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Abstract

This paper investigates an approach to tree edit distance problem with uniform
edit cost. We show that any lree obtained with o sequence of cul operations is
a subtree of the tronsitive closure of the origined trec. Furthermore, we show
that the necessary condition for any subiree to be a solution can be reduced to a
clique problem in o derived structure, Using this idea we tronsform the tree edit
distance problem into a series of mazimum weight cligue problems and then we
wse relazation labeling to find an approzimate solution.

1. Introduction

Inexact or error-tolerant graph-matching is a problem of pivotal importance in
high-level vision. The problem has been studied for almost three decades. Early
work on the topic included Barrow and Burstall's idea [1] of locating matches
by searching for maximum common subgraphs using the association graph,
and the extension of the concept of string edit distance to graph-matching
by Fu and his co-workers [6]. These early efforts can be regarded as being
goal-directed. More recently, the activity in the area has focused on the use
of more principled theoretical ideas, Examples include the use of of generative
or probabilistic models [3, 18], the use of powerful continuous optimization
methods borrowed from the literature on neural networks [8]. and the use of
linear optimization methods,

Making use of linear optimization methods we find Wang, Zhang and Chirn
[17] that approximate the graph edit distance problem with a maximum flow
problem, and Barrow and Burstall [1] that transform the maximum common
subgraph problem (MCSP) into a max clique problem. The transition from the
MCSF to the max clique problem, or maximum complete subgraph problem,
is done using a derived structure: the association graph,

Transforming a graph matching problem into a max clique problem opens up to
a wide spectrum of new possibilities. A diverse array of very powerful heuristies
and theoretical results are available for solving the max clique problem. A




particularly important result is the Motzkin-Straus theorem [9] which allows us
to transform the max clique problem into a continuons quadratic programming
problem.

In an important series of papers, Bunke has recently shown the intimate rela-
tionship between the size of the maximum common subgraph and edit distance
[4]. in particular, he showed that MCS and graph edit distance computation
are equivalent.

While these ideas have been extensively studied for graphs, in this paper we are
interested in trees. While trees are a special case of graphs, the connectivity and
partial order constraints that they represent require adaptation to be made to
generic graph matching techniques so that they may be applied to trees. Fur-
thermore, specilic characteristics of trees suggest that posing the tree-matching
problem as a variant on graph-matching is not the best approach. In partic-
ular, bath tree isomorphism and subtree isomorphism problems have efficient
polvnomial time solutions. Morveover, Tai [15] has proposed a generalization of
the string edit distance problem from the linear structure of a string to the
non-linear structure of a tree. The resulting tree edit distance differs from the
general graph edit distance in that edit operations are carried out only on nodes
and never directly on edges. Zhang and Shasha [20] have investigated a special
case which involves adding the constraint that the solution must maintain the
order of the children of a node. With this order among siblings, they showed
that the tree-matching problem is still in P and gave an algorithm to solve it. In
subsequent work they showed that the unordered case was indeed an NP hard
problem [21], The problem, though, returns to P when we add the constraint of
strict hierarchy, that is when separate subtrees are constrained to be mapped
to separate subtrees [19].

For the general case we have to resort to non-linear search algorithms similar
to the equivalent for the generic graph matching problem. For instance, Pelillo
et al. [11] transform the tree isomorphism problem into a single max clique
problem, a technique already used for the generic graph isomorphism problem.
They use relaxation labeling to obtain a maximal solution to the max clique
problen, and, with it, a maximal tree match,

We draw a number of observations from this review of the relevant literature.
First, we see that the computation of the unordered tree edit distance still
presents a computational bottleneck. Most of the work reported in the literature
investigates the simpler problems of subtree isomorphism or ordered tree edit
distance. These problems are addressed in both exact and approximate settings.
The goal of our work is therefore to introduce a framework in which we can
efficiently approximate the computation of unordered tree edit distance, The
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approach is follows. We commence by providing a divide and conquer methaod
for the maximum common subtree by search for maximal cliques of the directed
association graph. With this representation to hand, we follow Bomze et al, [2]
and wse a variant of the Motzkin Straus theorem to coovert the maximum
welghted clique problem into a quadratic programming problem which can be
solved by relaxation labeling. The new tree-matching method is evaluated on
the problem of shock-tree matching.

