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Abstract

With this paper we offer a game-theoretic perspective
for the all-pervasive matching problem in computer vision.
Specifically, we formulate the matching problem as a (pop-
ulation) non-cooperative game where the potential associa-
tions between the items to be matched correspond to (pure)
strategies, while payoffs reflect the degree of compatibil-
ity between competing hypotheses. Within this formulation,
the solutions of the matching problem correspond to evo-
lutionary stable states (ESS’s), a robust population-based
generalization of the notion of a Nash equilibrium. In or-
der to find ESS’s of our matching game, we propose us-
ing a novel, fast evolutionary game dynamics motivated by
Darwinian selection processes, which let the pure strate-
gies play against each other until an equilibrium is reached.
A distinguishing feature of the proposed framework is that
it allows one to naturally deal with general many-to-many
matching problems even in the presence of asymmetric com-
patibilities. The potential of the proposed approach is
demonstrated via two sets of image matching experiments,
both of which show that our results outperform those ob-
tained using well-known domain-specific algorithms.

1. Introduction
The problem of finding correspondences within a set

of elements, or features, is central to any recognition task

where the object to be recognized is naturally divided into

several parts. In this contexts, graph-based representations

have been used with considerable success due to their abil-

ity to capture concisely the relational arrangement of object

primitives, in a manner which can be invariant to changes

in object viewpoint. However, applications in which esti-

mating a set of correspondences is a central task torward

the solution range from object recognition, to 3D registra-

tion, to feature tracking, to stereo reconstruction [14, 4, 13].

Several matching algorithms have been proposed in the lit-

erature. Some can just be classified as ad hoc solutions to

specific problems, but the vast majority cast the problem

into an energy minimization framework and extract approx-

imate optimizers of an objective function within a set of

feasible correspondences. In general, the overall goal is to

maximize the global or local coherence of the matched pairs

with respect to some compatibility. For example, when the

problem is cast into a graph-matching approach, we can

maximize the total similarity of matched nodes [11, 16],

while when dealing with point-pattern matching under rigid

or affine transformations we can maximize the coherence

with respect to a global fitting transformation [14, 15]. Fur-

ther, the globality contraint to the transformation function

can be relaxed by applying it only to feature point that are

close to one another, allowing for transformations that are

only locally affine [1]. In most cases the objective func-

tion can be written as a monotonic transformation of the

sum of pairwise interactions between matching hypothe-

ses. This can be either the similarity between matched fea-

tures, as in the graph-matching case [7, 21, 3], or due to

the similarity between the underlying transformations, as

for the point-pattern matching case. In the latter case the

matching approach is dual to several robust parameter esti-

mation algorithms such as RANSAC or general voting al-

gorithms. See for example [2], where a pairwise coher-

ence measure and a matching approach is proposed to es-

timate symmetries in 3D objects. Further, quite often the

set of feasible correspondences can be defined using only

unary and binary relations. For instance, it is possible to

guarantee a global one-to-one match and structural coher-

ence using the association graph technique described by

Barrow and Burstall [11]. Also adjacency and hierarchi-

cal constraints can be enforced on a local pairwise basis, as

shown by the many techniques that cast the matching prob-

lem to an equivalent clique search in an auxiliary associa-

tion graph [16, 17, 19, 18]. Formulations that satisfy these

conditions range from bipartite matching, to subgraph iso-

morphism, to quadratic assignment, to edit-distance, and in-

clude a dual form of parameter estimation approaches such

as Hough transform and RANSAC.

In this paper we present a game-theoretic approach to

correspondence estimation derived from a clustering ap-

proach presented in [20]. The proposed approach is quite

general since it can be applied to any formulation where
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both the objective function and the feasible set can be de-

fined in terms of unary and pairwise interactions. The main

idea is to model the set of possible correspondences as a set

of game strategies. Specifically, we formulate the matching

problem as a non-cooperative game where the potential as-

sociations between the items to be matched correspond to

strategies, while payoffs reflect the degree of compatibility

between competing hypotheses. Within this formulation,

the solutions of the matching problem correspond to evo-

lutionary stable states (ESS’s), a robust population-based

generalization of the notion of a Nash equilibrium. A distin-

guishing feature of the proposed framework is that it allows

one to naturally deal with general many-to-many matching

problems even in the presence of asymmetric compatibili-

ties.

2. Game-theoretic matching
Before going into the details of the proposed framework

we need to introduce some notations and definitions that

will be used throughout. Let O1 and O2 be the two sets of

features that we want to match, we define the set of feasible
associations A ⊆ O1 × O2 the set of relations between O1

and O2 that satisfy the unary constraints. Hence, each fea-

sible association represents a possible matching hypothesis.

