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Abstract

This paper presents o new algorithm for graph-clustering. We adopt mazimum
likelihood framework and develop an EM-like algorithm. In the E-step cluster
memberships are computed wsing a Bernoulli distribution for the pattern of
pairwise stmilarities between graphs. The M-step updates the matriz of pairwise
similarities between graphs. The eigen-modes of the similerity matric are used
to control the number of active clusters. The method is demonstrated on the
problem of locating shape-categories in o dale-base of shock-graphs.

1. Introduction

Graph clustering is an important vet relatively under-researched topic in ma-
chine learning [1, 2, 3]. The importance of the topic stems from the fact that
it is an important tool for learning the class-structure of data abstracted in
terms of relational graphs. Problems of this sort are posed by a multitude
of unsupervised learning tasks in knowledge engineering, pattern recogmtion
and computer vision. The process can be used to structure large data-bases
of relational models [4] or to learn equivalence classes. One of the reasons for
limited progress in the area has been the lack of algorithms suitable for elus-
tering relational structures. In particular, the problem has proved elusive to
conventional central clustering techniques. The reason for this is that it has
proved difficult to define what is meant by the mean or representative graph
for each cluster. However, Munger, Bunke and Jiang [3] have recently taken
some important steps in this direction by developing a genetic algorithm for
searching for median graphs. A more fruitful avenue of investigation may be to
pose the problem as pairwise clustering. This requires only that a set of pairwise
distances between graphs be supplied. The clusters are located by identifying
sets of graphs that have strong mutual pairwise affinities. There is therefore no
need to explicitly identify an representative (mean, mode or median) graph for
gach cluster. Unfortunately, the literature on pairwise clustering is much less
developed than that on central clustering.
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When posed in a pairwise setting, the graph-clustering problem reguires two
computational imgredients. The first of these is a distance measure between ro-
lational structures. The second is a means of perforining pairwise clustering on
the distance measure. There are several distance measures available in the liter-
ature. For instance, in the classical pattern recognition literature, Haralick and
Shapiro [6] have described a relational distance measure between structural de-
scriptions, while Sanfeliu and Fu [8] have extended the concept of edit distance
from strings to graphs. There have also been attempts to use an information
theoretic approach. Here Wong and You [9] have computed the entropy for
random graphs, while Boyer and Kak [10] have used mutual information. Mare
recently, Christmas, Kittler and Petrou [11], and Wilson and Hancock [12] have
developed probabilistic measures of graph-similarity. Turning our attention to
pairwise clustering, the are several possible routes available. The simplest is
to transform the problem into a central clustering problem. For instance, it is
possible to embed the set of pairwise distances in a Euclidean space using a
technique such as multi-dimensional scaling and to apply central clustering to
the resulting embedding. The second approach is to use a graph-based method
[14] to induce a classification tree on the data. Finally, there are mean-field
methods which can be used to iteratively compute cluster-membership weights
[13]. These methods require that the number of pairwise clusters be known a
priori.

In this paper we focus on an application involving the unsupervised learning of
shape-categories. This involves the abstraction of 2D binary shapes using shock-
trees. Commencing from a data-base of silhouettes, we extract the Hamilton-
Jacobi skeleton and locate the shocks which correspond to singularities in the
evolution of the object boundary under the eikonal equation. We compute the
similarity of the shapes using weighted and un-weighted tree edit distance.
We make two theoretical contributions. First, we present a way to compute
tree-edit distance. Second, we describe a new maximum-likelihood framewaork
for pairwise clustering in which the number of clusters is controlled using the
eigen-modes of the matrix of pairwise similarities. Our experiments show that
the best set of shape categories are located when we use weighted edit distance.

