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Abstract. This paper presents a geometric measure that can be used
to gauge the similarity of 2D shapes by comparing their skeletons. The
measure is defined to be the rate of change of boundary length with
distance along the skeleton. We demonstrate that this measure varies
continuously when the shape undergoes deformations. Moreover, we show
that ligatures are associated with low values of the shape-measure. The
measure provides a natural way of overcoming a number of problems
associated with the structural representation of skeletons. The first of
these is that it allows us to distinguish between perceptually distinct
shapes whose skeletons are ambiguous. Second, it allows us to distinguish
between the main skeletal structure and its ligatures, which may be the
result of local shape irregularities or noise.

1 Introduction

The skeletal abstraction of 2D and 3D objects has proved to be an alluring yet
highly elusive goal for over 30 years in shape analysis. The topic is not only
important in image analysis, where it has stimulated a number of important
developments including the medial axis transform and iterative morphological
thinning operators, but is also an important field of investigation in differential
geometry and biometrics where it has lead to the study of the so-called Blum
skeleton [4]. Because of this, the quest for reliable and efficient ways of computing
skeletal shape descriptors has been a topic of sustained activity. Recently, there
has been a renewed research interest in the topic which as been aimed at deriving
a richer description of the differential structure of the object boundary. This
literature has focused on the so-called shock-structure of the reaction-diffusion
equation for object boundaries.

The idea of characterising boundary shape using the differential singularities
of the reaction equation was first introduced into the computer vision litera-
ture by Kimia Tannenbaum and Zucker [9]. The idea is to evolve the boundary
of an object to a canonical skeletal form using the reaction-diffusion equation.
The skeleton represents the singularities in the curve evolution, where inward
moving boundaries collide. The reaction component of the boundary motion
corresponds to morphological erosion of the boundary, while the diffusion com-
ponent introduces curvature dependent boundary smoothing. In practice, the
skeleton can be computed in a number of ways [1,11]. Recently, Siddiqi, Tan-
nenbaum and Zucker have shown how the eikonal equation which underpins the
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reaction-diffusion analysis can be solved using the Hamilton-Jacobi formalism of
classical mechanics [6,17).

One of the criticisms that can be levelled at existing skeletonisation methods
is their sensitivity to small boundary deformations or ligatures. Although these
can be reduced via curvature dependent smoothing, they may have a significant
effect on the topology of the extracted skeleton.

Once the skeletal representation is to hand then shapes may be matched by
comparing their skeletons. Most of the work reported in the literature adopts
a structural approach to the matching problem. For instance, Pelillo, Siddiqi
and Zucker use a sub-tree matching method [14] This method is potentially
vulnerable to structural variations or errors due to local deformations, ligature
instabilities or other boundary noise. Tithapura, Kimia and Klein have a po-

Fentially more robust method which matches by minimising graph-edit distance
10,20].

One of the criticisms of these structural matching methods is that percep-
tually distinct shapes may have topologically identical skeletons which can not
be distinguished from one-another. Moreover, small boundary deformations may
significantly distort the topology of the skeleton.

We draw two observations from this review of the related literature. The first
is that the existing methods for matching are based on largely structural repre-
sentations of the skeleton. As a result, shapes which are perceptually different but
which give rise to the same skeleton topology are ambiguous with one-another.
For this reason we would like to develop a metrical representation which can
be used to assess the differences in shape for objects which have topologically
identical skeletons. Secondly, we would also like to be able to make compar-
isons between shapes that are perceptually close, but whose skeletons exhibit
topological differences due to small but critical local shape deformations.

To meet these dual goals, our shape-measure must have three properties.
First, it must be continuous over local regions in shape-space in which there are
no topological transitions. If this is the case then it can be used to differentiate
shapes with topologically identical skeletons. Secondly, it must vary smoothly
across topological transitions. This is perhaps the most important property since
it allows us to define distances across transitions in skeleton topology. In other
words, we can traverse the skeleton without encountering singularities. Thirdly,
it must distinguish between the principal component of the skeleton and its
ligatures [2]. This will allow us to suppress instabilities due to local shape defor-
mations.

