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7 Conclusion

In this paper we have compared two representations of 3D segmented images.
Both models use equivalent topological representations which are 3D topological
maps described by combinatorial maps. We have given the relation between the
models and the correspondence allowing to convert each model into the other
one. These models differ in the way of representing the geometry of 3D segmented
images. We have compared geometrical embeddings in use in each model and we
have defined correspondence between themselves. Finally we have proposed to
unify these models in order to get the advantages of each of them. A promising
direction is to adapt the map construction used in the HLE model to improve
and generalize the construction of the boundary image. Another aspect that has
not been considered in this paper but that must be developed is the contribution
to the unification of both models to their extension to 4D images.
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Abstract. This paper presents a method for estimating the cost of tree
edit operations. The approach poses the problem as that of estimating a
generative model for a set of tree samples. The generative model uses the
tree-union as the structural archetype for every tree in the distribution
and assigns to each node in the archetype the probability that the node
is present in a sample. A minimum descriptor length formulation is then
used to estimate the structure and parameters of this tree model as well
as the node-correspondences between trees in the sample-set and the tree
model.

1 Introduction

The task of measuring the similarity or distance between pairs of graphs has
attracted considerable interest over the past three decades [1,2,5,17,3]. It is an
important problem since the availability of reliable distance information allows
a number of practical problems involving graphs to be addressed. These include
graph-matching, graph retrieval and graph clustering.

Some of the earliest work on the problem was presented by Shapiro and
Haralick [19] who demonstrated how counting consistent subgraphs could lead
to a metric distance between graphs. Fu and his co-workers [5,17] devoted con-
siderable effort to extending the concept of string edit distance to graphs. The
contribution here was to show how the distance between graphs could be gauged
using a series of costs for edge and node relabeling, and for edge and node in-
sertion or deletion. However, the estimation of the necessary costs remains an
open problem.

This early work, drew its inspiration from structural pattern recognition,
which was at the time a field in its infancy. Subsequent work, aimed to take a
more principled approach to the problem by drawing on information theory and
probabilistic models. For instance, adopting an information theoretic framework,
Wong and You [25] have shown how the cost of edit operations can be measured
using changes in entropy. The probabilistic analysis of the graph-matching prob-
lem has been the focus of recent activity. For instance, Christmas, Kittler and
Petrou [4] have developed a probabilistic relaxation scheme which measures the
compatibility of matching using a distribution function for pairwise attributes
residing on the edges of graphs. Wilson and Hancock [24], have developed a
discrete relaxation algorithm in which the distribution of correspondence errors
and structural errors are modeled probabilistically.
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Recently there has been renewed interest in placing the concept of graph edit
distance on a more rigorous footing, One of the criticisms that can be leveled at
the early work is that it lacks the formality of the treatment which underpins the
string edit distance. Bunke and Kandel [3] have demonstrated the relationship
between the size of the maximum common subgraph and edit distance under the
assumption of uniform edit costs. Myers, Wilson and Hancock [14] have shown
how string edit distance can be used to model the distribution of structural error
in graph neighborhoods. Robles-Kelly and Hancock [16] have shown how to use
eigenvectors of the adjacency matrix to convert graphs to strings, so that their
similarity may be assessed using string edit distance.

However, despite this recent work the question of how to estimate edit costs
remains largely unanswered. This can be viewed as a problem of machine learn-
ing, where the costs associated with edit operations can be estimated from the
frequency of occurrence of the corresponding edit operation in a set of training
data. In this paper, we describe an information theoretic framework which can
be used to estimate tree edit distances. The approach is as follows. We pose the
problem of learning the edit operations as that of constructing a union-tree over
a set of example trees. Associated with each node in the union structure is a
probability which indicates the frequency of the node in the tree sample. The
merging of trees to form the union structure is cast as the problem of locating a
structure that minimizes description length. The recovery of the optimal union
structure involves three update steps. First, correspondences between the sample
trees and the current union structure must be located. Second, the node prob-
abilities must be updated, Thirdly, and finally, the set of edit operations that
result in the optimal union must be identified. These three steps may each be
formulated in terms of the description length. Moreover, the cost associated with
the edit operations is related to the description length advantage, and this in
turn is given by the node probabilities. Hence, by estimating node probabilities
we learn the edit costs.