2. Shock Tree Edit Distance

The practical problem tackled in this paper is the clustering of 2D binary
shapes based on the similarity of their shock-trees. The idea of characterizing
boundary shape using the differential singularities of the reaction equation was
first introduced into the computer vision literature by Kimia, Tannenbaum
and Zucker [16]. The idea is to evolve the boundary of an object to a canonical
skeletal form using the reaction-diffusion equation. The skeleton represents the
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singularities in the curve evolution, where inward moving boundaries collide.
The reaction component of the boundary motion corresponds to morphological
erosion of the boundary, while the diffusion component introduces curvature
dependent boundary smoothing. Onee the skeleton is to hand, the next step is to
devise ways of using it to characterize the shape of the original boundary. Here
we follow Zucker, Siddigi, and others, by labeling points on the skeleton using
so-called shock-classes [18]. According to this taxonomy of local differential
structure, there ave different classes associated with behavior of the radius of
the osculating circle from the skeleton to the nearest pair of boundary points,
The so-called shocks distinguish between the cases where the local osculating
circle has maximum radius, minimum radius, constant radius or a radins which
is strictly increasing or decreasing. We abstract the skeletons as trees in which
the level in the tree is determined by their time of formation [19, 18]. The later
the time of formation, and hence their proximity to the center of the shape, the
higher the shock in the hierarchy. While this temporal notion of relevance can
work well with isolated shocks {maxima and minima of the radius function),
it fails on monotonically increasing or decreasing shock groups. To give an
example, a protrusion that ends on a vertex will always have the earliest time
of creation, regardless of its relative relevance to the shape.

To overcome this drawback, we augment the structural information given by
the skeleton topology and the relative time of shock formation, with a measure
of feature importance. We opt to use a shape-measure based on the rate of
change of boundary length with distance along the skeleton. To compute the
measure we construct the osculating circle to the two nearest boundary points
at each location on the skeleton.

This measurement has previously been used in the literature to express rele-
vance of a branch when extracting or pruning the skeleton, but is has recently
been shown that its geometric and differential properties make it a good mea-
sure of shape similarity [20].

Given this representation we can cast the problem of computing distances be-
tween different shapes as that of finding the tree edit distance between the
weighted graphs for their skeletons.

Tree edit distance 15 a generalization to trees of String edit distance. The edit
distance is based on the existence of a set B of basic edit operation on a tree and
a set O of costs, where ¢y €  i5 the cost of performing the edit operation b € B.
The choice of the basic edit operations, as well as their cost, can be tailored to
the problem, but common operations include leaf pruning, path merging, and,
in case of an attributed tree, change of attribute. Given two trees T and Tb,
the set B of basic edit operations, and the cost of such operation & = ¢, b e N,
we call an edit path from T to 5 a sequence by, ..., b, of basic edit operations
that transform T into T». The length of such path is [ = e, + ... + &, ; the




N[ATS[F[IN[AN[Z] e[~ ]F ¥ ¥ ¥

DT 0. B 0, 430 | 0004 | 0. 602 [ 0.000 | 0407 | 504 | 0 AZ2 B 5L F 55T |0.484 0427 [0 428 04060402

o.aad |0 a1 |o.sas o sas [ eeas o ro0 |0 e | 0. S00 | 003K | A2 A28 | 0534 (0447 [D.A54 AT (0484

O A 0. 503 | 100 |01 5408 | 0564 | A | ooars [oss | o.asE 0,550 (0,428 0308 [0 406 [ 0.4 14 0.3 73

OG04 | 0685 [0 EDE ] 1000 |0, 0SB 0,484 | 0,50 A3 |04 A

Q.56 | 0smd (0551 [0,k 4| D450 0,385 e 0804|0548 0.6

(5T | DLGEN | DGl | DDA

O.5E4 (0506|0580 0650 {0456 |05 LE 0514 |0, 480 | 503

Gl0.AED

l
s [ 850 | ooada | oorer o Toa |0 76 |1 000 [0 550 [0 503 [0 438 |0, 662 | 0433 | (455

5 | D06 | 0,475 | 6,50 LADE

§oAne | e.am (0,504 ) 1000 0416 |0 430 0405 043

441|056 |0 aTE | 0506 |0 aHs |0 AT [0 AE0 S04 {0008 [ (L3840 408 096 [0 FRG | 6310 pasa{oain

05 e R |0 T 0 GOT |G 0 G806 | 0487 | (434 CLETD L0003 820 5T L e L Tl R ]