2. Association graph

The phase space we use to repre-
sent the matching of nodes is the
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each node represent a possible asso-
ciation, or match, of a node in one
graph to a node in the other. The
edges of the association graph repre-

Fig. 1. Some terminology on  directed

graphs

sent the pairwise constraints of the

problem: they represent both connectivity on the original graphs and the fea-
sibility of a solution with the linked associations.

Hierarchical graphs have an order relation induced by paths: given two nodes
a and b, (e.b) 15 in this relation if and only if there is a path from a to &
When the directed graph is acyclical, this relation can be shown to be an
{irreflexive) order relation. The use of directed arcs in the association graph
allows us to make use of this order. We connect nodes with directed arcs in a
way that preserves the ordering of the associated graph. The graph obtained
can be shown to be ordered still. Specifically, an association graph for the tree
isomorphism problem can be shown to be a forest.

For the exact isomorphism problem {(maximum common subgraph) the edges
of the association graphs are:

(o, 0") = (u,u”) iff v — v and v — o' (1)

where v and u are nodes on one graph and ©' and »' are nodes on the other.




Proposition 1. The directed association graph of two directed acyclic graphs
(DAGs) G and G i aeyelic.

Proof. Let us assume that (u,v1) — -+ - = (itn. ) i5 & cycle, Then, since an
are (v, v') = (u,u') in the association graph exists only if the arcs v — u and
v' = u' exist in G and G' respectively, we have that wy —+ --- G uq is a cyele
in (& and v, = -+ = v, is a cycle in &' against the hypothesis that they are

DAGs.  QED
Proposition2. The directed association graph of two trees t and t' is a forest.

Proof. We already know that the association graph is a DAG, we have to
show that for each node (u,u’) there is at most one node (v,v') such that
(w,¢) = (u,u'}. Due to the way the association graph is constructed this
means that either u or v’ must have at most one incoming edge. But § and #'
are trees, so both v and w' have at most one incoming edge, namely the one
from the parent. QED

The directed association graph can be used to reduce a tree matching problem
into subproblems: the best match given the association of nodes v and v' can
be found examining ouly descendents of v and v* This gives us a divide and
congquer solution to the maximum common subtree problem: use the association
zraph to divide the problem and transform it into maximum bipartite match
subproblems, the subproblems can then efficiently be conquered with known
polynomial time algorithms. We then extend the approach to the minimum
unlabeled tree edit problem and present an evolutionary method to conguer the
subproblems. Finally, we present a method to convert the divide and conguer
approach into a multi-population evolutionary approach.

3. Inexact tree matching

We want to extend the algorithm to provide us with an error-tolerant tree iso-
morphism. There is a strong connection between the computation of maximum
common subtree and the tree edit distance. In [4] Bunke showed that, under
certain constraints applied to the edit-cost function, the maximum common
subgraph problem and the graph edit distance problem are computationally
equivalent. This is not directly true for trees, because of the added constraint
that a tree must be connected. But, extending the concept to the common
edited subtree, we can use common substructures to find the minimum cost
edited tree isomorphism.
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The constraint to the edit-cost function proposed by Bunke in [4] is that the
cost of deleting and reinserting the same element with a different label is not
greater than the cost of relabeling it. In this way we can find an optimal edit
sequence without the need for a relabel operation. We will assume a similar
constraint applies to tree edit cost.

With this constraint we are left with only node removal and node insertion
operations to be performed on the data tree. Since a node insertion on the
data tree is dual to a node removal on the model tree. we can further reduce
the number of operations to be performed to only node removal, as long as we
perform the operations on both trees.

3.1. Editing the transitive closure of a tree

For each node v of t, we can define an edit operation E, on the tree and an edit
operation £, on the closure Ct of the tree £ (see Figure 1). In both cases the
edit operation removes the node v, all the incoming edges, and all the outgoing
edges.

We show that the transitive closure operation and the node removal operation
comimute, that is we have:

Lemma3. £,(C(8) = C(E, (1))

Proof. If a node is in £,(C()) it is clearly also in C(E,(1)). What is left is to
show is that an edge (a.b) is in £,(C(1)) if and only if it is in C(E.{1)).

If (a,b) is in C(E. (1)) then neither @ nor b is v and there is a path from a to b in
E,(t). Since the edit operation E, preserves connectedness and the hierarchy,
there must be a path from a to b in ¢ as well. This implies that (a, b} is in C(t).
Since neither a nor b is v, the operation £, will not delete (a, ). Thus {a, b) 1=
in £,(C(1)).

