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Abstract. Pairwise data clustering techniques are gaining increasing
popularity over traditional, feature-based central grouping techniques.
These approaches have proven very powerful when applied to image-
segmentation problems. However, they are computationally too demand-
ing to be applied to video-segmentaton problems due to their scaling be-
havior with the quantity of data. On a dataset containing N examples,
the number of potential comparisons scales with O(N2), thereby render-
ing the approaches unfeasible for problems involving very large data sets.
It is therefore of primary importance to develop strategies to reduce the
number of comparisons required by subsampling the data and extend-
ing the grouping to out-of-sample points after the clustering process has
taken place. In this paper we present an approach to out-of-sample clus-
tering based on the dominant set framework [10] and apply it to video
segmentation. The method is compared against two recent pairwise clus-
tering algorithms which provide out-of-sample extensions: the Nyström
method [3], and the minimal-shift embedding approach [14]. Our results
show that our approach performs comparably against the competition in
terms of quality of the segmentation, being, however, much faster.

1 Introduction

Proximity-based, or pairwise, data clustering techniques are gaining increas-
ing popularity over traditional central grouping techniques, which are centered
around the notion of “feature” (see, e.g., [5, 15, 16, 14]). In many application
domains, in fact, the objects to be clustered are not naturally representable in
terms of a vector of features. On the other hand, quite often it is possible to
obtain a measure of the similarity/dissimilarity between objects. Although such
a representation lacks geometric notions such as scatter and centroid, it is at-
tractive as no feature selection is required and it keeps the algorithm generic and
independent from the actual data representation and metric involved. Further, it
allows one to use non-metric similarities and it is applicable to problems that do
not have a natural embedding to a uniform feature space, such as the grouping
of structural or graph-based representations.

These appraoches have proven very powerful when applied to image segmen-
tation problems [16, 7, 5, 2]. However the application of these method to video



segmentation is, in general, unfeasible, due to the scaling behavior with the num-
ber of data items. On a dataset containing N examples, the number of potential
comparisons scales with O(N2), thereby rendering the approach too demanding,
both in terms of computation time and of space, to be used to segment video
feeds. A way of overcoming this drawback is to drastically reduce the number of
objects to be clustered and then extend the partition to the full data-set. Un-
fortunately, there is no straightforward way of extending the clustering results
to new data within the pairwise grouping paradigm short of recomputing the
complete cluster structure.

In an attempt to address this shortcoming of the pairwise approach, Fowlkes
et al. [3] have recently proposed to use the Nyström approximation to extend
normalized cut to out-of-sample data, while Bengio et al. [1] use the Nyström
extension to extend other spectral clustering appraoches. Roth et al. [14] propose
to perform pairwise clustering by embedding the distance data in an Euclidean
space, and show how this embedding can be extended to new points.

Recently, a new framework for pairwise data clustering based on the graph-
theoretic concept of a dominant set has emerged [10]. An intriguing connection
between dominant sets and the solutions of a (continuous) quadratic optimiza-
tion problem makes them related in a non-trivial way to spectral-based cluster
notions, and allows one to use straightforward dynamics from evolutionary game
theory to determine them [17]. A nice feature of this framework is that it natu-
rally provides a principled measure of a cluster’s cohesiveness as well as a measure
of a vertex participation to its assigned group. The approach has proven to be
a powerful one when applied to problems such as intensity, color, and texture
segmentation, and is competitive with spectral approaches such as normalized
cut [10, 11].

Motivated by the previous arguments, in this paper we address the prob-
lem of applying the dominant set approach to spatio-temporal segmentation of
video sequences. In order to do this we propose an efficient approach to assign-
ing out-of-sample data to one of a set of previously determined dominant sets.
This allows us to substantially reduce the computational burden associated to
the processing of the huge amount of data involved in video segmentation. We
compare the segmentation obtained with our results to those obtained using the
Nyström extension [3] and the minimal-shift embedding method [14], both on
video sequences and synthetic data.

2 The dominant set framework

In the pairwise clustering framework the data to be clustered are represented
(possibly implicitly) as an undirected edge-weighted graph with no self-loops
G = (V, E, w), where V = {1, . . . , n} is the vertex set, E ⊆ V × V is the edge
set, and w : E → IR∗+ is the (positive) weight function. Vertices in G correspond
to data points, edges represent neighborhood relationships, and edge-weights
reflect similarity/dissimilarity between pairs of linked vertices. As customary,
we represent the graph G with the corresponding weighted adjacency (or simi-



larity/dissimilarity) matrix, which is the n × n nonnegative, symmetric matrix
A = (aij) defined as:

aij =
{

w(i, j) , if (i, j) ∈ E
0 , otherwise .