We assume that we can compute a set of pairwise compati-
bilities C : A× A → R

+ that measure the support that one

association gives to the other. Here, the self compatibilities,

i.e., the compatibilities that an association gives to itself, are

assumed to be zero.

In this formulation, a submatch (or simply a match) is

intuitively a set of associations, which satisfies the pair-

wise feasibility constraints, and two additional criteria: high
internal compatibility, i.e. the associations belonging to

the match are mutually highly compatible, and low exter-
nal compatibility, i.e. associations outside the match are

scarcely compatible with those inside. This definition of

match allows us to abstract from the specific problem, since

domain-specific information is confined to the definition of

the compatibility function. Further, we are able to deal with

many-to-many, one-to-many, many-to-one and one-to-one

relations in an uniform way, as we do not impose restriction

on the way the associations are selected, but incorporate the

constraints with the compatibilities.

The proposed approach generalizes the association graph

technique described by Barrow and Burstall [11] to a con-

text where structural constraints are continuous. Further,

the approach can be seen as a proper generalization of [16]

since, in case of symmetric 0,1 supports, the solutions of the

ESS’s maximize the same objective function.

2.1. Matching as a non-cooperative game

Following [20], we define a matching game. Assume

that we have two sets of objects O1 and O2, and a compati-

bility function C. Two players with complete knowledge of

the setup play by simultaneously selecting an association.

After both have shown their choices, each player receives a

payoff, monetary or otherwise, proportional to the compat-

ibility of the selected association with respect to the associ-

ation chosen by the opponent. Clearly, it is in each player’s

interest to pick an association, which is strongly supported

by the association that the adversary is likely to choose and,

assuming no prior knowledge of the inclination of the ad-

versary, the best strategy for a player becomes the selection

of associations belonging to strongly supported match.

Let O = {1, . . . , n} be the enumeration of the set of as-

sociations A, where n = |A|. Here, O is the set of pure
strategies (in the language of game-theory) available to the

players and C = (cij) is an n × n payoff (or utility) ma-

trix [22], where cij is the payoff that a player gains when

playing the strategy i against an opponent playing strategy

j.

A mixed strategy is a probability distribution x =
(x1, x2, . . . , xn)T over the available strategies in O. Mixed

strategies clearly lie in the standard simplex Δ of the n-

dimensional Euclidean space, which is defined as

Δ =

{
x ∈ R

n :
n∑

i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
.

The support of a mixed strategy x ∈ Δ, denoted by

σ(x), defines the set of elements with non-zero probabil-

ity: σ(x) = {i ∈ O : xi > 0}. The expected payoff that

a player obtains by playing the pure strategy i against an

opponent playing a mixed strategy x is (Cx)i =
∑

j cijxj .

Hence, the expected payoff received by adopting a mixed

strategy y is yT Cx. The best replies against a mixed strat-

egy x is the set of mixed strategies defined as β(x) = {y ∈
Δ : yT Cx = maxz zT Cx}. A mixed strategy x is a

Nash equilibrium if it is a best reply to itself, i.e. ∀y ∈ Δ,

yT Cx ≤ xT Cx. This implies that for all i ∈ σ(x),
(Cx)i = xT Cx, hence the payoff of every strategy in the

support of x is constant, while all strategies outside the sup-

port of x earn a payoff that is less than or equal xT Cx.

Within our matching setting, Nash equilibria are good

candidates for a match, as they satisfy both the internal

and external compatibility criteria. In fact, any association

i ∈ σ(x) of a Nash equilibrium x receives from x the same

expected payoff (Cx)i = xT Cx, while associations not

in σ(x) receive a lower or equal support from associations

of the match. Note, however, that external criteria is not

strict: there could exist associations not in σ(x) that earn a

payoff equal to xT Cx like associations in the group, which

may lead to a non isolated Nash equilibrium and, thus, an

ambiguous match. Therefore, here we undertake an evo-

lutionary game-theoretic analysis of the possible strategies

available to each player.
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Evolutionary game theory considers an idealized sce-

nario wherein pairs of individuals are repeatedly drawn

from a large population to play a two-player symmetric

game. Each player is not supposed to behave rationally or

have a complete knowledge of the details of the game, but

he acts according to a pre-programmed pure strategy and

a selection process allows “fit” individuals (i.e., those se-

lecting strategies with high support) to thrive, while driv-

ing “unfit” ones to extinction. In our setup, we expect the

individuals pre-programmed to select associations within a

match to survive the selective pressure.