If {a,b) is in £,(C(t)), then it is also in C(#), because £,(C(t)) is obtained from
€(t) by simply removing a node and some edges. This implies that there is a
path from a to b in ¢t and, as long as neither a nor b are v, there is a path from
a to b in E,(t) as well. Thus (a,b) is in C(E.(t)). Since (a,b) is in &,(C(f)),
both @ and b must be nodes in £,(C(t)) and, thus, neither can be v. QED

We call a subtree s of Ct consistent if for each node v of s if there cannot be
two children a and b so that (a,b) is in Ct. In other words, given two nodes a
and b, siblings in s, s is consistent if and only if there is no path from a to b in
f.

We can, now, prove the following:




130

Theoremd. A treet can be oblained from a tree t with on edif sequence com-
posed of only node removal operations if and only if t i 0 consistent subiree of
fhe DAG CE

Proof. Let us assume that there is an edit sequence { E,, } that transforms ¢ into
£, then, by virtue of the above lemmma, the dual edit sequence 1Ey, } transforms
Ct into Ct. By construction we have that i is a subtree of Ct and Ct is a subgraph
of Cf, thus f is a subtree of Ct, Furthermore, since the node removal operations
respect the hierarchy, £ is a consistent subtree of Ct.

To prove the converse, assume that f is a consistent subtree of Cf. If {a,b) is
an edge of £, then it is an edge on Ct as well, i.e. there is a path from « to b
in + and we can define a sequence of edit operations {E,, ] that removes any
node between o and b in such a path. Showing that the nodes {v;} deleted by
the edit sequence cannot be in ¢ we show that all the edit operations defined
this way are orthogonal. As a result they can be combined to form a single edit
sequence that solves the problem.

Let v in f be a node in the edited path and let p be the minimum common
ancestor of v and a in {. Furthermore, let w be the only child of p in £ that is
an ancestor of v in ¢ and let ¢ be the only child of p in £ that is an ancestor of
a in t. Since a is an ancestor of v in ¢, an ancestor of v can be a descendant. of
i, an ancestor of e, or a itself. This means that w has to be in the edited path.
Were it not so, then w had to be @ or an ancestor of a against the hypothesis
that p is the minimum common ancestor of » and a. Since g is an ancestor of
a in f and a is an ancestor of w in £, g 1s an ancestor of w in £, but g and w are
siblings in i against the hypothesis that i is consistent. QED

Using this result, we can show that the minimum cost edited tree isomorphism
between two trees + and ¢ is a maximum common consistent subtree of the
two DAGs Ct and Ct', provided that the node removal cost is uniform. The
result can be extended to non-uniform cost, but in this paper we will restrict
our scope to the uniform cost case.

The minimum cost edited tree isomorphism is a tree that can be obtained from
both model tree ¢ and data tree t' with node removal operations. By virtue of
the theorem above, this tree is a consistent subtree of both Ot and Ct'. The
tree must be obtained with minimum combined edit cost, and, since the node
removal cost is uniform, this implies the minimum number of nodes removed.
This implies that the common consistent subtree must retain most nodes, e
it must be the maximum common consistent subtree of the two DAGs.
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3.2. Cligues and common consistent subtrees

Iu this section we show that the directed association praph induces a divide
and conquer approach to edited tree matching as well, Given two trees ¢ and
# to be matched, we create the directed association graph of the transitive
closures 0t and 4" and we look for a consistent matching tree in the graph.
That is we seek a tree in the graph that corresponds to two consistent trees in
the transitive closures Ct and C#'. The maximum such tree corresponds to the
maximum common consistent subtree of Ct and CF.

In analogy to what we did for the exact matching case, we divide the prob-
lem into a maximum common consistent subtree rooted at (v,w), for each
node (v, 1) of the association graph. We show that, given the cardinality of the
maximum common consistent subtree rooted at each child of (v, w) in the asso-
ciation graph, then we can transform the rooted maximum common consistent
subtree problem into a max weighted clique problem. Solving this problem for
each node in the association graph and looking for the maximum cardinality
rooted common consistent subtree, we can find the solution to the minimum
cost edited tree isomorphism problem.