2 Tree Edit-Distance

The idea behind edit distance is that it is possible to identify a set of basic edit
operations on the nodes and edges of a structure, and to associate with these
operations a cost. The edit-distance is found by searching for the sequence of
edit operations that will make the two graphs isomorphic with one-another and
which have minimum cost. In previous work we have shown that the optimal
sequence can be found using only structure reducing operations [23]. This can
be explained by the fact that we can transform node insertions in one tree into
node removals in the other. This means that the edit distance between two trees
is completely determined by the subset of residual nodes left after the optimal
removal sequence, or, equivalently, by the nodes that are in correspondence.

The edit-distance between two trees ¢ and # can be defined in terms of the
matching nodes:
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The edit-distance between two trees ¢ and ' can be defined in terms of the
matching nodes;

Dit,t)= 3 r+ > i+ > my (1)

igDom (M) FEIM(M) <ij>EM

Here r; and r; are the costs of removing ¢ and j respectively, M is the set of
pairs of nodes from ¢t and ¢’ that match, m; ; is the cost of matching 4 to 7, and
Dom(M) and Im(M) are the domain and image of the relation M. Letting N*
be the set of nodes of tree #, the distance can be rewritten as:

D(t,t’) = Z Ty + Z Ty + E (muu “'ru‘—ru)-

ueN? veENT (w,v)eM

Hence the distance is minimized by the set of correspondences that maximizes
the utility

UM) = Z (7w + 7o — Myy). (2)
(u,v)EM

3 Generative Tree Model

The aim of this paper is to learn the cost of the tree edit operations described
above. We do this by fitting a generative model of tree structures to a set of
sample-trees. This allows us to globally estimate the node correspondences solv-
ing the identification problem, and determine the modes of structural variation
in the distribution of tree structures. To this end, we assume that there is an un-
derlying “structure model”, which determines a distribution of tree structures,
and that each tree is a training sample drawn from that distribution. In this
way edit operations are linked to sampling error, and their cost to the error
probability. We, then, need a way to estimate the underlying structural model.

Consider the set or sample of trees D = {t1,t2, ..., tn}. Our aim is to learn a
generative model for the distribution of trees in a pattern space. The tree model
must be capable of capturing the structural variations for the sample trees using
a probability distribution. The information on the structural variation can then
be used to determine the cost of the edit operations. The resulting approach
assigns low cost to operations associated to common variations, and higher cost
to more unlikely variations.

In prior work, we have described how tree unions can be used as structural
models for samples of trees [22]. However, the union is constructed so as to
minimize tree-edit distance. Here we intend to use the union structure as a class
model, and use the model to derive the distance. This approach extends the
idea in two important ways. First, we pose the recovery of the union tree in an
information theoretic setting. Second, we aim to characterize uncertainties in
the structure by assigning probabilities to nodes.

A trée model 7 is a structural archetype derived from the tree-union over the
set of trees constituting a class. Associated with the archetype is a probability
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ution which captures the variations in tree structure within the class.
e, the learning process involves estimating the union structure and the
ameters of the associated probability distribution for the class model 7. As a
¢ erequisite, we require the set of node correspondences C between sample trees
nion tree.
and’I?llll: Eearning process is cast into an information theoreltic. set.ting and the
estimation of the required class models is effected using optimization methods.
The quantity to be optimized is the descriptor length for the sample-data set le
The parameters to be optimized include the structural archetype of the mode
T as well as the node correspondences C between samples and the archet%rpe?.
The inter-sample node correspondences are not assumed t? be known a priori.
Since the correspondences are unknown, we must solve t.wo mterdepenc.lent opti-
mization problems. These are the optimization of the union structur_e given a set
of correspondences, and the optimization of the correspondences given the t.ree
structure. These dual optimization steps are approximated by greedily merging
similar tree-models.
The basic ingredients of our structural learning approach are:

1. A structural model of tree variation.
2. A probability distribution on the said model. :
3. A structural optimization algorithm that allows us to merge two structura,

models in a way that minimizes the description length.

