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ABSTRACT

The Hamilton-Jacobi approach has proved to be a powerful and
elegant method for extracting the skeleton of a shape. The ap-
proach is based on the fact that the dynamics of the inward evolv-
ing boundary is conservative everywhere except at skeletal points.
Nonetheless this method appears to overlook the fact that the lin-
ear density of the evolving boundary front is not constant where
the front is curved. In this paper we present an analysis which
takes into account variations of density due to boundary curvature.
This yields a skeletonization algorithm that is both better localized
and less susceptible to boundary noise than the Hamilton-Jacobi
method.

1. INTRODUCTION

The skeletal abstraction of 2D and 3D objects has proved to be an
alluring yet highly elusive goal for over 30 years in shape analysis
[2]. The morphological skeleton of a shape is defined as the set of
singularities in the inward evolution of the boundary with constant
velocity. The dynamics of the boundary is described by the eikonal
equation: a partial differential equation that governs the motion of
a wave-front through a medium. In the case of a uniform medium
the equation is
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is the equa-
tion of the normal to the wave front in the direction of motion and�

is the propagation speed. As the wave front evolves, opposing
segments of the wave-front collide, generating a singularity.

Broadly speaking, the there are three approaches to skeleton
extraction, namely a) marching front methods which simulate the
grassfire transform which involve either thinning [1] or curve evo-
lution [9] b) Voronoi triangulation methods [6, 4] and c) methods
based on the differential geometry of the object boundary. In this
paper, we are interested in this latter class of methods. Here a re-
cently developed and particularly powerful method is that based
on the differential equation which arises when the object boundary
evolves under the Hamilton-Jacobi equations of classical mechan-
ics [5]. Where resulting eikonal equation for the motion flow field
is non-singular, the system is Hamiltonian, and, thus, conservative.
Wherever the system ceases to be conservative there is a singular-
ity in the boundary flow field, and when the boundary reaches the
singularity a so-called shock forms. In the Hamilton-Jacobi frame-
work skeletal points are detected by searching for points where
the system ceases to be Hamiltonian, that is points where the di-
vergence of the flow is not 0 [7]. These methods turn out to be
algorithmically very simple and numerically stable.

A major problem of the Hamilton-Jacobi method is that in
its original implementation, is that it overlooks the fact that the
density of the evolving boundary front is not constant and, infact,
depends on the curvature of the front. As a result of the varia-
tions in density, the flux is not conserved and hence the whole

premise of the skeletonization method collapses. In this paper, we
address this problem by extending the Hamilton-Jacobi analysis to
the case where the front density varies due to boundary curvature.
The main practical advantage of this analysis is that it leads to the
recovery or more stable skeletons.

2. HAMILTON-JACOBI SKELETON

We commence by defining a distance-map that assigns to each
point on the interior of an object the closest distance % from the
point to the boundary (i.e. the distance to the closest point on
the object boundary). The gradient of this distance-map defines
a field

�&
whose domain is the interior of the shape. The field

is defined to be
�& �(' % � where
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21 is the gra-
dient operator. The trajectory followed by each boundary point
under the eikonal equation can be described by the ordinary dif-
ferential equation 3�4 � �& � �4 
 , where �4 is the coordinate vector of
the point. Siddiqi claims that this dynamic system is Hamiltonian
everywhere except on the skeleton. This implies that on skeletal
points the field

�&
is conservative, or
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. However, the total

inward flux through the whole shape is non zero. In fact, the flux
is proportional to the length of the boundary.

The divergence theorem states that the integral of the diver-
gence of a vector-field over an area is equal to the flux of the vector
field over the enclosing boundary of that area. In our case,7�8 '95 �&;:=< � 7?> �& 5 �@ :�A �CB 8 � �& 
�� (1)

where D is any area,
�&

is a field defined in D ,
:=<

is the area
differential in D ,

:�A
is the length differential on the border E of D ,

and
B 8 �F�& 


is the outward flux of
&

through the border E of the
area D .

By virtue of the divergence theorem we have that, within the
interior, there are points where the system is not conservative. The
non-conservative points are those where the boundary trajectory is
not well defined, i.e. where there are singularities in the evolution
of the boundary. These points are the so-called shocks or skeleton
of the shape- boundary. Shocks are thus characterized by locations
where
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.