Let us assume that we know the cardinality of the isomorphism for every child
of (v,w) in the association graph. We want to find the consistent set of siblings
with greatest total cardinality. Let us construct an undirected graph whose
nodes consist of the children of (v, w) in the association graph. We connect two
nodes (p,q} and (r, s) if and only if there is no path connecting p and r in ¢
and there is no path conmecting g and s in #'. This means that we connect two
matches (p,q) and (r,s) if and only if they match nodes that are consistent
siblings in each tree. Furthermore, we assign to each association node (a, b} a
weight equal to the cardinality of the maximum comimon consistent subtree
rooted at {a,b). The maximum weight clique of this graph will be the set
of consistent siblings with maximum total cardinality. The cardinality of the
maximum common consistent subtree rooted at (v, w) will be this weight plus
one. Furthermore, the nodes of the cligue will be the children of (v, w) in the
maximum common consistent subtree.

3.3. Heuristics for the maximum weighted clique

In 1965, Motzkin and Strauss. (9] showed that the (unweighted) maximum
clique problem can be reduced to a quadratic programming problem on the
n-dimensional simplex A = {x € B"|z; > Oforalli = 1...n,} ;% = 1}
here x; are the components of vector x. With this reduction, maximal cliques
could be put in correspondence with local maxima of a quadratic function.
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Bomze, Pelillo and Stix [2] introduce a regularization factor to the quadratic
programming method that generates an equivalent problem with isolated so-
lutions. This quadratic problem is: minimize f(x) = x7Cx, subject to x € .
Where the matrix C = (¢4;); jer- is defined as

T if ¢ =7
Cij = Il'.:l_l: >+ ey i (1,7) ¢ E.i+#j (2]
{ otherwise.

Let us consider a weighted graph G = (V, E,w), where 1" is the set of nodes,
E the set of edges, and w : 17 = B a weight function that assigns a weight to
each node. Given a set 5§ C 17 and its characteristic vector x” defined as

w{7) e 5
! L ifi €9,
T7 o= E;H wi{y) e
(0 otherwise,

S is a maximum {maximal) weight clique if and only if x” is a global (local)
minimizer for the quadratic problem. Furthermore, if x is a minimum then it
is the characteristic vector for a set of nodes,
To solve the guadratic problem we transform it into the equivalent maxi-
mization problem: maximize x7 (yee” — C)x, subject to x € A. Where e =
{1,--- ,1)7 is the vector with every component equal to 1 and v is a positive
scaling constant. Given the equivalent maximization formulation, we follow [2]
and use relaxation labeling as a local maximizer for the problem.
Relaxation labeling is a evidence combining process developed in the framework
of constraint satisfaction problems. Its goal is to find a classification p that
satisfies pairwise constraints and interactions between its elements. The process
is determined by the update rule
bl (Mg (M) i
PN = e {3
o Pl ()

where the compatibility component is q:(A) = 327, 25, T (A )ps(e) -
In [10] Pelillo showed that the function A(p) = ¥ ;, pi(A)gi(A)is a Lyapunov
function for the process, i.e. A(p'™*!) = A(p'), with equality if and only if '
15 stationary.

3.4. Putting it all together

In the previous sections we proved that the maximum edited tree isomorphism
problem can be reduced to nm maximum weight clique problem and we have
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siven an iterative process that is guaranteed to find maximal weight cliques. In
this section we will show how to use these ideas to develop a practical algorithm.
A direct way is to use the relaxation labeling dynamics starting from the leaves
of the directed association graph and propagate the result upwards in the graph
using the weight of the extracted clique to initialize the compatibility matrix
of every parent association. I'c'.n' cach subproblem the compatibility coeflicients
are initialized as Ry ) = veel = (.
This approach imposes a :.15[[15{*!11.'1&11'11._', to an otherwise highly parallel algo-
rithm. An alternative can be obtained transforming the problem into a single
multi-object labeling process. With this approach we set up a labeling problem
with one object per node in the association graph, and at each iteration we up-
date the label distribution for each object. We, then, update the compatibility
matrices according to the new weight estimate,
This multi-object approach uses the fact that the compatibility matrix for one
rooted matching subproblem does not depend upon which nodes are matched
below the root, but only on the number of matches. That is, to solve one
subproblem we need to know only the weight of the cliques rooted at the
children. not the nodes that form the clique. Using Gibbons’ approach [7], we
get the weight of the clique with the formula —r, Where X is the characteristic
vector of the clique and the matrix B is defined as: {by = u' g = bitbii 4f
(i,79 € B, by =0 otherwise}. This allows us to generate an estimate :‘JF the
clique at each iteration: given the current distribution of label probability p
for the kuh[nﬂb]vm rooted at (v, w), we estimate the number of umi(“. matched
under (v, w) as —rp=, and thus we assign to (v, w) the weight —-;-— + 1.
Another possible variation to the algorithm can be obtained using different
initial assignments for the label distribution of each subproblem.
A common approach is to initialize the assignment with a uniform distribution
so that we have an initial assignment close to the baricenter of the simplex. A
problem with this approach is that the dimension of the basin of attraction of
one maximal clique grows with the number of nodes in the clique.
With our problem decomposition the wider cliques are the ones that map nodes
at lower levels. As a result the solution will be biased towards matches that are
very low on the graph, even if these matches require cutting a lot of nodes and
are, thus, less likely to give an optimum solution.
A way around this problem is to choose an initialization that assigns a higher
initial likelihood to matches that are higher up on the subtree. In our exper-
iments we decided to initialize the probability of the association {a.b) for the
subproblem rooted at (u,v) as pr,,.y(a,b) =€ =ldutdetel where d, is the depth
of @ with respect to u, dy is the depth of b with respect to v, and ¢ is a srnall




