Shape-Space from Tree-Union

Andrea Torsello and Edwin R Hancock
Dept. of Computer Science, University of York
Heslington, York, YO10 5DD, UK

Abstract

In this paper we investigate how to construct a shape
space for sets of shock trees. To do this we construct a
super-tree to span the union of the set of shock trees. This
super-tree is constructed so that it both minimizes the to-
tal tree edit distance and preserves edge consistency con-
straints. Each node of the super-tree corresponds to a di-
mension of the pattern space. Individual such trees are
mapped to vectors in this pattern space.

1. Introduction

Recently, there has been considerable interest in the
structural abstraction of 2D shapes using shock-graphs.The
shock-graph is a characterization of the differential struc-
ture of the boundaries of 2D shapes. Although graph-
matching allows the pairwise comparison of shock-graphs,
it does not allow the shape-space of shock-graphs to be ex-
plored in detail. In this paper we address the problem of
how to organize shock-graphs into a shape-space in which
similar shapes are close to one-another, and such that the
space Is traversed in a relatively uniform manner as the
shapes are gradually modified. In other words, the aim is to
embed the graphs in a vector-space where the dimensions
correspond to principal modes in structural variation.

There are a number of ways in which this can be
achieved. The first is to compute the edit-distance between
shock-graphs and to use multidimensional scaling to embed
the individual graphs in a low-dimensional space [6]. How-
ever, this approach does not necessarily result in a shape-
space where the dimensions reflect the modes of structural
variation of the shock-graphs. Furthermore, pairwise dis-
tance algorithms consistently underestimate the distance be-
tween shapes belonging to different clusters. When two
shapes are similar, the node-correspondences can be esti-
mated reliably, but as shapes move farther apart in shape
space the estimation becomes less reliable. This is due to
the fact that correspondences are chosen minimize the dis-
tance between trees: as the shock-trees move further apart
the advantage the “correct” correspondence has over alter-
native ones diminishes, until, eventually, a match which
yields a lower distance is selected.

1051-4651/02 $17.00 © 2002 IEEE

188

The second approach is to extract feature vectors fro
the graphs and to use these as a shape-space representatio
A shape-space can be constructed from such vectors by per-
formmg modal analysis on their covanance matrix. How :

We aim to embed shock trees in a pattern space by map,
them to vectors of fixed length. We do this as follows. We
commence from a set of shock-trees representing dlﬂ'etelg'
shapes. From this set, we construct a super-tree from wh
each tree may be obtained by the edit operations of no
and edge removal. Hence each shock-tree is a subtre
the super-tree. The super-tree is constructed so that it mil
imizes the total edit distance to the set of shock-tree
embed the individual shock-trees in a vector-space we
low each node of the super-tree to represent a dimension of;
the space. Each shock-tree is represented in this space b
a vector which has non-zero components only in the direl
tions corresponding to its constituent nodes. The non- ze
components of the vectors are the weights of the nodes
this space, the edit distance between trees is the L1 no

between their embedded vectors. '

2. Tree Edit-Distance

The idea behind edit distance is that it is possible to idens’
tify a set of basic edit operations on nodes and edges
a structure, and to associate with these operations a cos
The edit-distance is found by searching for the sequence
edit operations that will make the two graphs isomorp
with one-another and which has minimum cost. By makin,
the evaluation of structural modification explicit, edit di
tance provides a very effective way of measuring the si
ilarity of relational structures. Moreover, the method h
considerable potential for error tolerant object recognitio
and indexing problems. Transforming node insertions i
one tree into node removals in the other allows us to u
only structure reducing operations. This, in turn, mea
that the edit distance between two trees is completely dete
mined by the subset of nodes left after the optimal remov
sequence. In this section we show how to find the set ol

respondences that minimizes the edit distance between two
trees. To find he edit distance we make use of two results
presented in [8]. We call C(t) the closure of tree ¢, E, (t) the
edit operation that removes node v from ¢ and &£, (C(t)) the
equivalent edit operation that removes v from the closure.
The first result is that edit and closure operations commute:
E,(C(t)) = C(Ey(t)). For the second result we need some
more definitions: We call a subtree s of Ct obtainable if for
each node v of s if there cannot be two children a and b so
that (a, b) is in Ct. In other words, for s to be obtainable,
there cannot be a path in ¢ connecting two nodes that are
siblings in s. We can, now, introduce the following:

Theorem 1 A tree t can be generated from a tree t with a
sequence of node removal operations if and only if t is an
obtainable subtree of the directed acyclic graph Ct.