2.1. Curvature in the Boundary Front
Unfortunately, the hypothesis that the field

�&
is conservative does

not hold in general.
Let us consider an instant

�
in the inward boundary evolution.

The initial border has evolved under the eikonal equation to bound-
ary front I � orthogonal in every point to

�&
. Pick a point JLK6I � ,

what is the value of
'M5 �& � J 
 ? Since the divergence operator is

invariant under rotations, we can write
'N5 �& � ++.OQP &SR ++TO�U &

where V�W � �& � J 
 and VYX is a normal vector orthogonal to VZW .



Since [\[ & [\[ �^] everywhere,
++.O P & �*� . On the other hand++.O U & � J 
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 where

`b� J 
 is the curvature in J of the border
front I � oriented so that

`b� J 
 is positive if the osculating circle is
in the interior of the front. Hence, we have that
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�� ,
that is, the divergence

'M5 �&
is not always 0 as predicted by the

Hamilton-Jacobi approach, but rather it is equal to the curvature of
the front of the inward evolving boundary.

This result can be easily understood with an analogy from
physics: Let us assume that a fluid flows from the border of the
shape, which acts as a source, to the skeleton, which acts as a sink.
If the fluid is incompressible, the fluid density never changes and
the velocity field

�&
is conservative everywhere except at point in

the border and skeleton. On the other hand if the fluid is compress-
ible, as soon as a curved front compresses the fluid, the density
changes and the velocity field is not conservative anymore.
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Fig. 1. Evolution
of a boundary seg-
ment.

Let us pick a segment
:�A �	��


of the bor-
der front I � . Let us assume this segment
has average linear density no �	��
 (see Fig-
ure 1). Under the eikonal equation, at
time
� Rqp � :�A �	��


has evolved to
:�A �	� Rp ��


. Since all the points in
:�A �	��


are
now in

:�A �	� Rqp ��

, the total mass of the

two segments is the same, but if
:�A �	��


is curved the lengths of the segments are
different: [\[ A �	� RNp ��
 [r[ts� [\[ A �	��
 [r[ . From
this we obtain that the average density inA �	� R9p ��


is no �	� RHp ��
 s� no �	��
 . Hence
when the front is curved, the density is not
constant and we have to take into account
mass effects. That is: we have to resort to a more general conser-
vation principle: the conservation of momentum.

3. MOMENTUM FIELD

Using this physical intuition we state that there is indeed a con-
servative field associated with the dynamics of the boundary: the
momentum

�u � o �& , where o is the scalar field that assigns to
each point the linear density of the boundary front, and hence'v5k� o �& 
t�w��� . After some algebra, we obtain the partial dif-
ferential equation (PDE)

' o 5 �& �M_ o 'N5 �&�x which goversn the
density evolution in the flow field. Setting

< �zyr{T|k� o 
 , we can
write the above PDE as a function of the log-density

<
and henceo ' < 5 �& �9_ o 'q5 �&�x . Eliminating o on both sides, we obtain:' < 5 �& �9_}'95 �&�x

(2)

This is a transport equation which can be reduced to a set of or-
dinary differential equations (ODE) along the paths of the bound-
ary points. ~��� � < ���=�	��
�
��9_}'H5/�& �����	��
�
�� � ���	��
���& �����	��
�
 (3)

We can derive this equation by analyzing the change of density
of segment

:�A
in Figure 1. We know that no �	��
 [r[ :�A �	��
 [\[ ��� . where:�A �	��


is the evolution of the border segment
:�A

at time
�
,
�

is its
mass, and no �	��
 and

`b�	��

are the segment’s average linear density

and curvature at time
�
.

After a small interval of time
p �

, the segment length will be
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From these equations and the conservation of mass, we have:

no �	� R�p ��
�_ no �	��
�� no �	��
 `b�	��
 p �]j_�`b�	��
 p � R�� � p � ! 
 x
Taking the limit for
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Where
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is the trajectory under the eikonal equation of the limit
point the segment

:�A
tends to as [r[ :�A [\[ ��� . Integrating (4) and

using the fact that
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4. COMPUTING THE DENSITY

To obtain the momentum field we need to integrate the density field
in the interior of the shape. Since images have a finite resolution,
we need to discretize the solution in the image lattice.