The dominant set framework has been presented in [10]. Let S ⊆ V be a non-
empty subset of vertices and i ∈ V . The (average) weighted degree of i w.r.t. S
is defined as:

awdegS (i) =
1
|S|

∑

j∈S

aij (1)

where |S| denotes the cardinality of S. Moreover, if j /∈ S we define φS (i, j) =
aij−awdegS (i) which is a measure of the similarity between nodes j and i, with
respect to the average similarity between node i and its neighbors in S.

Let S ⊆ V be a non-empty subset of vertices and i ∈ S. The weight of i
w.r.t. S is

wS (i) =





1, if |S| = 1
∑

j∈S\{i}
φS\{i} (j, i)wS\{i} (j) , otherwise (2)

while the total weight of S is defined as:

W(S) =
∑

i∈S

wS(i) . (3)

Intuitively, wS (i) gives us a measure of the overall similarity between vertex
i and the vertices of S \ {i} with respect to the overall similarity among the
vertices in S \ {i}, with positive values indicating high internal coherency.

A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any non-empty
T ⊆ S, is said to be dominant if:

1. wS (i) > 0, for all i ∈ S
2. wS∪{i} (i) < 0, for all i /∈ S.

The two previous conditions correspond to the two main properties of a cluster:
the first regards internal homogeneity, whereas the second regards external in-
homogeneity. The above definition represents our formalization of the concept
of a cluster in an edge-weighted graph.

Now, consider the following quadratic program, which is a generalization of
the so-called Motzkin-Straus program [8]:

maximize f(x) = x′Ax
subject to x ∈ ∆n

(4)

where
∆n = {x ∈ IRn : xi ≥ 0 for all i ∈ V and 1′x = 1}



is the standard simplex of IRn, and 1 is a vector of appropriate length consisting
of unit entries. The support of a vector x ∈ ∆n is defined as the set of indices
corresponding to its positive components, that is σ (x) = {i ∈ V : xi > 0}.
In [10], an intriguing connection between dominant sets and local solutions of
program (4) is established. Specifically, it is proven that if S is a dominant subset
of vertices, then its (weighted) characteristic vector xS , which is the vector of
∆n defined as

xS
i =

{
wS(i)
W(S) , if i ∈ S

0, otherwise
(5)

is a strict local solution of program (4). Conversely, if x is a strict local solution
of program (4) then its support S = σ(x) is a dominant set, provided that
wS∪{i} (i) 6= 0 for all i /∈ S.

By virtue of this result, a dominant set can be found by localizing a local
solution of program (4) with an appropriate continuous optimization technique,
such as replicator dynamics from evolutionary game theory [17], and then picking
up its support. In order to get a partition of the input data into coherent groups,
a simple approach is to iteratively find a dominant set and then remove it from
the graph, until all vertices have been grouped.

Note that the components of the weighted characteristic vectors give us a
natural measure of the participation or “centrality” of the corresponding ver-
tices in the cluster, whereas the value of the objective function measures the
homogeneity or cohesiveness of the class.

3 Out-of-sample extension of a dominant set classification

Suppose we are given a set V of n unlabeled items and let G = (V,E, w) de-
note the corresponding similarity graph. After determining the dominant sets
(i.e., the clusters) for these original data, we are next supplied with a set of m
new data items and are asked to assign each of them to one of the previously
extracted clusters. A recent approach to the out-of-sample extension of the dom-
inant set framework was presented in [12]. The approach tested each new point
against each set to see whether it increased its “cohesiveness”. In particular, if
wS∪{i}(i) > 0, then the new item i was assigned to cluster S. There are, however,
a number of problems with this approach. First, it does not provide a partition
of the data, since each point can be assigned to more than one cluster or to
none at all. More importantly, the approach needs the distances between all the
samples and the new item to be avaiable to perform the extension, and has,
hence, O(nm) time-complexity, where n is the number of samples and m is the
number of out-of-sample items. A similar approach can be found in [4]

In a central-clustering framework a straightforward way to do it is to assign
each new vector x to the cluster with the closest centroid, i.e.,

C(x) = argmin
ν

(‖yν − x‖) ,



where yν is the centroid of cluster ν. In a pairwise clustering framework, however,
the cluster-centroid is not explicit. However, with sufficient samples, we can
assume that at least one element of the cluster is “close” to the centroid. Previous
experience show that the weight xS

i of the characteristic vector is a measure of
the centrality of item i with respect to the dominat set S. Hence, we take the
sample with maximum weight to be the prototype P (S) of S, that is:

P (S) = argmax
i

(xS
i ) .

A similar definition of prototype was recently proposed in [4]. There, however,
the prototype was not used for clustering purposes and had no implicit relation
to the centroid.