By virtue of the theorem above, the node correspon-
dences yielding the minimum edit distance between trees t
and ¢’ form an obtainable subtree of both Ct and Ct’, hence
we reduce the problem to the search for a common substruc-
ture: the maximum common obtainable subtree (MCOS).

We commence by transforming the problem from the
search of the minimum edit cost linked to the removal of
some nodes, (o the maximum of a utility function linked to
the nodes that are retained. To do this we assume that we
have a weight w; assigned to each node 7, that the cost of
matching a node i to a node j is |w; — w,|, and that the
cost of removing a node is equivalent to matching it to a
node with weight 0. We define the set Al C N* x At
the set of pair of nodes in ¢ and ¢ that match, the set
L' = {i € N*|Vx. < i,z >¢ M} composed of nodes in
the first tree that are not matched to any node in the second,
and the set R*' = {j € Nt |Vz,< z,j >¢ AI'}, which
contains the unmatched nodes of the second set. With these
definitions the edit distance becomes:

dtt)y = wit+ Y wi+ > w—wyl=

ie Lt JERY <ig=eM
= E w; + E w; —2 E min(w;, w;). (1)
PENT! JENT <1ji=EM

We call he utiliry of the match AJ. the quantity

U(M) = Z min(w;, w;).
<ij»eM

Clearly the match that maximizes the utility minimizes the
edit distance. That is, Let O C P(Nt x Nt') be the set
of matches that satisfy the obtainability constraint, the node

correspondence M™ = (N, N;3) is
M™ = argmax U (M)

AMeo

and the closure of the MCOS is the restriction to N} of Ct.
Let us assume that we know the utility of the best match
rooted at every descendent of v and w. We aim to find the

189

set of siblings with greatest total utility. To do this we make
use of a derived structure similar to the association graph
itroduced by Barrow in [1]. The nodes of this structure are
pairs drawn from the Cartesian product of the descendents
of v and w and each pair correspond to a particular asso-
ciation between a node in one tree to a node in the other.
We connect two such associations if and only if there is no
inconsistency between the two associations, that is the cor-
responding subtree is obtainable. Furthermore, we assign
to each association node (a, b) a weight equal to the utility
of the best match rooted at a and b. The maximum weight
clique of this graph is the set of consistent siblings with
maximum total utility, hence the set of children of v and w
that guarantee the optimal isomorphism. Given a method
to obtain a maximum weight clique, we can use it to obtain
the solution to our isomorphism problem. We refer to [8]
for heuristics for the weighted clique problem.

3. Edit-intersection and edit-union

The edit distance between two trees is completely deter-
mined by the set of nodes that do not get removed by edit
operations, that is, in a sense, the intersection of the sets of
nodes. We would like to extend the concept to more than
two trees so that we can compare a shape tree to a whole set
T of trees. Moreover, this allows us to determine how a new
sample relates to a previous distribution of tree structures.
Formally, we would like to find the match that minimizes
the sum of the edit distances between the new tree t* and
each tree t € T, with the added constraint that if node a in
the new tree t* is matched to node b in a tree ¢t; € T and
to node ¢ in tree 5 € T, then b must be matched to ¢, i.e.
<a,b>€ MA <a,c>€ M =< b,c>€ M, were M is
the “matches to” relation.

To find the match we calculate a union of the nodes: a
structure from which we can obtain any tree in our set re-
moving appropriate nodes, as opposed to the intersection
of nodes, which is a structure that can obtained removing
nodes from the original trees.

Any such structure has the added advantage of implicitly
creating an embedding space for our trees: assigning to each
node a coordinate in a vector space V', we can associate each
tree £ to a vector v € V so that v; = wf, where w! is the
weight of the node of ¢ associated with node ¢ of the union,
w! = 0if no node in ¢ is associated with i.

3.1. Union of two trees

Once more, the edit-union of two trees is com-
pletely determined by the set of matched nodes. Start
with the two trees and iteratively merge nodes that are
matched. The result will be a directed acyclical graph
with multiple paths connecting various nodes (see Fig-
ure 1). This structure, thus, has more links than nec-
essary and cannot be obtained from the first tree by

node removal operations alone. Removing the superfluous
edges, we obtain a tree starting from which we can obtain
either one of the original trees
by node removal operations alone.
Furthermore, this reduced structure
maintains the same transitive clo-
sure. If this structure could always
be reduced to a tree, we could use
the matching technique already de- i
scribed to compare a tree to a group A
of trees. Unfortunately, this is not :
always possible: see, for example, T
Figure 2. In this figure o and 3 are Figure 1.
subtrees. Because of the constraints
posed by matching trees « and trees
3, nodes b and b’ cannot be matched nor one can be a child
of the other. The only alternative is to keep the two alter-
native paths separate: this way we can obtain the first tree
removing the node b’ and the second removing b.