Commencing from these observations, we opt to use a shape-measure based
on the rate of change of boundary length with distance along the skeleton. To
compute the measure we construct the osculating circle to the two nearest bound-
ary points at each location on the skeleton. The rate of change of boundary length
with distance along the skeleton is computed by taking neighbouring points on
the skeleton. The corresponding change in boundary length is computed by de-
termining distance along the boundary between the corresponding points of con-
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tact for the two osculating circles. The boundary distances are averaged for the
boundary segments either side of the skeleton.

This measurement has previously been used in the literature to express rel-
evance of a branch when extracting or pruning the skeleton [11,12]. We show
that rate of change of boundary length with distance along the skeleton has a
number of interesting propertics. The consequence of these properties is that
the descriptive content of the measure extend beyend simple feature saliency,
and can be used to attribute the relational structure of the skeleton to achieve a
richer description of shape. Furthermore, we demonstrate that there is an inti-
mate relationship between the shape measure and the divergence of the distance
map. This is an important observation since the divergence plays an central role
when the skeleton is computed using the Hamilton-Jacobi formalism to solve the
eikonal equation.

2 Skeleton Detection

A great number of papers have been written on the subject of skeleton detection.
The problem is a tricky one because it is based on the detection of singularities
on the evolution of the eikonal equation on the boundary of the shape.

The eikonal equation is a partial differential equation that governs the motion
of a wave-front through a medium. In the case of a uniform medium the equation
is 2C(t) = aN(t), where C(t) : [0,5] = R? is the equation of the front at
time ¢t and N(Z) : [0,5] — R2? is the equation of the normal to the wave front
in the direction of motion and a is the propagation speed. As the wave front
evolves, opposing segments of the wave-front collide, generating a singularity.
This singularity is called a shock and the set of all such shocks is the skeleton
of the boundary defined by the original curve. This realisation of the eikonal
equation is also referred to as the reaction equation.

To detect the singularities in the eikonal equation we use the Hamilton-Jacobi
approach presented by Siddigi, Tannenbaum, and Zucker [6,17]. Here we review
this approach.

We commence by defining a distance-map that assigns to each point on the
interior of an object the closest distance D from the point to the boundary (i.e.
the distance to the closest point on the object boundary). The gradient of this
distance-map defines a field F' whose domain is the interior of the shape. The
field is defined to be F' = VD, where V = (£, %)T is the gradient operator.
The trajectory followed by each boundary point under the eikonal equation can
be described by the ordinary differential equation @ = F(z), where @ is the
coordinate vector of the point. This is a Hamiltonian system, i.e. wherever the
trajectory is defined the divergence of the field is zero (13]. However, the total
inward flux through the whole shape is non zero. In fact, the flux is proportional
to the length of the boundary.

The divergence theorem states that the integral of the divergence of a vector-
field over an area is equal to the flux of the vector field over the enclosing
boundary of that area. In our case, [, V- Fdo = [, F-ndl = $4(F), where A
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is any area, F' is a field defined in A, do is the area differential in A, dl is the
length differential on the border L of A, and $4(F) is the outward flux of F
through the border L.

By virtue of the divergence theorem we have that, within the interior, there
are points where the system is not conservative. The non-conservative points
are those where the boundary trajectory is not well defined, i.e. where there
are singularities in the evolution of the boundary. These points are the so-called
shocks or skeleton of the shape-boundary. Shocks are thus characterised by lo-
cations where V - F' < 0. Unfortunately, skeletal points are, also, ridges of the
distance map D, that is F' = VD is not uniquely defined in those points, but
have different values on opposite sides of the watershed. This means that the
calculation the derivatives of F' gives raise to numerical instabilities. To avoid
this problem we can use the divergence theorem again. We approximate the
divergence with the outward flux through a small area surrounding the point.
That is V - F(z) = &y (F)(x), where U is a small area containing z. Thus,
calculating the flux through the immediate neighbors of each pixel we obtain a
suitable approximation of V - F(a).

2.1 Locating the Skeleton

The thinning of the points enclosed within the boundary to extract the skeleton
is an iterative process which involves eliminating points with low inward flux.
The steps in the thinning and localisation of the skeleton are as follows

— At each iteration of the thinning process we have a set of points that are
candidates for elimination. We remove from this set the point with the lowest
inward flux.