0,556 0. 636 0 660 J0.626 0576 | DADE |0 A28 |0 HZ0 | 1000|0499 | DS 0542 0 83 LS 1R

az0|0.475|0.3e7 joaoa|n.anz|p.ase| tooo|ese fo aes josis|o.sen

0,406 0440 0.4 17 [0, 9845 .-

A4 a[N[ e[ A7~ ]2

10305 04470305 {0 141 a.445| o407 {o a7 lo 602 |0 873 | 0,608 | 0,003 0. TT1 0. 665 GG

I
|

- &[]

A3 |0 5D | DA QA5 | 0. A42T | 0.335 |0 G2 0 504 | 0.4 B | 0690 |0 976 | 1L BES |3'_-3"'_||3_I

=

| 1 |
10480 0445 (0078 0620 |0 B8 J0 BTN T8 |0.847 |IF9R2 [ 0.77]

0421 [oas0|ooaoe |0

4t {00847 0,980 0.4 T [0560 [0 820 | 0403 [0, 454 | 0346 (0. 563 |0.558 |0.841 |0 TA5 | 18G4 | ILELT ) 1000

Fig. 1. Pairwise edit distances computed nsing un-weighted trees.
|

minimum length edit path from Ty to T; is the path form T to T% with minimum
length. The length of the minimum length path is the tree edit distance.
With our measure assigned to each edge of the tree, we define the cost of
matching two edges as the difference of the total length ratio measure along the
branches. The cost of eliminating an edge is equivalent to the cost of matching
it to an edge with zero weight, i.e. one along which the total length ratio is
ZETO.

Using the edit distance of the shock trees we generate two similarity measures
for a pair of shapes.

— The first measure is obtained weighting the nodes with the border length
ratio normalized by the total length of the border of the shape. That is the
length of the fraction of the border spanned by the shock group divided
by the total length of the border. In this way the sum of the weizhts in a
tree is 1 and the measure is scale invariant. The similarity of the shapes is
computed by adding the minimum weight for each matched node, that is
o = 3, min(w;, w), where w; and w! are the weight of the nodes that
are matched together by our tree edit distance algorithm.
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Fig. 2. Pairwise edit distances computed using weighted trees.

— The second measure of shape similarity is computed from the unweighted

3.

structure: We assign a uniform edit cost of 1 to each node and we compute
the average ratio of matched nodes: d, v = 5 (#—J, + #_T'-__-)! where T
and Ty are the two trees to be matched, T is the median of the two trees
obtained through cut operations only, and # indicates the number of nodes

in the tree.

Graph-clustering by Matrix Factorisation

We pose the problem of graph-clustering as that of finding pairwise clusters
in the distribution of tree-edit distance. The process of pairwise clustering is
somewhat different to the more familiar one of central clustering. Whereas
central clustering aims to characterise cluster-membership using the cluster
mean and variance, in pairwise clustering it is the relational similarity of pairs
of objects which are used to establish cluster membership. Although less well
studied than central clustering, there has recentlv been renewed interest in
pairwise clustering aimed at placing the method on a more principled footing

using techniques such as mean-field annealing [15].




To commence, we reguire some formalism,. We are interested in grouping a
set of graphs G = {G‘.._......_G|_.1,-i} whose index set is A7, The set of graphs is
characterised using a matrix of pairwise similarity weights. The elements of this
weipht matrix are computed using tree-edit distance d; ; between the praphs
indexed ¢ and j. Here we use the exponential similarity function

Wii= {“x”[ kel ;) ifi# j (1)
i { otherwise

to generate the elements of the weight-matrix, where k is a constant which is
heuristically set. The aim in graph-clustering is to locate the updated set of
similarity weights which partition the set of graphs into disjoint subsets. Let 5,
represent the index-set of the cluster of graphs indexed w. Since the different
clusters are disjoint S, NS, =0 if w' # ",