(n}
(=t- {7
)

)

3.2. Matching a tree to a union

As seen, in general the union of two trees is a directed
acyclical graph, and our approach can only match trees, and
would fail on structures with multi-

‘a fa

ple paths from one node @ to node b, ..~ o
£ . = N ETE S £
since it would count any match in the JEURE
subtree rooted at b twice. Hence, we . B
[[4

cannot directly use our approach to S
compare a tree to a tree set. '

Fortunately, different paths are
present in separate trees and so we & s
can consider them mutually exclu- -—
sive, hence we don’t ne rform : "

a generic malzh betwceidt\?opgeengric quure £ R
: : Union not a tree.
directed acyclic graphs. If we con-
strain our search to match nodes in only one path and we
match the union to a tree, we are guaranteed not to count the
same subtree multiple times. Interestingly, this constraint
can be merged with the obtainability constraint: we say that
a match is ebtainable if for each node v there cannot be two
children a and b and a node c so that there is a path, possibly
of length 0, from a to ¢ and one from b to c. This constrain
reduces to obtainability for trees when ¢ = b, but it also pre-
vents a and b from belonging two to separate paths joining
at ¢. Hence from a node where multi ple paths fork, we can
extract children matches from one path only.

We want to find the match consistent with the obtainabil-
ity constraint that minimizes the sum of the edit distance
between the new tree and each tree in the set. To be able to
calculate this quantity we keep, for each node in the union
structure, the weights of the matched nodes. A way to do
this is to assign to each node in the union a vector of di-
mension equal to the number of trees in the set. The ith

=)
-

Edit-
Union of two trees.

190

coordinate of this vector will be the weight of the corre-
sponding node in the ith tree, 0 if the ith tree doesn’t have a
node matching to the current node. This representation also
allows us to easily obtain the coordinate of each tree in the
set in the embedding space induced by the union: the ith
weight of the jth node is the jth coordinate of the ith tree.
It is worth noting that this approach can be extended to
match two union structures, as long as at most one has mul-
tiple paths to a node. To do this we iterate through each pair
of weights drawn from the two sets, defining the utility as:

UM) = Z Z min(wf,w;’k

teTy VeTs <i,j>eM

where M € N(TT) x N'(T2') is the set of matches between
the nodes of the union structures T}’ and T3’. The require-
ment that at most one union has multiple paths to a node is
required to avoid double counting. The solution the mod-
ified weighted clique problems yield the correspondences
between the nodes of the trees in the two sets.

3.3. Joining multiple trees

In this section want to show how to construct the edit-
union structure. Finding the super-structure that minimizes
the total distance between trees in the set is computationally
infeasible, but we propose a suboptimal method that itera-
tively extends the union adding a new tree to it.

In order to increase the accuracy of the approximation,
we want to merge trees with smaller distance first. This
is because we can be reasonably confident that, if the dis-
tance is small, the extracted correspondences are correct.
We could start with the set of trees, merge the closest two
and replace them with the union and reiterate until we end
up with only one structure. Unfortunately, since we have
no guarantees that the edit-union is a tree, we might end up
trying to merge two graphs with multiple paths to a node.
For this reason, if merging two trees give a union that is
not a tree, we discard the union and try with the next-best
match. When no trees can be merged without duplicating
paths, we merge the remaining structures always merging
the new nodes to the same structure. This way we are guar-
anteed to merge at each step at most one multi-path graph.

4. Experimental results

We evaluate the new approach on the problem of shock
tree matching. In order to asses the quality of the ap-
proach we compare the embedding obtained with those
described in [8]. In particular, we compare the first two
principal components of the embedding generated joining
purely structural skeletal representations, with 2D multi-
dimensional scaling of the pairwise distances of the shock-
trees weighted with some geometrical information. The ad-
dition of matching consistency across shapes allows the em-
bedding to better capture the structural information present

AR

Figure 3. Top: embedding through union.
Bottom: 2D MDS of pairwise distance.

in the shapes, yielding embeddings comparable to those
provided by localized geometrical information.