— Next and we check whether the point is topologically simple, i.e, whether it
can be eliminated without splitting the remaining point-set.

— If the point is not simple, then it must be part of the skeleton. Thus we
retain it.

— If the point is simple, then we check whether it is an endpoint. If the point
is simple and not an endpoint, then we eliminate it from the image. If this is
the case then we add to the candidate set the points in its 8-neighborhood
that are still part of the thinned shape (i.e. points that were not previously
eliminated).

— If a simple point is also an endpoint, then the decision of whether or not it
will be eliminated is based on the inward flux value. If the flux value is below
a certain threshold we eliminate the point in the manner described above.
Otherwise we retain the point as part of the skeleton.

We initialise this iterative process by placing every boundary point in the can-
didate set. We iterate the process until we have no more candidates for removal.
The residual points will all belong to the skeleton.
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3 The Shape-Measure and Its Properties

When the skeleton is computed in this way, then the eikonal equation induces a
map from a point in the skeleton to a set of points on the boundary of the shape.
That is, there is a correspondence between a point on the skeleton and the set of
points on the boundary whose trajectories intercept it under the motion induced
by the eikonal equation. The cardinality of this set of corresponding points on
the boundary can be used to classify the local topology of the skeleton in the
following manner

— the cardinality is greater than or equal to 3 for junctions.

— for endpoints the cardinality is number from 1 to a continuum.

— for the general case of points on branches of the skeleton, the cardinality is
exactly 2.

As a result of this final property, any segment of a o
skeleton branch s is in correspondence with two bound- M
ary segments [y and lp. This allows us to assign to a &LL_&J A
portion of the skeleton the portion of the boundary =1
from which it arose. For each internal point in a skele-
ton branch, we can thus define the local ratio between ~Fig: 1. Geometric quan-
the length of the generating boundary segment and the tities
length of the generated skeleton segment The rate of change of boundary length
with skeleton length is defined to be dl/ds = dl; /ds + dlz/ds. This ratio is our
measure of the relevance of a skeleton segment in the representation of the 2D
shape-boundary.

Our proposal in this paper is to use this ratio as a measure
of the local relevance of the skeleton to the boundary-shape
description. In particular we are interested in using the mea-
sure to identify ligatures [2]. Ligatures are skeleton segments
that link the logically separate components of a shape. They
are characterised by a high negative curvature on the generat-
ing boundary segment. The observation which motivates this
proposal is that we can identify ligature by attaching to each
infinitesimal segment of skeleton the length of the boundary Fig.2. Ligature
that generated it. Under the eikonal equation, a boundary points are gen-
segment with high negative curvature produces a rarefaction erated by short
front. This front will cause small segments to grow in length boundary  seg-
throughout their evolution, until they collide with another mants
front and give rise to a so-called shock. This means that very short boundary
segments generate very long skeleton branches. Consequently, when a skeleton
branch is a ligature, then there is an associated decrease in the boundary-length
to shock-length ratio. As a result our proposed skeletal shape measure ‘weights”
ligature less than other points in the same skeleton branch.

To better understand the rate of decrease of the boundary length with skeletal
length, we investigate its relationship to the local geometry of the osculating
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circle to the object boundary. We have

cosd cosf
st i W
Ty and, similarly, dly/ds Tk (1)

where  is the radius of the osculating circle, k; is the curvature of the mapped
segment on the boundary, oriented so that positive curvatures imply the oscu-
lating circle is in the interior of the shape, and, finally, # is the angle between
the tangent to the skeleton and the tangent to the corresponding point on the
boundary. These formulae show that the metric is inversely proportional to neg-
ative curvature and radius. That is, if we fix a negative curvature k1, the measure
decreases as the skeleton gets further away from the border. Furthermore, the
measure decreases faster when the curvature becomes more negative.

