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Abstract. The Hamilton-Jacobi approach has proved to be a powerful
and elegant method for extracting the skeleton of a shape. The approach
is based on the fact that the dynamics of the inward evolving boundary
is conservative everywhere except at skeletal points. Nonetheless this
method appears to overlook the fact that the linear density of the evolv-
ing boundary front is not constant where the front is curved. In this
paper we present an analysis which takes into account variations of den-
sity due to boundary curvature. This yields a skeletonization algorithm
that is both better localized and less susceptible to boundary noise than
the Hamilton-Jacobi method.

1 Introduction

The skeletal abstraction of 2D and 3D objects has proved to be an alluring
yet highly elusive goal for over 30 years in shape analysis [2]. The morphological
skeleton of a shape is defined as the set of singularities in the inward evolution of
the boundary with constant velocity. The dynamics of the boundary is described
by the eikonal equation: a partial differential equation that governs the motion
of a wave-front through a medium. In the case of a uniform medium the equation
is ∂tC(t) = αN(t), where C(t) : [0, s]→ R

2 is the equation of the front at time
t and N(t) : [0, s] → R

2 is the equation of the normal to the wave front in the
direction of motion and α is the propagation speed. As the wave front evolves,
opposing segments of the wave-front collide, generating a singularity.

Broadly speaking, the there are three approaches to skeleton extraction,
namely a) marching front methods which simulate the grassfire transform which
involve either thinning [1] or curve evolution [9] b) Voronoi triangulation methods
[6, 4] and c) methods based on the differential geometry of the object boundary.
In this paper, we are interested in this latter class of methods. Here a recently
developed and particularly powerful method is that based on the differential
equation which arises when the object boundary evolves under the Hamilton-
Jacobi equations of classical mechanics [5]. Where resulting eikonal equation for
the motion flow field is non-singular, the system is Hamiltonian, and, thus, con-
servative. Wherever the system ceases to be conservative there is a singularity
in the boundary flow field, and when the boundary reaches the singularity a
so-called shock forms. In the Hamilton-Jacobi framework skeletal points are de-
tected by searching for points where the system ceases to be Hamiltonian, that
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is points where the divergence of the flow is not 0 [7]. These methods turn out
to be algorithmically very simple and numerically stable.

A major problem of the Hamilton-Jacobi method is that in its original imple-
mentation, is that it overlooks the fact that the density of the evolving boundary
front is not constant and, infact, depends on the curvature of the front. As a
result of the variations in density, the flux is not conserved and hence the whole
premise of the skeletonization method collapses. In this paper, we address this
problem by extending the Hamilton-Jacobi analysis to the case where the front
density varies due to boundary curvature. The main practical advantage of this
analysis is that it leads to the recovery or more stable skeletons.

2 Hamilton-Jacobi Skeleton

We commence by defining a distance-map that assigns to each point on the in-
terior of an object the closest distance D from the point to the boundary (i.e.
the distance to the closest point on the object boundary). The gradient of this
distance-map defines a field F whose domain is the interior of the shape. The
field is defined to be F = ∇D, where ∇ = ( ∂

∂x , ∂
∂y )T is the gradient opera-

tor. The trajectory followed by each boundary point under the eikonal equation
can be described by the ordinary differential equation ẋ = F (x), where x is
the coordinate vector of the point. Siddiqi claims that this dynamic system is
Hamiltonian everywhere except on the skeleton. This implies that on skeletal
points the field F is conservative, or ∇ · F = 0. However, the total inward flux
through the whole shape is non zero. In fact, the flux is proportional to the
length of the boundary.

The divergence theorem states that the integral of the divergence of a vector-
field over an area is equal to the flux of the vector field over the enclosing
boundary of that area. In our case,∫

A

∇ · F dσ =
∫

L

F · n dl = ΦA(F ), (1)

where A is any area, F is a field defined in A, dσ is the area differential in A, dl
is the length differential on the border L of A, and ΦA(F ) is the outward flux
of F through the border L of the area A.

By virtue of the divergence theorem we have that, within the interior, there
are points where the system is not conservative. The non-conservative points
are those where the boundary trajectory is not well defined, i.e. where there
are singularities in the evolution of the boundary. These points are the so-called
shocks or skeleton of the shape- boundary. Shocks are thus characterized by
locations where ∇ · F < 0.