perturbation. Of course, we then renormalize py, , to ensure that it is still in
the simplex.

4. Experimental results

We evaluate the new tree-matching method on the problem of shock-tree match-
ing. characterize the shape of the original boundary. Here we follow Zucker,
Siddigi, and others, by labeling points on the skeleton using so-called shock-
labels [14]. According to this taxonomy of local differential structure, there are
different classes associated with behavior of the radius of the osculating circle
from the skeleton to the nearest pair of boundary points. The so-called shocks
distinguish between the cases where the local oseulating cirele has mazximum
raclivg, minimum radius, constant radius or a radius which is strictly increasing
or decreasing. We abstract the skeletons as trees in which the level in the tree is
determined by their time of formation [12, 14]. The later the time of formation,
and henece their proximity to the center of the shape, the higher the shock in the
hierarchy. While this temporal notion of relevance can work well with isolated
shocks (maxima and minima of the radius function), it fails on monotonically
increasing or decreasing shock groups. To give an example, a protrusion that
ends on a vertex will always have the earliest time of creation, regardless of its
relative relevance to the shape.

For our experiments we used a database consisting of 13 shapes. For each shape
in the database, we computed the maximum edited isomorphism with the other
shapes and compared the mateh wsing a “poodness” measure. The measure
was defined as the average fraction of nodes matched, that is, Wity t2) =
3 (g& + _f:"#f_t) , where #t¢ indicates the number of nodes in the tree .
We conducted the experiment with 4 different variants of the algorithm: the
multi step, single object-update rule with uniform and exponential initial proba-
bility assipnment, and the single step, multiple object update rule with uniform
and exponential initial probability assignment.

In figure 2 we tabulate the top 5 matches in order of goodness for the multi
step, single object update rule with exponential initial assignment. The num-
bers are, from top to bottom, multi-step with exponential initial probability
assignment, single-step with exponential initial probability assignment, multi-
step with uniform assignment, and single-step with uniform assignment

As we can see the best match for every shape is the shape itself, and similar
shapes have always a high position, usually second.

Our edit distance approach compares favorably against the similar shock graph
experiments in [11]. In particular our approach seems to capture better the
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perceptual similarity between the shapes of horses and hands, In fact, initial
results with multi-dimensional scaling show that the different shape classes
form distinet pairwise clusters, and similar shape classes are in close proximity

to one-another,

5. Conclusions

In this paper we have investigated a purely structural approach to tree match-
ing. We based the work on to tree edit distance framework constraining it to
uniform edit cost. We show that any tree obtained with a sequence of cut oper-
ation is a subtree of the transitive closure of the original tree. Furthermore we
show that the necessary condition for any subtree to be a solution can be re-
duced a clique problem in a derived structure. Using this idea we transtorm the
tree edit distance problem into a series of maximum weight cliques problems
and then we use relaxation labeling to find an approximate solution.

In a set of experiments we apply this algorithmn to mateh shock graphs, a
graph representation of the morphological skeleton. The results of these ex-
periments are very encouraging, showing that the algorithm is able to match
similar shapes together. Our future plans are twofold, First, we will develop
an enhanced version of the method for weighted tree matching. Second, we are
planning to investigate whether we can use multidimensional scaling and pair-
wise clustering methods to induce perceptually meaningful equivalence classes
on the different shapes used in our study.
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Fig. 2. Shapes and their top five matches in order of similarity (see text).
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