Another important property of the shape-measure is that its value varies
smoothly across shape deformations, even when these deformations impose topo-
logical transitions to the skeleton. To demonstrate this property we make use of
the taxonomy of topological transition of the skeleton compiled by Giblin and
Kimia [7]. According to this taxonomy, a smooth deformation of the shape in-
duces only two types of transition on the skeleton (plus their time reversals). The
transitions are branch contraction and branch splicing. A deformation contracts
a branch joining two junctions when it moves the junctions together. Conversely,
it splices a branch when it reduces in size, smoothes out, or otherwise eliminates
the protrusion or sub-part of a shape that generates the branch.

A deformation that contracts or splices a skeleton branch, causes the global
value of the shape-measure along the branch to go to zero as the deformation
approaches the topological transition. This means that a deceasing length of
boundary generates the branch, until the branch disappears altogether.

When a deformation causes a contraction transition, both the length of the
skeleton branch and the length of the boundary segments that generate the
branch go to zero. A more elusive case is that of splicing. Through a splicing
deformation, a decreasing length of boundary maps to the skeleton branch. This
is because either the skeleton length and its associated boundary length are both
reduced, or because the deformation allows boundary points to be mapped to
adjacent skeleton branches. For this reduction in the length of the generating
boundary, we do not have a corresponding reduction of the length of the skeleton
branch. In fact, in a splice operation the length of the skeleton branch is a lower
bound imposed by the presence of the ligature. This is the major cause of the
perceived instability of the skeletal representation. Weighting each point on the
boundary which gave rise to a particular skeleton branch allows us to eliminate
the contributions from ligatures, thus smoothing the instability. Since a smooth
shape deformation induces a smooth change in the boundary, the total shape-
measure along the branch has to vary smoothly through any deformation.

Just like the radius of the osculating circle, key shape elements such as necks
and seeds are associated with local variations of the length ratio. For instance,
a neck is a point of high rarefaction and, thus, a minimum of the shape-measure
along the branch. A seed is a point where the front of the evolution of the eikonal
equation concentrates, and so is characterised by a maximum of the ratio.

dly/ds =
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Another important property of the shape-measure is its invariance to bending
of the shape. Bending invariance derives from the fact that, if we bend the shape,
we loose from one side the same amount of boundary-length that we gain on the
opposite side. To see this we let k be the curvature on the skeleton, and k;
and kg be the inward curvature on the corresponding boundary points. Further,
suppose that @ is the angle between the border tangent and the skeleton tangent.

Let p = 2k + k10088 — £20080 b5 we have p = ka(cosf + pr) and

1-rk; 1—rky ?
_ P - 2k + ﬁfsl k1 _ 2k(1 —rky) + kycosf
cosf+pr  cosf+2rk+ 152k, 2rk(l - rky) + cos @

Substituting the above in (1), we have

cosf _ 2rk(1 - rki) 4 cosf
R T 1ok
Thus we find that diy/ds = 2rk +dl; /ds, or dly/ds —rk = dli /ds +rk. That

is, if we bend the image enough to cause a curvature k in the skeleton, what we
lose on one side we get back on the other.

di2/ds =

4 Measure Extraction

The extraction of the skeletal shape measure is a natural by-product which comes
for free when we use the Hamilton-Jacobi approach for skeleton extraction. This
is a very important property of this shape-measure. Using the divergence theorem
we can transport a quantity linked to a potentially distant border to a quantity
local to the skeleton. Using this property, we can prove that the border length
to shock length ratio is proportional to the divergence of the gradient of the
distance map.

As we have already mentioned, the eikonal equation induces a system that
is conservative everywhere except on the skeleton. That is, given the field F
defined as the gradient of the distance map, the divergence of I is everywhere
zero, except on the skeleton.

To show how the shape-measure can be computed in the Hamilton-Jacobi
setting, we consider a skeleton segment s and its e-envelope. The segment s
maps to two segment borders l; and lo. The evolution of the points in these
border segments define two areas A and A§ enclosed within the e-envelope of
s, the segments of boundary I; and lp, and the trajectories bj and b2, and b}
and b3 of the endpoints of {; and ly. The geometry of these areas is illustrated
in figure 3.