One approach is to express the PDE (2) as a system of differ-
ence equations. The difference equations form a linear system that
is then solved to obtain the log-density

< �qy\{Y|�� o 
 . The problem
with this approach is that the skeleton is a set of singularities of the
momentum field, hence the density can have very different values
at opposite sides of a skeletal branch. The result is that the lin-
ear system will have no solution and even trying to approximate a
solution using a residual descent methods would force the density
values the solution to oscillate wildly on points near the skeleton.

4.1. Integration in Time
In order to overcome this problem we need to be sure that the
difference operator used in the equations never cross a skeletal
branch. One way to guarantee this is to integrate the equation in the
time domain: so that the formulae giving the value of o at points
in the boundary front at time

�
reference values of o only at points

in the fronts at previous times. We can obtain this by integrating
the ODE (3) along the paths of the boundary points.

We opt to use the second order Cranck-Nicolson method, that
is, for each point

� 4 ���Z
 in the interior of the shape, we have the
equation:< �����	��
�
b_ < �����	��_�]�
�
��9_ ]� � '95 �& �����	��
�
 R '95 �& �����	��_�]Q
�
��
Solving for the log-density at time

�
, we obtain:< �����	��
�
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Using this equation we can calculate the log-density at of a point
of the border at time

�
referencing only values of the log-density at

points that belong the front at previous times. Since the evolution
never crosses the skeleton, we are guaranteed not to cross skeletal
branch through our calculations.

4.2. Integration in Space
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Fig. 2. Integration
along the boundary
path.

Equation (5) allows us to integrate the log-
density

<
in the time domain along the

path
�
, but we haven’t shown how to calcu-

late the path. Fortunately, we do not need
to calculate every possible path. Let us
assume that at time

�
the boundary front

passes through point
���	��
¡�$� 4 ���Z
 1 , we

can obtain a first order approximation of
the position of that point at time

�,_�]
as:���	��_�]�
�¢� 4 _ & - ���a_ & 0 
 1 x Using this

approximation, we can write equation (5)
in the domain of space instead of time:< � 4 �£�Z
,� < � 4 _ & - � 4 �2�Z
����¤_ & 0 � 4 �£�Z
�
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As shown in Figure 2, the point
� 4 ���Z
 1 _ �& � 4 �2�Z
 does not

belong to the image lattice, hence we need to interpolate it using
the values at the four corners of the square containing the point.
We opt to compute the quantity ¦ � 4 R¨§ ��� R¨© 
 with
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as: � § _�]Q
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With this interpolation Equation (6) becomes:�\]/_��2]j_ [ & - [ 
#�2]/_ [ & 0 [ 
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where 4 ª � 4 R6« |Y¬F� & - � 4 ���Z
�
 and
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�
 .

Using Equation (7) we can compute the value of the log-density< � 4 �2�Z
 using values of
<

at points spanned by the boundary points
before

� 4 �2�?
21 . Hence, all we need to calculate
<

is to iterate equa-
tion (7) through the interior points by front arrival time, starting
from the points that the boundary front reaches first, to the ones
that it reaches last. Since the boundary is moving with constant
unitary time, the time it takes the border front to reach a point� 4 �2�?
 1 is equal to its distance to the boundary.

Once we have the density to hand, we need to calculate the di-
vergence of the momentum in every point of the image lattice. We
opt to discretize Equation (2) using a second order approximation:

'H5Y� o �& 
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where
p¥< � < � 4 �£�Z
�_ < � 4 _ & - �2�¥_ & 0 
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5. SKELETONIZATION

Once the divergence of the momentum field is to hand, we can
extract the skeleton. The extraction is performed by thinning the
shape by removing border points that have energy absorption be-
low a certain threshold and whose removal would not cause the
shape to be split into two disjoint parts. The remaining shape is

Fig. 3. Differences in the velocity and momentum fields. Left to
right: shape,

'H5}�&
,
y\{Y|�� o 
 , and
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further thinned to a 1-pixel wide skeleton, paying attention to keep
the shape connected and not to shorten the skeleton by eliminat-
ing endpoints. Expressed in pseudo-code the thinning process of
shape I is as follows:

For each point J in distance order
if is simple( Ic²bJ ) and

_}'q5 o �& � J 
 G�³
then I � It²bJ

For each remaining point J in distance order
if is simple( I}²YJ ) and not is endpoint( I ,J )

then I � I´²�J
The predicate is simple determines whether the shape is

still connected after the removal of point J by checking only the
points in the neighborhood of J : the shape I¤²�J is connected if the
point in the neighborhood of J , excluding J , are connected. Sim-
ilarilly, is endpoint determines whether J is an endpoint only
by inspecting the neighborhood of J : the point is an endpoint if it
has at most two neighboring points and those points are horizon-
tally or vertically adjacent.