In this paper we are interested using matrix factorisation methods to locate
the clusters. One way of viewing this is as the search for the permutation ma-
triz which re-orders the elements of W into non-overlapping blocks. However,
when the elements of the matrix 7 are not binary in nature, then this is
not a straightforward task. However, Sarkar and Boyer [21] have shown how
the same-sign eigenvectors of the matrix of similarity-weights can be used to
for clustering. Using the Rayleigh-Ritz theorem, they observe that the scalar
quantity © Wx, where W is the weighted adjacency matrix, is maximised
when x is the leading eigenvector of W, Moreover, each of the subdominant
eigenvectors corresponds to a disjoint cluster. We confine our attention to the
same-sign eigenvectors (Le. those whose corresponding eigenvalues are real and
positive, and whose components are either all positive or are all negative in
sign). If a component of a same-sign eigenvector is non-zero, then the cor-
responding node belongs to the cluster associated with the eigen-modes of
the similarity weight matrix. The eigenvalues A, As.... of W are the solu-
tions of the equation |[W — Af| = 0 where [ is the |Af| =% |M| identity ma-
trix. The corresponding eigenvectors x, ,%,., ... are found by solving the equa-
tion Wy, = Aix,,. Let the set of same-sign eigenvectors be represented by
2= {wlh, > 04 [{x5(1) > 0¥i) v x2,(2) < O%i])}. Since the same-sign eigen-
vectors are orthogonal, this means that there is only one value of w for which
x2{1) # 0. In other words, each node { is associated with a unigue cluster.
We denote the set of nodes assipned to the cluster with modal index w as

S = {ilxL (i) # 0}

4. DMaximum Likelihood Framework

In this paper, we are interested in exploiting the factorisation property of
Sarkar and Boyer [21] to develop a maximum likelihood method for updating
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the similaritv-weight matrix 0. We commence by factorising the likelihood-
function over the set of modal clusters of the similaritv-weight matrix. Since
the set of modal clusters are disjoint we can write,

Py = [T P(e.) (2)
wig £?
where P{$.) is the probability distribution for the set of similarityv-weights
belonging to the modal-cluster indexed w. To model the component probability
distributions. we introduce a cluster membership indicator which models the
degree of affinity of the graph indexed i to the cluster with modal index w.
This is done using the magnitudes of the modal co-efficients and we set

Siw = “— (3)

Using these variables, we develop a model of probability distribution for the
similarity-weights associated with the individual clusters. We assume that the
distribution can be factorised over the set of pairwise associations $, = 5, =
So = {li,40)]i € M} with each cluster and write

Pia.y= [] PW;) (4)
{i,3bed,
To madel the probability distribution for the individual link-weights, we adopt
the Bernoulli distribution

?J‘U'I"-.i_j} o H'r;:.:;;" L {1 s ".-'LJ_J1 — B F (J}

This distribution takes on its largest values when either the similarity weight
Wi is unity and s;. = s, = 1, or if the similarity-weight W;; = 0 and
Hir =, =10

With these ingredients the log-likelihood function for the observed pattern of
similarity-weights is

L=% N {.«_..A..‘,-J-h.mu-y_j + (1 .wl-*..q“;w.]l:u:l—I'I';_J}} (6)

wEfl {ijred,,

Posed in this way the structure of the log-likelihood function has two fea-
tures which are reminiscent of thet expectation-maximisation algorithm. First,
the modes of the link-weight matrix play the role of mixing components. The
product of cluster-membership variables s;,5;. plays the role of an a posteri-
ori measurement probability. Second, the similarity-weights are the parameters
which must be estimated. However, there are important differences. The most
important of these is that the modal clusters are disjoint. As a result there is
no mixing between them,
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Based on this observation, we will exploit an EM-like process to update the
similarity-weights and the cluster-membership variables. In the “M” step we
will locate maximum likelihood similaritv-weights. In the “E" step we will use
the revised similarity-weight matvix to update the modal clusters. To this end
we index the similarity-weights and eluster memberships with iteration number
and aim to optimise the guantity

s[n41}

%
(n41} {m)y I.'.'I |fr| e R, _-Irr.—l:l f
QW [ = E E { In-_1 __TI T J+1n|'1 Wi }} (7]

wEl? (ig)ed,, iF

The revised similarity-weights are indexed at iteration n + 1 while the cluster-
mermnberships are indexed at iteration n.