Since V- F = 0 everywhere in A§ and A§, by virtue of the divergence theorem
we can state that the flux from the two areas are both zero, i.e. P ac (F) =0 and
D4 (F) =0. The trajectories of the endpoints of the border are, by construction,
parallel to the field, so the normal is everywhere normal to the field and thus
there is no flux through the segments b}, b%, b} and b3. On the other hand the
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field on the shape-boundary is always normal to the boundary. Hence, the flux
through the border segments I; and Iy is equal to the length £(l;) and £(l3) of
the segments {; and [y respectively.

Since @ 4¢ (F) = 0 and @4 (F) = 0 the flux that enters
through the border segments I; and I3 has to exit through
the e-envelope of 5. That is, if €; and €5 are the sides of A§
and A§ on the e-envelope of s, we have &, (F) = & (F) and
., (F) = &, (F). This, in turn, implies that the flux through
the whole e-envelope of s is @ (F') = (1) + £(L).

Since lim._p f£V - Fde = [[V.Fds, and the value of
the flux through the e-envelope of s is independent of €, we
have [ V- Fds = {(l;) + £(l3). Fig.3. The flux

Taking the first derivative with respect to ds we have, for through the bor-
each non-singular point in the skeleton, V - F' = di,/ds + der and through e
dly/ds. are equal

4.1 Computing the Distance between Skeletons

This result allows us to calculate a global shape-measure for each skeleton branch
during the branch extraction process. For our matching experiments we have
used a simple graph representation where the nodes are junctions or endpoints,
and the edges are branches of the skeleton. When we have completed the thinning
of the shape boundary and we are left only with the skeleton, we pick an endpoint
and start summing the values of the length ratio for each skeleton points until we
reach a junction. This sum Y., V - F(x;) over every pixel z; of our extracted
skeleton branch is an approximation of [V - F'ds = [ (dli/ds + dla/ds) =
£(l1) + £(13) the length of the border that generates the skeleton branch.

At this point we have have identified a branch and we have calculated the
total value of the length-ratio along that branch, or, in other words, we have
computed the total length of the border that generated the branch. We continue
this process until we have spanned each branch in the entire skeleton. Thus
we obtain a weighted graph representation of the skeleton. In the case of a
simple shape, i.e. a shape with no holes, the graph has no cycles and thus is an
(unrooted) tree.

Given this representation we can cast the problem of computing distances
between different shapes as that of finding the tree edit distance between the
weighted graphs for their skeletons.

Tree edit distance is a generalization to trees of String edit distance. The edit
distance is based on the existence of a set § of basic edit operation on a tree and
a set C of costs, where ¢, € C is the cost of performing the edit operation s € S.
The choice of the basic edit operations, as well as their cost, can be tailored to
the problem, but common operations include leaf pruning, path merging, and,
in case of an attributed tree, change of attribute. Given two trees 77 and T, the
set S of basic edit operations, and the cost of such operation C = ¢;,5 € S, we
call an edit path from T} to T a sequence sy, ..., s, of basic edit operations that
transform T} into T. The length of such path is I = ¢,, +- - - ¢, ; the minimum
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length edit path from T to Ty is the path form Ty to Tp with minimum length.
The length of the minimum length path is the tree edit distance.

With our measure assigned to each edge of the tree, we define the cost of
matching two edges as the difference of the total length ratio measure along the
branches. The cost of eliminating an edge is equivalent to the cost of matching
it to an edge with zero weight, i.e. one along which the total length ratio is zero.

5 Experimental Results

In this section we asses the ability of the proposed measure to discriminate
between different shapes that give rise to skeletons with the same topology. We
will also asses how smoothly the overall measure goes through transitions.

As demonstrated earlier in the paper, we
know that the length ratio measure should be

stable to any local shape deformation, including
those that exhibit an instability in shock length.
This kind of behaviour at local deformations is

what has led to the idea that the skeleton is an

unstable representation of shape.
To demonstrate the stability of the skeletal

representation when augmented with the length

ratio measurement, we have generated a se- Fig.4. A “disappearing” pro-
quence of images of a rectangle with a protrusion trusion which causes instability
on one side (Figure 4). The size of the protrusion in shock-length, but not in our
is gradually reduced throughout the sequence, Imeasure

until it is completely eliminated in the final im-

age. In figure 5 we plot the global value of the length ratio measure for the shock
branch generated by the protrusion. It is clear that the value of the length ratio
measure decreases monotonically and quite smoothly until it becomes zero when
the protrusion disappears.

