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Learning Structural Variations in Shock Trees
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Abstract. In this paper we investigate how to construct a shape space
for sets of shock trees. To do this we construct a super-tree to span the
union of the set of shock trees. We learn this super-tree and the corre-
spondences of the node in the sample trees using a maximizing likelihood
approach. We show that the likelihood is maximized by the set of cor-
respondences that minimizes the sum of the tree edit distance between
pair of trees, subject to edge consistency constraints. Each node of the
super-tree corresponds to a dimension of the pattern space. Individual
such trees are mapped to vectors in this pattern space.

1 Introduction

Recently, there has been considerable interest in the structural abstraction of
2D shapes using shock-graphs [9]. The shock-graph is a characterization of the
differential structure of the boundaries of 2D shapes. Although graph-matching
allows the pairwise comparison of shock-graphs, it does not allow the shape-
space of shock-graphs to be explored in detail. In this paper we take the view
that although the comparison of shock-graphs, and other structural descriptions
of shape, via graph matching or graph edit distance has proved effective, it is
in some ways a brute-force approach which is at odds with the non-structural
approaches to recognition which have concentrated on constructing shape-spaces
which capture the main modes of variation in object shape. Hence, we aim to
address the problem of how to organize shock-graphs into a shape-space in which
similar shapes are close to one-another, and dissimilar shapes are far apart. In
particularly, we aim to do this in a way such thal the space is traversed in a
relatively uniform manner as the structures under study are gradually modified.
In other words, the aim is to embed the graphs in a vector-space where the
dimensions correspond to principal modes in structural variation.

There are a number of ways in which this can be achieved. The first is to com-
pute the edit-distance between shock-graphs and use multidimensional scaling to
embed the individual graphs in a low-dimensional space [6]. However, as pointed
out above, this approach does not necessarily result in a shape-space where the
dimensions reflect the modes of structural variation of the shock-graphs. Fur-
thermore, pairwise distance algorithms consistently underestimate the distance
between shapes belonging to different clusters. When two shapes are similar,
the node-correspondences can be estimated reliably, but as shapes move farther
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apart in shape space the estimation becomes less reliable. This is due to the
fact that correspondences are chosen to minimize the distance between trees: as
the shock-trees move further apart the advantage the “correct” correspondence
has over alternative ones diminishes. Until, eventually, a match which yields a
lower distance is selected. The result of this is a consistent underestimation of
the distance as the shapes move further apart in shape space.

The second approach is to extract feature vectors from the graphs and use
these as a shape-space representation. A shape-space can be constructed from
such vectors by performing modal analysis on their covariance matrix. However,
when graphs are of different size, then the problem of how to map the structure of
a shock-graph to a vector of fixed length arises. It may be possible to circumvent
the problem using graph spectral features.

In this paper we take a different approach to the problem. We aim to embed
shock trees in a pattern space by mapping them to vectors of fixed length. We
do this as follows. We commence from a set of shock-trees representing different
shapes. From this set we learn a super-tree model of which each tree can be
considered a noisy sample. In particular, we assume that each node feature is
detected with a probability that depends on its weight, but that the hierarchical
relation between two detected nodes is always correct. That is, our model has
every possible node and the sampling error is in the existence of nodes in our
samples, not in their relational structure. Hence, the structure of each sample
tree can be obtained from the structure of the super-tree with node removal
operations only. We learn this super-tree and the correspondences between the
nodes in the sample trees using a maximizing likelihood approach. We show that
the likelihood is maximized by the set of correspondences that minimizes the
sum of the tree edit distance between pair of trees, subject to edge consistency
constraints, To embed the individual shock-trees in a vector-space we allow each
node of the super-tree to represent a dimension of the space. Each shock-tree is
represented in this space by a vector which has non-zero components only in the
directions corresponding to its constituent nodes. The non-zero components of
the vectors are the weights of the nodes. In this space, the edit distance between
trees is the L1 norm between their embedded vectors.