Hence, the structural model is provided by the tree-union of the set of samples,
while the frequencies with which nodes from the sample set; are mapp_ed to noEies
in the model provide the probability distribution. By ad?ptmg this information
theoretic approach we demonstrate that the tree-edit distance, and hence t_he
costs for the edit operations used to merge trees, are related to the entroplfas
associated with the node probabilities. As a result, we pmvid? a fra.mewor]:{ in
which tree edit distances are learned. This has been a longstanding problem slnt";e
Fu and his co-workers introduced the idea of edit distance in the early 1980’
(17,5]. ‘ ‘ _ "
The basis of the proposed structural learning approach is a generative mode
of trees which allows us to assign a probability distribution to a sample of hierar-
chical trees. A hierarchical tree ¢ is defined by a set of nodes N‘t and a‘tree-order
relation O C N* x A'* between the nodes. A tree-order relation O° is an c.;rder
relation with the added constraint that if (z,y) € O and (2,y) € OF, then elthe.r
(z,2) € O or (2,2) € @F. A node b is said to be a deslcendenft of a, or a ~ b,dlf
(a,b) € O, furthermore, b descendent of a is also a child of a if there is no node
z such that @ ~» z and = ~ b, that is there is non node between a and b in the
tleeg}c:iir;:his definition, we can construct a generative model for a subset O.f the
samples D, C D. This model 7 is an instance of a set of nodes NV. AiSCI)CIated
with the set of nodes is a tree order relation © C A'x N and aset @ = {6%,i € N'}
of sampling probabilities #* for each node i € A,

T =(N,0,0) @)
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A sample from this model is a hierarchical tree $ — (N, 0) with node
set N* C V and a node hierarchy O! that is the restriction to A’ of ©. The
probability of observing the sample tree ¢ given the model tree 7T is:

PiTy= T ¢* ] @-¢9) (4)

ENE GE(M\NT)

The model underpinning this probability distribution is as follows. First, we
assume that the set of nodes A" for the union structure 7 spans all the nodes
that might be encountered in the set of sample trees. Second, we assume that
the sampling error acts only on nodes, while the hierarchical relations are always
sampled correctly. That is, if nodes i and J satisfy the relation {®7, node i will be
an ancestor of node j in each tree-sample that has both nodes. This assumption
implies that two nodes will always satisfy the same hierarchical relation whenever
they are both present in s sample tree. A consequences of this assumptions is
that the structure of a sample tree is completely determined by restricting the
order relation of the model @ to the nodes observed in the sample tree. Hence,
the links in the sampled tree can be seen as the minimal representation of the
order relation between the nodes. The sampling process is equivalent to the
application of a set of node removal operations to the archetypical structure
T = (N, 0,0), which makes the archetype a union of the set of all possible tree
samples.

The definition of the structural distribution assumes that we know the cor-
respondences between the nodes in the sample tree ¢ and the nodes in the class-
model 7. When extracting a sample from the model this assumption obviously
holds. However, given a tree t, the probability that this tree is a sample from
the class model 7" depends on the tree, the model, but also on the way we map
the nodes of the tree to the corresponding nodes of the model. To capture this
correspondence problem, we define a map C: N* — N from the set N of the
nodes of ¢, to the nodes of the mode]. _

The mapping induces a sample-correspondence for each node 4 € N. The
correspondence probability for the node i is

o if 35 e MtC(5) =4
1-6° otherwise.

Gé'(ﬂtr T,C) = {

while the probability of sampling the tree ¢ from the model 7 given the set of
correspondences C is

otherwise.

BT ) - {[{[ieNqi:(i[t,T,C} V0,0 € Mo w 4= C(v) v Clw)

4 Minimizing the Descriptor Length

The generative tree model provides us with a probability distribution for tree
structure. Given a set D = {t1,t3,...,%.} of sample trees, we would like to
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estimate the tree model 7 that generated the samples, and the correspondence
C from the nodes of the sample trees to the nodes of the tree model.

Here we use a minimum descriptor length approach. The MDL principle [15]
asserts that the model that best describes a set of data is that which minimizes
the combined cost of encoding the model and the error between the model and
the data.