A strategy x is said to be an Evolutionary Stable Strategy
(ESS) if it is a Nash equilibrium and for each best reply y
to x, i.e. such that yT Cx = xT Cx, we have xT Cy >
yT Cy. Intuitively, ESS’s are strategies such that any small

deviation from them will lead to an inferior payoff.

2.2. Enforcing hard constraints

A main characteristic of the proposed approach is that

associations pairs that have zero compatibility cannot be in

the same selected submatch. This means that pairwise con-

straints can be enforced by forcing to zero the compatibility

between associations that do not satisfy the constraints.

Theorem 1. Consider a matching-game with compatibili-
ties C = (cij) with cij ≥ 0 and cii = 0. If x ∈ Δ is an
ESS then cij > 0 for all i, j ∈ σ(x).

Proof. Assume cij ≤ 0 for distinct i, j ∈ σ(x), and let

y = δ(ei − ej) + x, where 0 < δ ≤ xj and ek is a vector

with entry k equal to one and all other entries equal to zero.

Note that y is a best reply to x, in fact

yT Cx = δ(ei − ej)T Cx + xT Cx = xT Cx ,

where (ei − ej)T Cx = 0 by the Nash condition on x.

However,

(x− y)T Cy = −δ(ei − ej)T C [x + δ(ei − ej)]

= −δ2(ei − ej)T C(ei − ej)

= −δ2(cii + cjj − cij − cji) = δ2(cij + cji) ≤ 0 ,

which contradicts the evolutionary stability of x.

Theorem 1 shows that if we set a non positive compati-

bility between two associations, then there exists no match

containing them. This provides a way for expressing hard

constraints in our matching framework such as one-to-one

or one-to-many correspondences .

2.3. Computing ESS’s

In order to extract ESS’s we make use of a new pop-

ulation game dynamics [5, 6], which is motivated by the

analogy with infection and immunization processes within

a population of “players”. The selection mechanism gov-

erning this dynamics iteratively performs an infection step,

which consists of spreading (or suppressing) the most suc-

cessful (unsuccessful) strategies in the population. The in-

fection phase is then protracted as long as the selected ”in-

fective” strategy performs better (or worse, if not extinct)

than the average population’s payoff. Let τ+ = {i ∈ O :
(Cx)i > xT Cx}, τ− = {i ∈ O : (Cx)i < xT Cx} and

M(x) ∈ arg max
{
(Cx)i − xT Cx : i ∈ τ+(x)

}∪{−(Cx)i + xT Cx : i ∈ τ−(x) ∩ σ(x)
}

.

Then, the dynamics are governed by

x(t+1) = δ̃S(x(t))(x
(t))[S(x(t))− x(t)] + x(t) , (1)

where

S(x) =

⎧⎪⎨⎪⎩
ei i = M(x) ∈ τ+(xx)

xi

xi−1 (ei − x) + x i = M(x) ∈ τ−(x) ∩ σ(x)
x otherwise

and

δ̃y(x) =

{
min

[
1,

(x−y)T Ax
(y−x)T A(y−x)

]
(y − x)T A(y − x) < 0

1 otherwise.

This evolution process exhibits a number of nice prop-

erties [5, 6]: First the asymptotically stable points for the

dynamics are the ESS’s. Second, it is computationally very

efficient, as each iteration has linear time complexity as op-

posed to the quadratic complexity of the replicator dynam-

ics used in [20].

3. Experimental results
In order to evaluate both the generality and the effective-

ness of the proposed approach we performed two sets of ex-

periments. In the first set of experiments we match the seg-

mentations of images with similar subjects. In this context

the intrinsic instability of the extracted segments requires a

more relaxed coherence constraint, moreover the presence

of under- and over-segmentation requires the matches to be

many-to-many. In the second set we use our game-theoretic

framework to match point-patterns extracted from images

after affine transformation. Here we expect the features to

be stable and preserved after the transformation. However,

the approach must be robust against the appearance of out-

liers. For this particular application we are requiring strict

one-to-one correspondences and a tight global coherence

between matched points, but given the presence of a clear

ground truth, a more quantitative analysis is performed. All

the experiments where run on a standard PC with a 2GHz

processor.
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Figure 1. Region matching: the first four columns show the original images and the extracted segments, while columns five to eight show

the resulting matches. The first two rows show the result of enforcing one-to-one correspondence, the third row show the result of enforcing

chirality (handedness) of the matching segments, while the last three rows show the effect of changes in the selectivity parameter α.