2 Tree Edit-Distance

The idea behind edit distance is that it is possible to identify a set of basic
edit operations on nodes and edges of a structure, and to associate with these
operations a cost. The edit-distance is found by searching for the sequence of
edit operations that will make the two graphs isomorphic with one-another and
which has minimum cost. By making the evaluation of structural modification
explicit, edit distance provides a very effective way of measuring the similarity of
relational structures. Moreover, the method has considerable potential for error
tolerant object recognition and indexing problems. Transforming node insertions
in one free into node removals in the other allows us to use only structure
reducing operations. This, in turn, means that the edit distance between two

[ —————
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trees is completely determined by the subset of nodes left after the optimal
removal sequence. In this section we show how to find the set correspondences
that minimizes the edit distance between two trees. To find he edit distance we
make use of results presented in [10]. We call C(t) the closure of tree ¢, Ey(t)
the edit operation that removes node v from t and £,(C(t)) the equivalent edit
operation that removes v from the closure. The first result is that edit and closure
operations commute: £,(C(¢)) = C(Ey(t)). For the second result we need some
more definitions: We call a subtree s of Ct obtainable if for each node v of s
if there cannot be two children ¢ and b so that (a,b) is in Cf. In other words,
for s to be obtainable, there cannot be a path in ¢ connecting two nodes that
are siblings in s. We can, now, introduce the following:

Theorem 1. A tree f can be generated from a tree t with a sequence of node
removal operations if and only if £ is an obtainable subtree of the directed acyclic
graph Ct.

By virtue of the theorem above, the node correspondences yielding the min-
imum edit distance between trees ¢ and ¢’ form an obtainable subtree of both Ct
and Ct'. Hence, we reduce the problem to the search for a common substructure:
the maximum common obtainable subtree (MCOS).

We commence by transforming the problem from the search of the minimum
edit cost linked to the removal of some nodes, to the maximum of a utility
function linked to the nodes that are retained. To do this we assume that we
have a weight w; assigned to each node {, that the cost of matching a node ¢ to a
node j is [w; —w;|, and that the cost of removing a node is equivalent to matching
it to a node with weight 0. We define the set M C N x N¥' the set of pair of
nodes in ¢ and ¢ that match, the set Lt = {i € N't|Vz, < i, >¢ M} composed
of nodes in the first tree that are not matched to any node in the second, and
the set Rt = {j € N |Vz, < #,§ >¢ M}, which contains the unmatched nodes
of the second tree. With these definitions the edit distance becomes:

d(t,t’)=2w,;+ ij+ Z |w; —w;| =

ie Lt jeRY <djreEM
= Z Wi -+ Z wy — 2 Z min{w;, w;). (1)
1ENt JENY <dj>eM

We call he utility of the match M. the quantity
UM) = Z min(w;, w;).
<ig>eM

Clearly the match that maximizes the utility. minimizes the edit distance. That
is, Let O C P(Nt x N't') be the set of matches that satisfy the obtainability
constraint, the node correspondence M* = (N}, N}\) is
M* = argmaxU(M),
MeO
and the closure of the MCOS is the restriction to Ny of Ct.
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Let us assume that we know the utility of the best match rooted at every de-
scendent, .of v and w. We aim to find the set of siblings with greatest total utility.
tI‘o do this we make use of a derived structure similar to the association grapli
mtroducedl by Barrow in [1]. The nodes of this structure are pairs drawn from
the Cartfeman product of the descendents of v and w and each pair correspond
to a particular association between a node in one tree to a node in the other. We
connect t\ivo such associations if and only if there is no inconsistency between the
two assoclations, that is the corresponding subtree is obtainable. Furthermore
We assign to each association node (a,b) a weight equal to the utility of the best,
match }“ooted at @ and b. The maximum weight clique of this graph is the set
of consistent siblings with maximum total utility, hence the set of children of v
and w that guarantee the optimal isomorphism. Given a method to obtain a
maximum weight clique, we can use it to obtain the solution to our isomorphism
problem, We refer again to (10] for heuristics for the weighted clique problem.

3 Edit-Intersection and Edit-Union

The edit distance between two trees is completely determined by the set of nodes
that do not get removed by edit operations, that is, in a sense, the intersection of
the gets of nodes. Furthermore, the distance, and hence
the intersection, determines the probability of a matchi
We would like to extend the concept to more than two
trees so that we can compare a shape tree to a whole
set T" of trees, Moreover, this allows us to determine how
a new sample relates to a previous distribution of trees.