By virtue of Shannon theorem, the cost of describing data D using model
T ={N,0,6} is — 3 ,cplog [B(¢|T,C)] = —L(D|T,C), while the cost incurred
describing or encoding the model is —log [P(7)]. Here we assume that the tree
probability decays exponentially with the number of node. That is P(7) =
exp(—Id), where d is the number of nodes in 7. Using this prior, the cost incurred
in describing the structure is proportional to the number of nodes and the per-
node structural description cost is I,

Our model is described by the union structure 7 = {N, 0, ©0}. The model
consists of a set of nodes AV, an order relation @ and a set of node probabilities
© = {#',i € N}, where ' is the probability for the node n in the union-tree
indexed ¢. To describe or encode the fit of the model to the data, for each node
in the model, we need to deseribe or encode whether or not the node was present
in the sample. '

Hence, given a model 7 consisting of d nodes, the descriptor length for the
model, conditional on the set of correspondences is C is:

LL(D|T,C) = i[—c(@mr,’) +1]. (5)

i=1

Our aim is to optimize the descriptor length with respect to two variables: the
correspondence map C and the tree union model 7. These variables, though, are
not independent. The reason for this is that they both depend on the node-set
N. A variation in the actual identity does not change the log-likelihood, hence
the dependency to the node-set can be lifted by simply assuming that the node
set is I'm(C), the image of the correspondence map. This can be done because, as
we will see, nodes that are not mapped to do not affect the optimization process.
With this simplification, the remaining variables are: the order relation O, the
set of sampling probabilities @, and the map C.

Given C, it is easy to minimize the descriptor length with respect to the
remaining two sets of variables. The length of the description is minimized by
any order relation O that is consistent with all the hierarchies for the sample
trees (if any exists). Let p;(C) be the number of trees ¢ € D such that J5|C(5) =1,
that is there is a node that maps to i. Furthermore, let m = #D be the number
of trees in the data set, then the sampling probability 8% for the node ¢ that
maximizes the likelihood function is
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When the optimal sampling probabilities are substituted into the descriptor
length, we have that

LL(D|C) = mEEN [p—éf_) log (&nf)) - (1 - E?E%Q) log (1 - %9)]+nz =
—m Y I(6')+nl, (6)

iEN

where I(6%) = — [0° log(§") + (1 — 6%) log(1 — )] is the entropy of the sampling
distribution for node 7, and d is the number of nodes in 7. This equation holds
assuming that there exists an order relation that is respected by every hierar-
chical tree in the sample set D. If this is not the case then the descriptor length
takes on the value oo,

The structural component of the model is a tree union constructed from the
trees in the sample D so as to maximize the likelihood function appearing in (6).
In our previous work [22]. we have shown how the union tree may be constructed
so that every tree in the sample set D may be obtained from it by using node
removal operations alone. Hence every node in the tree sample is represented in
the union structure. Moreover, the order-relations in the union structure are all
preserved by pairs of nodes in the tree-samples in D.

5 Computing the Model

Finding the global minimum of the descriptor length is an intractable combina-
torial problem. Hence, we resort to a local search technique.

The main requirement of our description length
minimization algorithm is that we can optimally @ (2)
merge two tree models. That is that we can find a
structure from which it is possible to sample every
tree previously assigned to the two models, ) D & O ® W

Interestingly, we can pose the model-merging
problem as an instance of a particular minimum © © ® /
edit-distance problem.

Given two tree models 7; and 7, we wish to con-
struct a union 7" whose structure respects the hier-
archical constraints present in both 7; and 73, and
that also minimizes the quantity LL(7). Since the
trees 71 and 73 already assign node correspondences
C1 and C; from the data samples to the model, we
can simply find a map M from the nodes in 7; and Fig. 1. The new model is ob-
T2 to 7 and transitively extend the correspondences  tained by merging matching
from the samples to the final model 7 in such a way nodes.
that C(v) = C(w) & w = M(v).

Reduced to the merge of two structures, the correspondence problem is re-
duced to finding the set of nodes in 7; and 75 that are in common. Starting with
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the two structures, we merge the sets of nodes that would reduce the descriptor
length by the largest amount while still satisfying the hierarchical constraint.
That is we merge nodes v and w of 7; with node v’ and w' of 75 respectively if
and only if v ~» w < v' ~ w', where a ~+ b indicates that a is an ancestor of b.