2.1 Curvature in the Boundary Front
Unfortunately, the hypothesis that the field F is conservative does not hold in
general.

Let us consider an instant t in the inward boundary evolution. The initial
border has evolved under the eikonal equation to boundary front St orthogonal
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in every point to F . Pick a point p ∈ St, what is the value of ∇·F (p)? Since the
divergence operator is invariant under rotations, we can write ∇ · F = ∂

∂v‖
F +

∂
∂v⊥

F where v‖ = F (p) and v⊥ is a normal vector orthogonal to v‖. Since
||F || = 1 everywhere, ∂

∂v‖
F = 0. On the other hand ∂

∂v⊥
F (p) = −κ(p) where

κ(p) is the curvature in p of the border front St oriented so that κ(p) is positive if
the osculating circle is in the interior of the front. Hence, we have that ∇·F (p) =
−κ(p),, that is, the divergence∇·F is not always 0 as predicted by the Hamilton-
Jacobi approach, but rather it is equal to the curvature of the front of the inward
evolving boundary.

dl(t + ∆t)dl(t)

Fig. 1. Evo-
lution of a
boundary seg-
ment.

This result can be easily understood with an analogy from
physics: Let us assume that a fluid flows from the border of
the shape, which acts as a source, to the skeleton, which acts
as a sink. If the fluid is incompressible, the fluid density never
changes and the velocity field F is conservative everywhere
except at point in the border and skeleton. On the other
hand if the fluid is compressible, as soon as a curved front
compresses the fluid, the density changes and the velocity
field is not conservative anymore.

Let us pick a segment dl(t) of the border front St. Let
us assume this segment has average linear density ρ̄(t) (see
Figure 1). Under the eikonal equation, at time t + ∆t dl(t)
has evolved to dl(t+∆t). Since all the points in dl(t) are now
in dl(t+∆t), the total mass of the two segments is the same,
but if dl(t) is curved the lengths of the segments are different:||l(t+∆t)|| %= ||l(t)||.
From this we obtain that the average density in l(t + ∆t) is ρ̄(t + ∆t) %= ρ̄(t).
Hence when the front is curved, the density is not constant and we have to
take into account mass effects. That is: we have to resort to a more general
conservation principle: the conservation of momentum.

3 Momentum field

Using this physical intuition we state that there is indeed a conservative field
associated with the dynamics of the boundary: the momentum M = ρF , where
ρ is the scalar field that assigns to each point the linear density of the boundary
front, and hence ∇ · (ρF ) = 0,. After some algebra, we obtain the partial differ-
ential equation (PDE) ∇ρ · F = −ρ∇ · F . which goversn the density evolution
in the flow field. Setting σ = log(ρ), we can write the above PDE as a function
of the log-density σ and hence ρ∇σ ·F = −ρ∇·F .. Eliminating ρ on both sides,
we obtain:

∇σ · F = −∇ · F . (2)

This is a transport equation which can be reduced to a set of ordinary dif-
ferential equations (ODE) along the paths of the boundary points.

{
d
dtσ(s(t)) = −∇ · F (s(t))
d
dts(t) = F (s(t))

(3)
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We can derive this equation by analyzing the change of density of segment dl
in Figure 1. We know that ρ̄(t)||dl(t)|| = m. where dl(t) is the evolution of the
border segment dl at time t, m is its mass, and ρ̄(t) and κ(t) are the segment’s
average linear density and curvature at time t.

After a small interval of time ∆t, the segment length will be ||dl(t + ∆t)|| =
||dl(t)|| κ(t)

κ(t+∆t) + O(∆t2), and the curvature κ(t + ∆t) = κ(t)
1−κ(t)∆t + O(∆t2).

From these equations and the conservation of mass, we have: ρ̄(t + ∆t)− ρ̄(t) =
ρ̄(t) κ(t)∆t

1−κ(t)∆t + O(∆t2). Taking the limit for ∆t→ 0 and ||dl|| → 0, we have:

d
dtρ(s(t))
ρ(s(t))

= κ(s(t)), (4)

where s(t) is the trajectory under the eikonal equation of the limit point the
segment dl tends to as ||dl|| → 0. Integrating (4) and using the fact that κ(p) =
−∇ · F , we find: log(ρ(s(t))) = − ∫ t

0
∇ · F (s(τ)) dτ.