Formally, we assume that the set T of tree samples is
drawn from an unknown distribution of trees T that we
j.va,nt to learn. We assume that we have no sampling error
in the detection of the hierarchical relation between two
nodes in a sample, that is if we detect two nodes, we de-
tect them with the correct ancestor descendent relation.
Qn the other hand, we assume an exponential distribu-
tion for the node weight for a node i of tree ¢: Fig. 1

LR
¢ &

Intersection Union

Union and
pi(z) = kexp [-—[x _ 9f|] ' intersection of trees

wl.xere 0; is a Parameter of node 4’s weight distribution we want to estimate, and
kisa normalizing constant. ,

The log-likelihood function based on the samples T
poar e mples 7" and the set of nodes

L=3%" log p! = ok o
eeﬂe;(f,} ' ;"E;(t) 8 “EZTS'E%Q [w; — 6]

E’Ve can estimate # assuming we know the correspondences C(¢, s) € N (t) x N(s)
etween two trees t,s € 7. Fixing this correspondences and estimating 6, we can

e ———
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write the variable part of the log-likelihood function as:

-3y ¥

teT 2T <i,j>EC(t,8)

Jwf - ws].

The structure we want to learn must maximize this function, subject to a consis-
tency constraint on the correspondences. That is if node a in tree t; is matched
to node b in tree £; and to node ¢ in tree t3, then b must be matched to ¢, i.e.

< a,b>€ C(ty, ta)A < a,e >€ Clty,t3) =< b, e >€ Olta, t3).

To find the match we calculate a union of the nodes: a structure from which
we can obtain any tree in our set removing appropriate nodes, as opposed to
the intersection of nodes, which is a structure that can obtained removing nodes

from the original trees (see Figure 1). Any such struc-

ture has the added advantage of implicitly creating an ® R
embedding space for our trees: assigning to each node a (k) (bl
coordinate in a vector space V, we can associate each Q@0 &0

tree t to a vector v € V so that v; = wf, where w! is
the weight of the node of ¢ associated with node ¢ of the
union, w} = 0 if no node in ¢ is associated with 1.

The structure of the union of two trees is completely
determined by the set of matched nodes: it can be ob-
tained by iteratively merging the nodes of the two trees
that are matched. The result will be a directed acyclical
graph with multiple paths connecting various nodes (see __, . .
Figure 2). This structure, thus, has riore links than r(iec~ Piiz. 2. Edit-uitanios
essary and cannot be obtain from the first tree by node
removal operations alone. Removing the superfluous edges. we obtain a tree
starting from which we can obtain either one of the original trees by node re-
moval operations alone. Furthermore, this reduced structure maintains the same
transitive closure, hence the same hierarchical relation between nodes.

Since the node weights are positive, we can rewrite the variable component
of the log-likelihood function as:

BeuZdo b, vie 0 3 whe2 3 5 37

teT seT ieN(t) teT s€T jEN(s) teT seT <i,j>EM(t,8)

two trees

min(w}, w}),

where M (t, s) is the set of matches between the nodes of the trees ¢ and s. From
this we can see that the set of matches M that maximizes the log likelihood
maximizes the sum of the utility functions Y ,cp 3, U(M(t, s)) and, hence,
minimizes the sum of the edit distances between each pair of samples.

3.1 Joining Multiple Trees

Learning the super-structure, or equivalently finding the structure that mini-
mizes the total distance between trees in the set is computationally infeasible,
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but we propose a suboptimal iterative approach that iteratively extends the
union adding a new tree to it. We want to find the match between the union
and the nodes to be added consistent with the obtainability constraint that min-
imizes the sum of the edit distance between the new tree and each tree in the
set. Unfortunately the union operation is not closed in the set of trees, that is
the union is not necessarily a tree since it is not always possible to find a tree
such that we can edit it to obtain the original trees. For an example where the
union of two trees in not a tree see Figure 3. In this figure o and 3 are subtrees.
Because of the constraints posed by matching trees a and trees 3, nodes b and ¥’
cannot be matched and neither b can be a child of b nor & a child of b. The only
option is to keep the two paths as separate alternatives: this way we can obtain
the first tree removing the node b’ and the second removing b.
For this reason we cannot use our tree edit distance al-

gorithm unchanged to find the matches between the union (9 (@
and the new tree because it would fail on structures with J > Gk
multiple paths from one node a to node b, counting any ’ ‘I