Let my and mgy be the number of tree samples from D that are respectively
assigned to 7y and 7. Further let p, and p, be the number of times the nodes
v and v’ in 7 and 73 are respectively in correspondence with nodes of trees in
the data sample D. The sampling probabil!ities for the two nodes, if they are

not merged, are fv = E%m? and 6v' = Ezfm_z respectively, while the sampling

probability of the merged node is fvv’ = ?fl“i—"_:':'n*’;. Hence, the descriptor length

advantage obtained by merging the nodes v and v’ is:
A(v,v) = (g + ma) [I(6v) + I(6v) — I(Bv")] + 1. (7)

This implies that the set of merges M that minimizes the descriptor length of
the combined model maximizes the advantage function

AM)= > Awv)= S [(ma+mg) [I(6v) + I(B') — I(vv')] +1).
(v,v')eM (v, v')EM
(8)

Assuming that the class archetypes 7; and 73 are trees, finding the set of
nodes to be merged can be transformed into a tree-edit distance problem. That
is, assigning particular costs to node removal and matching operations, the set
of correspondences that minimize the edit distance between the archetypes of 7;
and 73 also maximizes the utility of the merged model. The costs that allowed
the problem to be posed as an edit distance problem are r, = (m; +mg)I(6v)+1
for the removal of node v, and myy = (my + my)I(6vv') + I for matching node
v with node v’

With these edit costs, the utility in (2) assumes the same value of the advan-
tage in descriptor length:

UM)= D [(ma +ma)(I(6u) + I(6v) — I(Buv)) + . (9)
{u,v)EM

Since the combinatorial problem underlying both edit-distance and model merge
share the same hierarchical constraints and objective function, the solution to
one problem can be derived from the solution to the other. In particular the set
of common nodes obtained through the edit-distance approach is equal to the
set of nodes to be merged to optimally merge the tree-models.

We initialize our algorithm by calculating the sum of the descriptor length
of using a per tree-sample in D. The descriptor length is given by VY ien #N,
where #A* is the number of nodes in the tree-sample t. For each pair of initial
union model we calculate the merged structure and the advantage in descriptor
length arising from merging the models. From the set; of potential merges, we can
identify the one which reduces the descriptor cost by the greatest amount. At
this point we calculate the union and the advantage in descriptor cost obtained
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by merging the newly obtained model with each of the remaining model, and we
iterate the algorithm until we merge every tree model.

6 Computing the Distance

To find the set correspondences that minimizes the edit distance between two
trees we make use of two results presented in [21]. We call £2(t) the closure of
tree ¢, Ey(t) the edit operation that removes node i from t and &;(£2(t)) the
equivalent edit operation that removes 7 from the closure. The first result is that
edit and closure operations commute: &;(12(t)) = £2(E;(t)). For the second result
we need some more definitions: We call a subtree s of 2(¢) obtainable if for each
node i of s if there cannot be two children a and b so that (a,b) is in 2(¢). In
other words, for s to be obtainable, there cannot be a path in £ connecting two
nodes that are siblings in s. We can, now, introduce the following;

Theorem 1. A tree £ can be generated from a tree t with a sequence of node
removal operations if and only if t is an obtainable subtree of the directed acyclic
graph §2(t).

By virtue of the theorem abave, the node correspondences yielding the mini-
mum edit distance between trees t and ¢’ form an obtainable subtree of both £2()
and £2(t'), hence we reduce the problem to the search for a common substructure
that maximizes the utility: the maximum common obtainable subtree (MCOS).
That is, let O be the set of matches that satisfy the obtainability constraint, the
node correspondence that minimized the edit distance is

M* = argmaxU(M). (10)
Meo

The solution to this problem is obtained by looking for the best matches
at the leaves of the two trees, and by then propagating them upwards towards
the roots. Let us assume that we know the utility of the best match rooted at
every descendent of nodes i and j of ¢ and ¢’ respectively. To propagate the
matches to ¢ and j we need to find the set of siblings with greatest total utility.
This problem can be transformed into a maximum weighted clique problem on
a derived structure and then approximated using a heuristical algorithm. When
the matches have been propagated to all the pairs of nodes drawn from t and ¢/,
the set of matches associated with the maximum utility give the solution to the
maximum common obtainable subtree problem, and hence the edit-distance. We
refer to [21] for a detailed explanation of the approach.