3.1. Segmentation Matching

The first set of experiments assesses the effectiveness of

the approach on an object recognition task. Here, we match

similar objects from the Caltech-256 database [10], which

exhibits large variations in illumination, scale and view-

point. In this context invariant feature points cannot be ex-

ploited as they are not robust with respect to changes in the

appearance of objects belonging to the same semantic cat-

egory. Thus we employed more robust, but less repeatable

features: We segmented the images using the algorithm pre-

sented in [8] and matched the corresponding segments, in a

process similar to [12].

Starting from relatively unstable segmentations, we se-

lected candidate matches computing the normalized cross-
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Figure 2. Point pattern matching: the first two columns show the original images, the third and fourth columns show the extracted features,

and the fourth and fifth show the allineation error using the transforms estimated using RANSAC (fifth) and our approach (sixth).

correlation of each segment pair, and we selected the top

10 local maxima as possible matching candidates. In or-

der to account for chiral segments, we also computed the

normalized cross-correlation against the mirror image of

each segment. To measure the support that each match ob-

tains from other matches we computed the payoff matrix

C = (cij) as follows: Given the normalized cross correla-

tion values vi and vj at the local maxima associated to can-

didate matches i and j respectively, and the displacement

vectors ti, ti between each template and the corresponding

matching segment, we defined the coherence between can-

didates as cij = vivje
α|ti−tj|. Here α is a selectivity pa-

rameter that affects the decay of the coherence and thus the

selectivity of the match to be found.

In addition to the continuous parameter α we also en-

forced two hard constraints: namely the one-to-one rela-

tionship in the matches and the chirality constraint, which

forces the matches to have the same handedness. The first

constraint is obtained by setting the coherence of any pair

of candidates to 0 where either the source segment or the

destination segment coincide, while the second is similarly

enforced by setting to 0 the coherence of pair of candidates

in which one segment maps to a mirrored segment while the

other maps to a straight one.

Figure 1 shows the results on a few selected shapes for

which the categorization performance presented in [10] was

around the middle in the rank order. For each row the

first two columns show the test images, while the third and

fourth column show the extracted segments. while the fifth,

sixth, seventh and eight columns show the matches obtained

together with the values of the parameter α used and the re-

sulting average payoff π.

The first two rows show the effect of enforcing the

one-to-one constraint versus allowing a full many-to-many

match. Here the fifth and sixth columns show the results

with a full many-to-many match, while the seventh and

eight columns show the effect of enforcing the one-to-one

match. Note how in the first row the second beer is over-

segmented due to a writing on the glass. By enforcing a

one-to-one correspondence only part of the region is se-

lected, while allowing many-to-many matches all the seg-

ments are mapped to the equivalent segment on the other

image. Further, in the binoculars example, the part on the

right is segmented differently on the two images and all the

corresponding segments on the first image are mapped to

the segments on the second thus giving a full many-to-many

match. On the other hand, enforcing a one-to-one corre-

spondence we are not able to match the top part of the op-

tics.

The third row shows the effect of the chirality constraint.

Here the fifth and sixth columns show the best match ob-

tained using the mirrored segments, while the seventh and

eight columns show the result obtained eliminating the mir-

ror candidates. Note that in the latter case only the symmet-

ric part of the shape is matched.

The last three rows show the effect of increasing the se-

lectivity parameter α. Note that increasing alpha forces the

approach to select matches that are more geometrically co-

herent, even when this results in fewer segments matched

and a lower average payoff.
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Figure 3. Point pattern matching: Error in the estimation of translation, scale and rotation as we increase the variations in scale and

orientation. The plots in the first column show the error in rotation angle, scale and translation as a function of the rotation angle. The plots

in the second column show the errors as a function of the scale factor.

3.2. Point-Pattern Matching

In this set of experiments our goal is to test the ability of

the proposed framework to match corresponding features

points between two instances of the same image with mod-

ified scale and orientation. The feature points are extracted

from each image with the SIFT algorithm [14]. SIFT fea-

tures are known to be highly repeatable under a large class

of affine transformations and are very resilient to splitting

or joining. Under these conditions we need a very selective

matcher which enforces a common global transformation to

all the matched features. In [14] Lowe gauges the coher-

ence of the transformation using RANSAC. This, however,

requires a global threshold for the consensus, which limits

the precision of the estimation.