6. EXPERIMENTAL COMPARISON

In this section we try to characterize the differences between the
Hamilton-Jacobi skeletonization method and our density-corrected
approach. We start by providing a qualitative analysis of the differ-
ence in the divergence of the velocity and momentum fields. Sec-
ondly we provide an analysis of the noise and thresholding sensi-
tivity of the two methods. Finally we provide a more quantitative
analysis of the localization properties of the two skeletonization
methods.

Figure 3 shows, for a few selected shapes in our database, the
values of the divergence of the velocity field

'µ5 �&
,
y\{Y|�� o 
 , and'N5 �o & . In this pictures white corresponds to a large positive val-

ues, black to a large negative value and 0 is represented by a 50%
intensity gray.

It is very clear from the pictures that the divergence of the
velocity field is not 0 in correspondence with a curved boundary.
Furthermore, quantization in the localization of the border causes



the initial border to be very jagged, and this high-frequency, low-
amplitude noise is transported and amplified throughout the ve-
locity field, yielding a noisy and poorly localized skeleton. Con-
versely, the density correction in the momentum field dampens the
noise.

To counter quantization noise from the border, we need to
smooth the distance map and select an appropriate skeletoniza-
tion threshold. Pick too big a smoothing radius or threshold and
some branches of the skeleton will be thinned away, pick values
too small and the extracted skeleton will have a lot of spurious
branches (See Figure 4). In this section we characterize the effects
on the extracted skeleton of the smoothing radius and the skele-
tonization threshold.

Fig. 4. The effect of smoothing on skeleton extraction.

Figure 4 Displays the effects of very low (top) and very high
(bottom) values of smoothing radius and skeletonization threshold
on a test shape. The picture show, left to right, the divergence of
the velocity field, the uncorrected Hamilton-Jacobi skeleton, the
divergence of the momentum field, and the skeleton extracted us-
ing the density-corrected method. what these picture show is that
the density corrected method is much less sensitive to the amount
of smoothing and the value of the threshold.

In this section we characterize the localization properties of
the skeleton extracted using the Hamilton-Jacobi and the new den-
sity corrected method on a wide range of shapes. To this purpose
we compute how the value of the divergence of the velocity and
momentum field distribute over distance to the extracted skeleton.
Figure 5 plots an histogram of how non-skeletal points distribute
over distance and divergence value on our test shape. The fig-
ure shows that the Hamilton-Jacobi skeleton has a non-negligible
amount of high divergence values even at high distance from the
extracted skeleton.
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Fig. 5. Histogram over value of (negative) divergence of the field
and distance to skeleton

In an experiment we tried to quantify the localization of the
skeleton on a database of shapes. To this purpose we used a database
of 50 shapes and we histogrammed the distribution of field diver-
gence over the distance to the skeleton for both the velocity and the
momentum field. We then take, for each shape, the mean of this
divergence-distribution as a measure of divergence-localization.
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Fig. 6. Histogram of divergence-localization of 50 shapes.

Figure 6 shows the histograms of the values of this divergence-
localization measure over all the shapes in our database. On the
left we see the localization histogram of the velocity field. The
mean of this distribution is 2.52, while the variance is 0.34. The
histogram on the right displays the localization properties of the
momentum field. The mean of this distribution is 1.46, while the
variance is 0.28. The density correction clearly leads to a better
localization of the skeleton.

7. CONCLUSIONS

In this paper we have given proof that a key hypothesis under-
pinning the Hamilton-Jacobi framework: the fact that the veloc-
ity field is conservative, does not hold in the presence of curved
boundary.This is due to the increase of point density connected
with a curved front of boundary evolution. In this paper we present
an analysis which takes into account variations of density due to
boundary curvature. This yields a skeletonization algorithm that is
both better localized and less susceptible to boundary noise than
the Hamilton-Jacobi method.
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