We run three experiments with 4, 5, and 9 shapes each.
In each experiment the shapes belong to two or more dis-
tinct visual clusters. In order to avoid scaling effect due to
difference in the number of nodes, we normalize the em-
bedding vectors so that they have L1 norm equal to 1, and
then we extract the first 2 principal components.

Figure 3 shows a comparison between embedding ob-
tained through edit-union of shock trees and through multi-
dimensional scaling of the pairwise distances. The first
column shows a clear example where the pairwise edit-
distances approach underestimate the distance while edit-
union keep the clusters well separated. The second and
third column show examples where the distance in shape
space is not big enough to observe the described behav-
ior, yet the embedding obtained through union fares well
against the pairwise edit-distance, especially taking into ac-
count the fact that it uses only structural information while
the edit-distance approach benefits from the added geomet-
rical information. In particular, the third column shows a
better ordering of shapes, with
brushes being so tightly packed -
that they overlap. It is inter- ¢
esting to note how the union
embedding puts the monkey -
wrench (top-center) somewhere =+

in-between pliers and wrenches: -« 4 by
the union is able to consistently =+ -
match the head to the heads of O RE N T mEaes v

the wrenches, and the handles to Figure 4. Edit-union
the handles of the pliers.

Figure 4 plots the distances
obtained through edit union of weighted shock trees (x axis)
versus the corresponding pairwise edit distances (y axis).
The plot clearly highlights that the pairwise distance ap-
proach tends to underestimate the distances between shapes.

4.1. Synthetic Data

vs pairwise distances.

To augment these real world experiments, we have per-
formed the embedding on synthetic data. The aim of the
experiments is to characterize the ability of the approach to

191

143 - & & 4
-
' £ i
hal
[r
, i
- - . - i i
o - » || < Figure 5. Synthetic clusters.
| 4 » -
IR i % . generate a shape space. To meet this goal we have randomly
" . - 5 generated some prototype trees and, from each tree, we gen-

erated five or ten structurally perturbed copies. The proce-
dure for generating the random trees was as follows: we
commence with an empty tree (i.e. one with no nodes) and
we iteratively add the required number of nodes. At each
iteration nodes are added as children of one of the exist-
ing nodes. The parents are randomly selected with uniform
probability from among the existing nodes. The weight of
the newly added nodes are selected at random from an expo-
nential distribution with mean 1. This procedure will tend to
generate trees in which the branch ratio is highest closest to
the root. This is quite realistic of real-world situations, since
shock trees tend to have the same characteristic. The trees
are perturbed by adding nodes using the same approach.

In our experiments the size of the prototype trees var-
ied from 5 to 20 nodes. As we can see from Figure 5, the
algorithm was able to clearly separate the clusters of trees
generated by the same prototype. Figure 5 shows three ex-
periments with synthetic data. The first and second images
are produced embedding 5 structurally perturbed trees per
prototype: trees 1 to 5 are perturbed copies of the first pro-
totype, 6 to 10 of the second. The last image shows the
result of the experiment with 10 structurally perturbed trees
per prototype: 1 to 10 belong to one cluster, 11 to 20 to the
other. In each image the clusters are well separated.

References

[1]1 H. G. Barrow and R. M. Burstall, Subgraph isomorphism,
matching relational structures and maximal cliques, Inf. Proc.
Lerter, Vol. 4, pp. 83, 84, 1976.

[2] H. Bunke and A. Kandel, Mean and maximum common sub-
graph of two graphs, Pattern Recognition Letters, Vol. 21, pp.
163-168, 2000.

[3] T. F. Cootes, C. J. Taylor, and D. H. Cooper, Active shape
models - their training and application, CVIU, Vol. 61, pp.
38-59, 1995.

[4] T. Heap and D. Hogg, Wormholes in shape space: tracking
through discontinuous changes in shape, in ICCV, pp. 344-
349, 1998.

[5] T. Sebastian, P. Klein, and B. Kimia, Recognition of shapes
by editing shock graphs, in JCCV, Vol. I, pp. 755-762, 2001.

[6] B. Luo, et al., Clustering shock trees, in CVPR, pp. 912-919,
2001.

[71 M. Pelillo, K. Siddigi, and S. W. Zucker, Matching hierar-
chical structures using association graphs, PAMI, Vol. 21, pp.
1105-1120, 1999.

[8] A. Torsello and E. R. Hancock, Efficiently computing
weighted tree edit distance using relaxation labeling, in
EMMCVPR, LNCS 2134, pp. 438453, 2001