match in the subtree rooted at b twice. Fortunately, dif-
ferent paths are present in separate trees and so we can
assume that they are mutually exclusive. If we constrain
our search to match nodes in only one path and we match
the union to a tree, we are guaranteed not to count the
same subtree multiple times. Interestingly, this constraint
can be merged with the obtainability constraint: we say
that a match is obtainable if for each node v there cannot
be two children a and b and a node ¢ so that there is a
path, possibly of length 0, from @ to ¢ and one from b to c.
This constrain reduces to obtainability for trees when ¢ = b, but it also pre-
vents a and b from belonging two to separate paths joining at c. Hence from a
node where multiple paths fork, we can extract children matches from one path
only.

It is worth noting that this approach can be extended to match two union
structures, as long as at most one has multiple paths to a node. To do this we
iterate through each pair of weights drawn from the two sets, that is, we define

the utility as: ,
UM) = Z Z min(w}, w} ),
tET ' eTy <i,j>EM

where M C NTY) x MT) is the set of matches between the nodes of the
union structures Ty’ and Ty'. The requirement that no more than one union
has multiple paths to a node is required to avoid double counting. Solving the
modified weighted clique problems we obtain the correspondence between the
nodes of the trees in in the two sets.

To be able to calculate the utility we need to keep, for each node in the union
structure, the weights of the matched nodes. A way to do this is to assign to each
node in the union a vector of dimension equal to the number of trees in the set.
The ith coordinate of this vector will be the weight of the corresponding node in

Fig. 3. Edit-union
is not a tree
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the ith tree, 0 if the ith tree doesn’t have a node matching to the current nod.e,
This representation also allows us to easily obtain the coordinate of each tree'm
the set in the embedding space induced by the union: the ith weight of the jth
node is the jth coordinate of the ith tree.

In orderl to increase the accuracy of the approximation, we want to merge
trees with smaller distance first. This is because we can be reasonably confident
that, if the distance is small, the extracted correspondences are corre:ct. We cogld
start with the set of trees, merge the closest two and replace them with th_e union
and reiterate until we end up with only one structure. Unfortunately, since we
have no guarantees that the edit-union is a tree, we might enq up tr}{ing to merge
two graphs with multiple paths to a node. For this reason, if merging two trees
give a union that is not a tree, we discard the union and try with the next-best
match. When no trees can be merged without duplicating paths, we merge tbe
remaining structures always merging the new nodes to the same structure. This
way we are guaranteed to merge at each step at most one multi-path graph.

4 Experimental Results

We evaluate the new approach on the problem of shock tree matching. In. or-
der to asses the quality of the approach we compare the obtained embeddlr}gs
with those deseribed in [10,6]. In particular, we compare the the first two prin-
cipal components of the embedding generated joining purely .strl.lctur.al skeletal
representations, with 2D multi-dimensional scaling of the pairwise dlStS:I]:CGS of
the shock-trees weighted with some geometrical information. The addition of
matching consistency across shapes allows the embedding to I?ettel' capture the
structural information present in the shapes, yielding embedding comparable to
those provided by localized geometrical information.

L™ L . %

3‘1
[
7

-
*

¥ n

Fig. 4, Top: Embedding through union. Bottom: 2D MDS of pairwise distance
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We run three experiments with 4, 5, and 9 shapes each. In each experiment
the shapes belong to two or more distinct visual clusters. In order to avoid scaling
effect due to difference in the number of nodes, we normalize the embedding
vectors so that they have L1 norm equal to 1, and then we extract the first 2
principal components.

Figure 4 shows a comparison between embedding obtained through edit-
union of shock trees and through multi-dimensional scaling of the pairwise dis-
tances. The first column shows a clear example where the pairwise edit-distances
approach underestimate the distance while edit-union keep the clusters well sep-
arated. The second and third column show examples where the distance in shape
space is not big enough to observe the described behavior, yet the embedding
obtained through union fares well against the pairwise edit-distance, especially
taking into account the fact that it uses only structural information while the
edit-distance matches weight the structure with geometrical information. In par-
ticular, the third column shows a better ordering of shapes, with brushes being
so tightly packed that they overlap. It is interesting to note how the union em-
bedding puts the monkey wrench (top-center) somewhere in-between pliers and
wrenches: the algorithm is able to consistently match the head to the heads of
the wrenches, and the handles to the handles of the pliers.