4.1. Expectation
To update the cluster-membership variables we have used a gradient-based

method. We have computed the derivatives of the expected log-likelihood fune-
tion with respect to the cluster-membership variable

; A1) [Jfrindy }
ol 80 S WL e @)
I:4:]“jl':u+]] 3 r., -” l.r.'—]"
hat 1] JE

Since the associated saddle-point equations are not tractable in closed form,
we use the soft-assign ansatz to update the cluster membership assignment
variables. As a result the update equation for the cluster membership indicator
variables is

(9)

4.2. Maximisation

Onee the revised cluster membership variables are to hand then we can apply
the maximisation step of the algorithm to update the similarity-weight matrix,
The updated similarity-weights are found by computing the derivatives of the
expected log-likelihood function
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', In other words,
the similarity-weight for the pair of nodes (i, 7) is simply the average of the
product of individual node cluster memberships. Since each graph is associated
with a unigque cluster, this means that the updated similarity-weight matrix is

u . . -l 11 1
updated link-weights are given by 1 ;';'I ot g -‘*::_:I '

& jus

composed of non-overlapping blocks. Moreover, the similarity-weights are are
guaranteed to be in the interval [0, 1].
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Fig. 3. {a)Multidimensional scaling applied to the weighted tree edit distances:
(b)Multidimensional scaling applied to the unweighted tree edit distances,

5. Experiments

The 16 shapes used in our study are shown in Figures 1a and 1b. In Figure 1a
we show the pattern of weighted edit distances between the shock-trees for the
shapes, while Figure 1b shows the corresponding weighted tree edit distances.
To visualise the data, we have applied multi-dimensional scaling to the two
sets of distances [23]. Figures 2a and 2b respectively show the leading two
components of the eigenvectors of the distance matrix for the weighted and
unweighted trees. In the case of the weighted shock trees, the cluster structure




Fig. 4. (a) Initial similarity matrix for the wn-weighted tree edit distances: (h)Final
similarity matrix for the unweighted tree edit distances,

[a) (b}

Fig. 5. (a) Initial similarity matrix for the weighted tree edit distances; (b) Final
similarity matrix for the weighted tree edit distances.

15 somewhat clearer than for the un-weighted shock trees. However, in both
cases the cluster structure is far from clear. In other words, the clustering of
the graphs is not a problem that could be solved by simply applying central
clustering to the eigenvectors delivered by MDS.

In Figures 3a we show the matrix of pairwise similarity weights for the un-
weighted trees for the different shapes. Here the redder the entries, the stronger
the similarity; the bluer the entries, the weaker the similarity. The order of the




227

entries in the matrix is the same as the order of the shapes in Figures 1a and
1b. After six iterations of the clustering algorithm the similarity weight matnx
shown in Figure 3b is obtained. There are six clusters (brush (1) + brush (2)
+ wrench (4); spanner (3) + horse (13) ; pliers (3) + pliers (6) + hammer (9)
:pliers (7) +hammer (8) + horse (12); fish (10) + fish (12); hand (14} + hand
(15) + hand (16). Clearly there is merging and leakage between the diflerent
shape categories. In Figures da and 4b we show the initial and final similar-
ity matrices when weighted trees are used. The entries in the initial similarity
matrix are better grouped than those obtained when the unweighted tree edit
distance is used. There are now seven clusters. brush (1) + brush (2) : spanner
{3} + spanner (4): pliers (5) + pliars (6) + pliers (7); hammer (8) + hammer
(9); fish (10) + fish (11); horse (12} + horse (13); hand (14) + hand (15) +
hand (16)). These correspond exactly to the shape categories in the data-base.

6. Conclusions

This paper has presented a study of the problem of clustering shock-trees. We
gauge the similarity of the trees using weighted and unweighted edit distance.
To idetify distinet groups of trees, we develop a maixmum likelihood algorithm
for pairwise clustering. This takes as its input a matrix of pairwise similari-
ties between shock-trees computed from the edit distances. The algorithm is
reminiscent of the EM algorithm and has interleaved iterative steps for com-
puting cluster-memberships and for updating the pairwise similarity matrix.
The number of clusters is contolled by the number of same-sign eigenvectors
of the current similarity matrix. Experimental evaluation of the method shows
that it is capable of extracting clusters of trees which correspond closely to the
shape-categories present.
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