In a second set of experiments we have aimed to
assess the ability of the length ratio measure to dis- w\
tinguish between structurally similar shapes. To do
this we selected two shapes that were perceptually
different, but which possessed skeletons with a very
similar topology. We, then, generated an image se-
quence in which the two shapes were morphed into
one-another. Here the original shapes are the start
and end frames of the sequence. At each frame in  Fig, 5. The measure of the
the sequence we calculated the distance between the gkeleton segment generated
start and end shapes. by a protrusion

We repeated this experiment with two morphing
sequences. The first sequence morphed a sand shark into a swordfish, while the
second morphed a donkey into a hare.
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NN A A

Fig. 6. Morphing sequences and their corresponding skeletons: sand shark to swordfish
on the left, and donkey to hare on the right

To determine the distance between two shapes we used is the Euclidean
distance between the normalized weights of matched edges. In other words, the
distance is D(A, B) = 1/ X_;(ef* — e?)? where et and ef are the normalised
weights on the corresponding edges indexed by ¢ on the shapes denoted by A
and B. The normalised weights are computed by dividing the raw weights by
the sum of the weights of each tree.

We apply this normalized length ratic mea-
sure to ensure scale invariance: two identical shapes
scaled to different proportion would have different
ratios due to the scale difference, but measure along
equivalent branches of the two shapes would vary by . E
a constant scale factor: the ratio of the lengths of
the borders. Since the the sum of the weights of the ~=—
edges of a tree is equal to the total length of the
border, dividing the weights in each branch by this (a) Distances in fish
quantity we have reduced the two measurements to ~ morphing sequence
the same scale. In this way the relevant quantity is
not the absolute magnitude for a branch, but the .
magnitude ratio with other branches.

There is clearly an underlying correspondence " -
problem involved in calculating the distance in this \ -

way. In other words, we need to know which edge _\
matches with which. To fully perform a shape recog- ~ g
nition task we should solve the correspondence — : : i
problem. However, the aim of the work reported

here was to analyze the properties of our length (b) Distances in don-
ratio measure and not to solve the full recognition key to hare morphing

problem. Thus for the experiments reported here we sequence
have located the edge correspondences by hand.

For each morphing sequence, in figure 7 we plot Fig. 7. Distances from first
the distance between each frame in the sequence and last frame of the mor-
and the start and end frames. The monotonicity of Pphing sequences
the distance is evident throughout the sequences.

This is a proof of capacity of our length ratio measure to disambiguate between
shapes with topologically similar skeletons.

To further asses the ability to discriminate between similar shapes, we se-

lected a set of topologically similar shapes from a database of images of tools.
In the first column of figure 8 we show the selected shapes. To their right are
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the remaining shapes sorted by increasing normalized distance. Each shape is
annotated by the value of the normalized distance.

It is clear that similar shapes are usu-
ally closest to one-another. However, there
are problems due to a high sensitivity to oc-
clusion. This can be seen in the high rela-
tive importance given to the articulation an-
gle. This is due to the fact that, in the pliers
images, articulation occludes part of nose of
pliers. While sensitivity to occlusion is, with-
out a doubt, a drawback of the measure, we
have to take into account that skeletal rep-
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In this paper we presented a shape measure
defined on the skeleton. This measure has 0.021/0.048|0.068/0.
been used in the literature as a branch rele-
vance measure during skeleton extraction and
pruning. We state that the informational con-
tent of the measure goes beyond this use, and
can be used to augment the purely structural information residing in a skeleton
in order to perform shape indexation and matching tasks.

We show that the shape measure has a number of interesting properties that
allow it to distinguish between structurally similar shapes. In particular, the
measure a) changes smoothly through topological transitions of the skeleton, b)
is able to distinguish between ligature and non-ligature points and to weight
them accordingly, and c) it exhibits invariance under “bending”. What makes
the use of this measure particularly appealing is the fact that it can be calculated
with no added effort when the skeleton is computed using the Hamilton-Jacobi
method of Siddigi, Tannenbaum and Zucker.
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