Figure 5 plots the distances obtained through edit union of weighted shock
trees (x axis) versus the corresponding pairwise edit distances (y axis). The plot
clearly highlights that the pairwise distance approach tends to underestimate
the distances between shapes.

4,1 Synthetic Data

To augment these real world experiments, we have performed the embedding on
synthetic data. The aim of the experiments is to characterize the ability of the
approach to generate a shape space. To meet this
goal we have randomly generated some prototype .4
trees and, from each tree, we generated five or ,,
ten structurally perturbed copies. The procedure
for generating the random trees was as follows: we o
commence with an' empty tree (i.e. one with no :
nodes) and we iteratively add the required num-
ber of nodes. At each iteration nodes are added o
as children of one of the existing nodes. The par- ..
ents are randomly selected with uniform probability
from among the existing nodes. The weight of the
newly added nodes are selected at random from an
exponential distribution with mean 1. This proce-
dure will tend to generate trees in which the branch
ratio is highest closest to the root. This is quite realistic of real-world situations,
since shock trees tend to have the same characteristic. To perturb the trees we
simply add nodes using the same approach.

9.2 0.+ 0.8 0.8 & 5,3 L.t

Fig.5. Edit-union vs.
pairwise edit distances

{
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Fig. 6. Synthetic clusters

In our experiments the size of the prototype trees varied from 5 to 20 nodes.
As we can see from Figure 6, the algorithm was able to clearly separate the
clusters of trees generated by the same prototype. Figure 6 shows three experi-
ments with synthetic data. The first and second images are produced embedding
5 structurally perturbed trees per prototype: trees 1 to 5 are perturbed copies of
the first prototype, 6 to 10 of the second. The last image shows the result of the
experiment with 10 structurally perturbed trees per prototype: 1 to 10 belong to
one cluster, 11 to 20 to the other. In each image the clusters are well separated.

5 Conclusions

In this paper we investigated a technique to extend the tree edit distance frame-
work to allow the simultaneous matching of multiple tree structures. With this
approach we can impose a consistency of node correspondences between matches,
avoiding the underestimation of the distance typical of pairwise edit-distances
approaches. Furthermore through this methods we can get a “natural” embedding
space of tree structures that can be used to analyze how tree representations vary
in our problem domain. '

In a set of experiments we apply this algorithm to match shock graphs, a
graph representation of the morphological skeleton. The results of these experi-
ments are very encouraging, showing that the algorithm is able to group similar
shapes together in the generated embedding space.

Our future plans are to extend the framework reported in this paper by
using the apparatus of variational inference to fit a mixture of trees, rather than
a union tree, to the training data. Here we will perform learning by minimizing
the Kullback divergence between the training data and the mixture model.
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Abstract. A graph g is called a maximum common subgraph of two
graphs, g; and g, if there exists no other common subgraph of g;and g,
that has more nodes than g. For the maximum common subgraph
problem, exact and inexact algorithms are known from the literature.
Nevertheless, until now no effort has been done for characterizing their
performance. In this paper, two exact algorithms for maximum common
subgraph detection are described. Moreover a database containing
randomly connected pairs of graphs, having a maximum common graph
of at least two nodes, is presented, and the performance of the two
algorithms is evaluated on this database. '

1 Introduction

Graphs are a powerful and versatile tool useful in various subfields of science and
engineering. There are applications, for example, in pattern recognition, machine
learning and information retrieval, where one needs to measure the similarity of ob-
jects. If graphs are used for the representation of structured objects, then measuring
the similarity of objects becomes equivalent to determining the similarity of graphs.
There are some well-known concepts that are suitable graph similarity measures.
Graph isomorphism is useful to find out if two graphs have identical structure[1].
More generally, subgraph isomorphism can be used to check if one graph is part of
another [1,2]. In two recent papers [3,4], graph similarity measures based on maxi-
mum common subgraph and minimum common supergraph have been proposed.
Detection of the maximum common subgraph (MCS) of two given graphs is a
well-known problem. In [5], such an algorithm is described and in [6] the use of this
algorithm in comparing molecules has been discussed. In [7] a MCS algorithm that
uses a backtrack search is introduced. A different strategy for deriving the MCS first
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