With the prototype at hand, we perform the cluster extension by assigning
each new item j to the cluster Sν with the closest prototype, i.e.,

C(j) = argmax
ν

(Sim
(
P (Sν), j)

)
,

where Sim(i, j) is the similarity between items i and j.
The proposed extension is very efficient, since, for each new point to be

clustered, it only requires the computation of one distance per cluster. Hence,
having a O(km) time complexity, where k is the number of clusters and m the
number of out-of-sample items. Furthermore, the extension can be done on-line
since each new point is assigned to a cluster in isolation, without any information
about the similarity structure of the other out-of-sample points.

4 Experimental results

To assess the ability of the proposed approach to perform meaningful segmenta-
tion on large data-sets, we apply the algorithm to spatio-temporal segmetnation
of video sequences. We compare the performance, both in terms of quality and
computation time, to two recent out-of-sample pairwise clustering approaches
described in [3] and [14].

4.1 The Nyström method

In a recent paper, Fowlkes et al. propose to use the Nyström Method to extend
the Normalized Cut framework to out-of-sample data [3]. The Nyström method
is a technique for finding numerical approximations to eigenfunctions problems
of the form ∫ b

a

W (x, y)φ(y) dy = λφ̂(x) .

It is based on the idea that this equation can be approximated using a simple
quadrature rule on a set of sample points ζ1, . . . , ζn in the interval [a, b]:

b− a

n

n∑

j=1

W (x, ζj)φ̂(ζj) = λφ̂(x) , (6)



where φ̂(x) is the approximation of φ(x). Let Ai,j = W (ζi, ζj) be the matrix
obtained by sampling the weight function W at points ζ1, . . . , ζn, the set Φ =
{φ1, . . . , φn} of the eigenvector of A are solutions of the system:

b− a

n

n∑

j=1

W (ζi, ζj)φ̂(ζj) = λφ̂(ζi) ∀i ∈ {1, . . . , n} .

Substituting back into (6) yields the Nyström extension

φ̂i(x) =
1

nλi

n∑

j=1

W (x, ζj)φi(ζj) .

Let the complete weight matrix W be

W =
[

A B
B′ C

]
,

where matrix A holds the similarities between the samples points, B the sim-
ilarities between sample and out-of-sample points, and C the similarities be-
tween out-of-sample points. The Nystöm approach implicitly approximates C
with B′A−1B, leading to the extended weight matrix

Ŵ =
[

A B
B′ B′A−1B

]
.

To apply the Nyström approximation to Normalized Cut, it is necessary to com-
pute the row sums d̂of the extended weight matrix Ŵ

d̂ = Ŵ1n+m =
[

A1n + B1m

B′1n + B′A−1B1m

]
,

where n is the number of samples, m is the number of out-of-sample points.
This requires the (implicit) computation of B1m. Hence the approach cannot
easily be expressed as an on-line extension and, at least in the implementation
provided in [3] and used in our experiments, requires the full matrix B to be in
memory. This severely limits the dimension of the video sequences that can be
segmented with this approach.

4.2 Minimal-shift embedding

In a recent paper, Roth et al. present an embedding of possibly non-Euclidean
distance data that preserve the clustering properties of the k-means functional [14].
The approach derives from the observation that the k-means functional

Hkm =
k∑

ν=1

∑
i = 1nMiν‖xi − yν‖2 , (7)



Original sequence

Dominant set

Nyström extension

Minimal-shift embedding

Fig. 1. The hula sequence. Top to Bottom: dominant set, Nyström extension, and
minimal-shift embedding.



where yν is the centroid of cluster ν and Miν = 1 if item i is assigned to cluster
ν, Miν = 0 otherwise, can be expressed in terms of pairwise distances between
the points to be clustered as: In fact, by setting the prototype vectors we can
write (7) as

Hkm =
1
2

k∑
ν=1

∑n
i=1

∑n
j=1 MiνMjν‖xi − xj‖2∑n

l=1 Mlν
. (8)

Furthermore, the authors show that this functional is invariant under a constant
shift of the distance matrix D, i.e., Hkm(D) = Hkm(D + d0(11′ − I)) where d0

is an arbitrary constant, 1 is the vector of all ones and I is the identity matrix.
Let us define the matrix

Sc
ij =

1
2


Dij − 1

n

n∑

k=1

Dik − 1
n

n∑

k=1

Dkj +
1
n2

n∑

k,l=1

Dkl


 .

Clearly, Dij = Sc
ii + Sc

jj − 2Sc
ij . It is a well known result that D derives from a

Euclidean distance, or, equivalently, can be embedded in an Euclidean space, if
and only if Sc is positive semidefinite. However, the shifted matrix S̃ = S−λnT ,
where λn is the least eigenvector of S, is clearly positive semidefinite, and the
distance matrix D̃ij = S̃ii + S̃jj − 2S̃ij can be obtained from D with a constant
shift D̃ = D − 2λn(11′ − I). Hence, D̃ is embeddable in an Euclidean space
and has the same k-means functional as the original matrix D. To perform the
clustering, Roth et al. propose to compute the shifted matrix D̃, embed it into
an Euclidean space and run the k-means clustering algorithm on the embedding
space. To reduce the noise dimensional reduction approaches such as principal
component analysis can be applied to the embedding space. This is equivalent
to performing multi-dimensional scaling on D̃.

