clear winner, show that the metrics that
balance the similarity against the average size (i.e., d2 and
d4) distribute the structures better in the embedding space,
thereby confirming our intuition.

In addition to computational complexity issues, the
choice between the proposed metrics and edit distance
depends, as previously noted, on the nature of the noise in
the problem at hand. As far as our shape categorization
application is concerned, given the intrinsic properties of
shock trees, intraclass variation are expected to lead to
attribute and peripheral noise only, thereby making our
metrics a natural choice over edit-distance. Indeed, our
experimental results do confirm our expectations. As a side
note, we mention that Bunke [5] has recently shown that,

under certain assumptions on the edit-costs, the graph edit-
distance problem can be reduced to the maximum common
subgraph problem. It would be interesting to see whether
analogous results hold for subtree isomorphism as well,

which is different to the maximum common subgraph
problem due to the connectivity constraints.
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