4 Computing the density

To obtain the momentum field we need to integrate the density field in the
interior of the shape. Since images have a finite resolution, we need to discretize
the solution in the image lattice.

One approach is to express the PDE (2) as a system of difference equations.
The difference equations form a linear system that is then solved to obtain the
log-density σ = log(ρ). The problem with this approach is that the skeleton is
a set of singularities of the momentum field, hence the density can have very
different values at opposite sides of a skeletal branch. The result is that the
linear system will have no solution and even trying to approximate a solution
using a residual descent methods would force the density values the solution to
oscillate wildly on points near the skeleton.

4.1 Integration in Time

In order to overcome this problem we need to be sure that the difference operator
used in the equations never cross a skeletal branch. One way to guarantee this
is to integrate the equation in the time domain: so that the formulae giving the
value of ρ at points in the boundary front at time t reference values of ρ only
at points in the fronts at previous times. We can obtain this by integrating the
ODE (3) along the paths of the boundary points.

We opt to use the second order Cranck-Nicolson method, that is, for each
point (x, y) in the interior of the shape, we have the equation:

σ(s(t)) = σ(s(t− 1))− 1
2
[∇ · F (s(t)) +∇ · F (s(t− 1))]. (5)

Using this equation we can calculate the log-density at of a point of the border
at time t referencing only values of the log-density at points that belong the
front at previous times. Since the evolution never crosses the skeleton, we are
guaranteed not to cross skeletal branch through our calculations.
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4.2 Integration in Space

σ(x, y′)σ(x′, y′)

σ(x′, y)

σ(x − Fx, y − Fy)

F

σ(x, y)

Fig. 2. Integra-
tion along the
boundary path.

Equation (5) allows us to integrate the log-density σ in the
time domain along the path s, but we haven’t shown how to
calculate the path. Fortunately, we do not need to calculate
every possible path. Let us assume that at time t the bound-
ary front passes through point s(t) = (x, y)T , we can obtain
a first order approximation of the position of that point at
time t−1 as: s(t−1) = (x−Fx, y−Fy)T . Using this approx-
imation, we can write equation (5) in the domain of space
instead of time:

σ(x, y) = σ(x− Fx(x, y), y − Fy(x, y))

− 1
2
[∇ · F (x, y)) +∇ · F (x− Fx(x, y), y − Fy(x, y))]. (6)

As shown in Figure 2, the point (x, y)T−F (x, y) does not belong to the image
lattice, hence we need to interpolate it using the values at the four corners of
the square containing the point. We opt to compute the quantity f(x + a, y + b)
with a, b ∈ [0, 1) as: ãb̃f(x, y) + b̃af(x + 1, y) + ãbf(x, y + 1) + abf(x + 1, y + 1),
where ã = 1− a and b̃ = 1− b.

Using Equation (6) we can compute the value of the log-density σ(x, y) using
values of σ at points spanned by the boundary points before (x, y)T . Hence, all
we need to calculate σ is to iterate equation (6) through the interior points by
front arrival time, starting from the points that the boundary front reaches first,
to the ones that it reaches last. Since the boundary is moving with constant
unitary time, the time it takes the border front to reach a point (x, y)T is equal
to its distance to the boundary.

Once we have the density to hand, we need to calculate the divergence of the
momentum in every point of the image lattice. We opt to discretize Equation (2)
using a second order approximation. Setting ∆σ = σ(x, y)− σ(x− Fx, y − Fy),
we have:

∇ · (ρF )(x, y) = ∆σ exp(σ(x, y)− 1
2
∆σ)

+
1
2

[
∇ · F (x− Fx, y − Fy) exp(σ(x− Fx, y − Fy)) +∇ · F (x, y) exp(σ(x, y))

]
.

(7)

5 Skeletonization

Once the divergence of the momentum field is to hand, we can extract the
skeleton. The extraction is performed by thinning the shape by removing border
points that have energy absorption below a certain threshold and whose removal
would not cause the shape to be split into two disjoint parts. The remaining
shape is further thinned to a 1-pixel wide skeleton, paying attention to keep
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the shape connected and not to shorten the skeleton by eliminating endpoints.
Expressed in pseudo-code the thinning process of shape S is as follows:

For each point p in distance order

if is simple(S \ p) and −∇ · ρF (p) < ε
then S = S \ p

For each remaining point p in distance order

if is simple(S \ p) and not is endpoint(S,p)
then S = S \ p

The predicate is simple determines whether the shape is still connected after
the removal of point p by checking only the points in the neighborhood of p: the
shape S \ p is connected if the point in the neighborhood of p, excluding p, are
connected. Similarilly, is endpoint determines whether p is an endpoint only by
inspecting the neighborhood of p: the point is an endpoint if it has at most two
neighboring points and those points are horizontally or vertically adjacent.