7 Experimental Results

The aim of this session is to illustrate the behavior of the tree merging algorithm
and the effects of the estimated distances. To meet this goal we have randomly
generated a prototype tree model and, from this tree, we generated some tree-
samples. The procedure for generating the random tree prototype was as follows:
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Fig. 2. Merging sample trees into a tree-model.

we commence with an empty tree (i.e. one with no nodes) and we iteratively
add the required number of nodes. At each iteration nodes are added as children
of one of the existing nodes. The parents are randomly selected with uniform
probability from among the existing nodes. The sampling probability of the
nodes is assigned from a uniform distribution.

Figure 2 illustrates an example merge of 6 sample trees. The figure shows
the structural archetype of the merged models after each stage. The color of the
nodes in the tree models represents the sampling probability of that node: nodes
sampled with higher probability are displayed in darker colors, while lighter
colors are associated to nodes with low sampling probability.

In order to asses the quality of the extracted distance we compare clusters
defined by performing pairwise clustering of the distance matrix [21,12]. We
evaluate the approach on the problem of shock tree matching. We calculate
the pairwise edit distance between shock-trees extracted from a database of 16
shapes.

Figure 3 shows the clusters using the two distance measures. The first col-
umn shows the clusters extracted fitting the generative model, while the second
column displays the cluster extracted from the edit-distances with uniform cost.
While there is some merge and leakage, the cluster extracted by fitting a gener-
ative tree model clearly outperform those obtained using uniform edit-cost. The
second to last cluster extracted using the tree-model approach deserves some ex-
planation: the structure of the shock-trees of the tools in the cluster is identical.
Hence the model, which uses only structural information, correctly clusters the
shock-trees together.
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Fig. 3. Comparison of clusters obtained from non-attributed edit-distance and mixture
of trees.

8 Conclusions

This paper presented a method for estimating of the cost of tree edit operations.
"The approach poses the problem as that of estimating a generative model for a
set of tree samples. The generative model uses the tree-union as the structural
archetype of trees in the distribution and assigns to each node in the archetype
the probability that the node is present in a sample. A minimum descriptor
length formulation is then used to estimate the structure and parameters of this
tree model as well as the node-correspondences between trees in the sample-set
and the tree model. Finally, we use the extracted correspondences and sampling
probability to set the removal cost for each node.
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Abstract. This paper addresses the issue of learning graph edit dis-
tance cost functions for numerically labeled graphs from a corpus of
sample graphs. We propose a system of self-organizing maps represent-
ing attribute distance spaces that encode edit operation costs. The self-
organizing maps are iteratively adapted to minimize the edit distance of
those graphs that are required to be similar. To demonstrate the learning
effect, the distance model is applied to graphs representing line drawings
and diatoms.

1 Introduction

Graphs are a powerful and universal concept to represent structured objects.
Particularly in pattern recognition and related areas they have gained signifi-
cant amounts of attention recently [1,2,3]. If both unknown objects and known
prototypes of pattern classes are represented by graphs, then the problem of
pattern classification turns into the problem of measuring the similarity (or,
equivalently, the distance) of graphs. A number of graph similarity measures
haven been proposed in the literature [4,5,6]. Among those measures, graph edit
distance has become quite popular [7,8,9]. In graph edit distance, a set of graph
edit operations are introduced. These edit operations are used to transform one
of a pair of given graphs into the other. The edit distance of two graphs is defined
as the length of the shortest sequence of edit operations required to transform
one graph into the other. A more powerful graph distance model is obtained if a
cost is assigned to each edit operation. The costs are to be defined in such a way
that edit operations that are very likely to occur have a low cost, while the cost
of infrequent edit operations is high. Using such a cost model, the edit distance
now becomes the cost of the cheapest sequence of edit operations transforming
one of the given graphs into the other. Graph edit distance is very powerful from
the theoretical point of view. However, it has a severe practical limitation in that
no automatic procedures are available to automatically infer edit operation costs
based on a sample set of graphs. In all applications reported in the literature,
the edit costs are derived manually, using knowledge of the problem domain and
heuristics. Obviously, such a procedure is not feasible in complex tasks.

In the present paper we propose a procedure to infer the costs of a set of
edit operations automatically from a sample set of graphs. We focus on a special
class of graphs, which is characterized by the existence of node and/or edge
labels, where each label is a vector from the n-dimensional space of real numbers.
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