The experiments were performed on the Aloi

database [9]. For each run we selected 20 images and

randomly deformed them with an affine transformation
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Figure 4. Point pattern matching: Sensitivity to noise. The plot dis-

plays the Frobenius norm of the difference between exact and esti-

mated transformation errors under an increasing amount of Gaus-

sian noise.

with a scale variation between 0.5 and 2 and a rotation be-

tween 0.5 and 2.0 radians. We extracted the SIFT features

from the original and transformed image and picked as

candidate associations all the pairs with sufficiently similar

descriptors. Each candidate association represents a single

transformation and supports only associations with similar

transformations. To measure the support between two

associations, we project the first point of one association

with the transformation of the other association. Then we

measure the distance between the transformed point and

the corresponding point in the first association. We repeat

the operation reversing the role of the two associations

obtaining the two distances d1 and d2. The support is, then,

e−max(d1,d2). Once the best match is extracted, we have

two alternatives to compute the final transformation: the

first is an unweighted approach where we compute a simple

average of the transformation parameters related to the

associations in the match. The second appraoch wheighs

the transformation parameters with the proportion of the

population playing the related strategy at equilibrium.

We compare our approach with RANSAC, where we

determine the associations to agree within tolerance if

max(d1, d2) < 5 pixels. the value of 5 pixels was ex-

perimentally determined to be to one which gave the best

results. Note that this threshold on the error limits the ac-

curacy of RANSAC, while our approach, being parameter-

less, does not suffer from this drawback.

Figure 2 shows the original images (first two columns),

the extracted features (third and fourth columns), and the

transformation error obtained using the two approaches (last

two columns). The error is the difference between the orig-

inal image transformed with the estimated transformation

and the second image. The fifth column shows the error ob-

tained using the transformation estimated with RANSAC,

while the sixth column shows the difference using the trans-
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Figure 5. Point pattern matching: Scatter plot of feature points

versus computation time (msecs).

formation estimated using the weighted version of our ap-

proach. As can be seen our approach estimates the trans-

formation with higher accuracy than RANSAC. So much

so that the difference images are almost completely black.

This is mainly due to the lack of a lower bound on the preci-

sion of the transformation, which for RANSAC is enforced

by the consensus threshold.

Figure 3 plots the error in the estimation of translation,

scale and rotation as we increase the variations in scale and

orientation. The average and standard deviations are com-

puted over 140 images. As can be seen, the weighted and

unweighted versions of our approach have similar perfor-

mance, with the weighted version exhibiting slightly lower

error. On the other hand RANSAC show errors an order of

magnitude larger in all conditions.

In an attempt to quantify the sensitivity of the approach

to noise, we added an increasing amount of Gaussian noise

to the rotated and scaled images before we computed the

SIFT features. This introduces an increasing number of out-

liers as well as missing feature points. Figure 5 plots the

Frobenius norm of the difference between the ground truth

and the estimated transformation matrices as the standard

deviation of the Gaussian noise increases. For each noise

level we selected 20 images and randomly deformed them

with an affine transformation with a scale variation between

0.5 and 2 and a rotation between 0.5 and 2.0 radians. From

the plot we can see that our approach maintains a much

lower error as compared to RANSAC even at high noise

levels. Further, we can see that, while the rate with which

the error increases with noise is similar for RANSAC and

the unweighted version of our approach, the weighted ver-

sion appears to provide much lower error even with a high

level of noise.

Figure 5 shows a scatter plot of number of feature-points

versus runtime for our approach (green) versus RANSAC

(red). As it can be seen, RANSAC is slightly faster, with a

geometric average over all runs of 314 msecs. while our ap-
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proach has a geometric average of 762 msecs, both method

having a relative deviation (over all the experiments) of ap-

proximately 450%. Further, the scatter plot confirms the

finding of a factor 2.4 slowdown with our approach, ar-

guably providing a favorable accuracy/performance ratio.

4. Conclusions
In this paper we have presented a game-theoretic ap-

proach for the all-pervasive matching problem in com-

puter vision when both the objective of the match and

the feasible set can be defined based on pairwise inter-

actions. We have formulated the matching problem as a

non-cooperative game between matching hypotheses, while

payoffs reflect the degree of compatibility between associa-

tions. Within this formulation, the solutions of the matching

problem correspond to evolutionary stable states (ESS’s),

a robust population-based generalization of the notion of

a Nash equilibrium. A distinguishing feature of the pro-

posed framework is that it allows one to deal uniformly

with many-to-many, many-to-one and one-to-one matching

approaches as well as robust estimation of a parametrized

matching transformation. The potential of the proposed ap-

proach has been demonstrated via two sets of image match-

ing experiments, both of which show that our approach out-

perform well-known state of the art algorithms.
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