6 Experimental Comparison

In this section we try to characterize the differences between the Hamilton-
Jacobi skeletonization method and our density-corrected approach. We start
by providing a qualitative analysis of the difference in the divergence of the
velocity and momentum fields. Secondly we provide an analysis of the noise
and thresholding sensitivity of the two methods. Finally we provide a more
quantitative analysis of the localization properties of the two skeletonization
methods.

Fig. 3. Differences in the velocity
and momentum fields. Left to right:
shape, ∇ · F , log(ρ), and ∇ · ρF

Figure 3 shows, for a few selected
shapes in our database, the values of
the divergence of the velocity field∇ · F ,
log(ρ), and ∇ · ρF . In this pictures white
corresponds to a large positive values,
black to a large negative value and 0 is
represented by a 50% intensity gray.

It is very clear from the pictures that
the divergence of the velocity field is not
0 in correspondence with a curved bound-
ary. Furthermore, quantization in the lo-
calization of the border causes the initial
border to be very jagged, and this high-
frequency, low-amplitude noise is trans-
ported and amplified throughout the ve-
locity field, yielding a noisy and poorly
localized skeleton. Conversely, the density
correction in the momentum field damp-
ens the noise.

To counter quantization noise from the
border, we need to smooth the distance
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Fig. 4. The effect of
smoothing on skeleton
extraction.

map and select an appropriate skeletonization
threshold. Pick too big a smoothing radius or
threshold and some branches of the skeleton will
be thinned away, pick values too small and the
extracted skeleton will have a lot of spurious
branches (See Figure 4). In this section we charac-
terize the effects on the extracted skeleton of the
smoothing radius and the skeletonization thresh-
old.

Figure 4 Displays the effects of very low (left)
and very high (right) values of smoothing radius
and skeletonization threshold on a test shape.
The picture show, top to bottom, the divergence
of the velocity field, the uncorrected Hamilton-
Jacobi skeleton, the divergence of the momentum
field, and the skeleton extracted using the density-
corrected method. what these picture show is that
the density corrected method is much less sensi-
tive to the amount of smoothing and the value of
the threshold.

Next we characterize the localization proper-
ties of the skeleton extracted using the Hamilton-
Jacobi and the new density corrected method on a
wide range of shapes. To this purpose we compute
how the value of the divergence of the velocity and momentum field distribute
over distance to the extracted skeleton. Figure 5 plots an histogram of how non-
skeletal points distribute over distance and divergence value on our test shape.
The figure shows that the Hamilton-Jacobi skeleton has a non-negligible amount
of high divergence values even at high distance from the extracted skeleton.
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Fig. 5. Histogram over value of (negative) divergence of the field and distance to skele-
ton

In an experiment we tried to quantify the localization of the skeleton on a
database of shapes. To this purpose we used a database of 50 shapes and we his-
togrammed the distribution of field divergence over the distance to the skeleton
for both the velocity and the momentum field. We then take, for each shape, the
mean of this divergence-distribution as a measure of divergence-localization.
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Fig. 6. Histogram of divergence-localization of 50 shapes.

Figure 6 shows the histograms of the values of this divergence-localization
measure over all the shapes in our database. On the left we see the localization
histogram of the velocity field. The mean of this distribution is 2.52, while the
variance is 0.34. The histogram on the right displays the localization properties of
the momentum field. The mean of this distribution is 1.46, while the variance is
0.28. The density correction clearly leads to a better localization of the skeleton.

7 Conclusions

In this paper we have given proof that a key hypothesis underpinning the
Hamilton-Jacobi framework: the fact that the velocity field is conservative, does
not hold in the presence of curved boundary.This is due to the increase of point
density connected with a curved front of boundary evolution. In this paper we
present an analysis which takes into account variations of density due to bound-
ary curvature. This yields a skeletonization algorithm that is both better local-
ized and less susceptible to boundary noise than the Hamilton-Jacobi method.
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