One interesting property of this approach, mentioned in [14], is that it is
possible to extend the embedding to new data. First, note that we can write the
embedding in the form Xp = S̃VpΛ

−1/2
p v, where Vp is the matrix containing the

first p eigenvector of S̃ and Λp the corresponding eigenvalues matrix. Given the
matrix Dn of distances between the new and the old data, we define

Sn
ij =

1
2


Dn

ij −
1
n

n∑

k=1

Dn
ik −

1
n

n∑

k=1

D̃kj +
1
n2

n∑

k,l=1

D̃kl




and project the new points as Xn
p = SnVpΛp. The new point is then assigned to

the cluster with the closest centroid. While this approach allows each new point
to be clustered on-line, that is without any information about the other out-of-
sample points, it requires the computation of the full set of distances between the
new point and the original samples to perform the embedding, and hence, the
extension is computationally more demanding than using our approach, being
of order O(nm), where n is the number of samples and m the number of out-of-
sample items.



Original sequence

Dominant set

Fig. 2. The flight sequence. Original sequence and the segmentation obtained with the
dominant set framework.

4.3 Similarity measures

To measure the similarity/distance between two points in a video sequence we
make use of both color and texture information. To measure the difference in
texture we convolve each frame with a bank of linear spatial filters. The filters



Nyström extension∗

Minimal-shift embedding

∗ Nyström extension could not handle more than 3 frames.

Fig. 3. The flight sequence. Segmentaion obtained with the Nyström extension, and
the minimal-shift embedding.

consist of pairs odd- and even-symmetric oriented filters in various scales and
orientations, plus a set of center-symmetric filters. The odd-symmetric filters
are re-orientation and re-scaling of the base fo(x, y) = coG

′
σ1(y)Gσ2(x), where

Gσ(x) represents a Gaussian with standard deviation σ and co is a constant that
forces fo to unitary L1 norm. The even-symmetric filters are re-orientation and
re-scaling of the base fe(x, y) = ceG

′
σ1(y)Gσ2(x), while the center symmetric

filters have basis fc(x, y) = cc(Gσ1(y)Gσ1(x) − Gσ2(y)Gσ2(x)). Here the con-
stants ce and cc guarantee that all the basis have unitary L1 norm. Similarly to
what was presented in [7], in our experiments we have 6 different orientations
uniformly separated by 30o, and 4 different scales, for a total of 40 filters, hence
the filter-responses are vectors in a 40-dimensional space. The difference in tex-
ture is measured as the Euclidean distance between the filter-responses, while
the difference between two colors is defined as the Euclidean distance of the
RGB representations of the two colors. For each two points p and q in the video
sequence, we extract their 5x5 spatial neighborhoods and, for each point of in-



Original sequence

Dominant set

Fig. 4. The flower garden sequence. Original sequence and the segmentation obtained
with the dominant set framework.

dex (i, j) in the neighborhoods, we compute the color vectors cp
ij and cq

ij around
points p and q respectively. Similarly, we compute the filter-response vectors fp

ij

and fq
ij . We define the color-distance function dc and the filter-distance function

df as the weighted combination of distances

dc(p, q) =
5∑

i,j=1

wij‖cp
ij − cq

ij‖ df (p, q)
5∑

i,j=1

wij‖fp
ij − fq

ij‖ ,

where, in our experiments, the weight wi is a Gaussian centered at the center of
the neighborhood and with unitary standard deviation.



Nyström extension∗

Minimal-shift embedding

∗ Nyström extension could not handle more than 3 frames.

Fig. 5. The flower garden sequence. Segmentaion obtained with the Nyström extension,
and the minimal-shift embedding.

To obtain a similarity measure to be used with the dominant set approach
and the Nyström extension, we combine the two distances with the formula

s(p, q) = e
− 1

2

ş
dc(p,q)

k1
+

df (p,q)
k2

ť

where k1 and k2 are scaling constants determined experimentally. On the other
hand, the distance used for the minimal shift embedding algorithm is a simple
convex combination of the two distances:

d(p, q) = αdc(p, q) + (1− α)df (p, q) .

4.4 Video segmentation

In order to test the performance of the segmentation algorithms, we applied the
methods to three video sequences. All the experiments where run on a Pentium 4
PC with with a 1.2GHz CPU and 512Mb of RAM. To ensure a fair comparison,
the clustering and extension algorithms where all coded in Matlab, while the
feature extraction and distance/similarity calculation where performed using



Hula Flight Flower garden
(sec.) (sec.) (sec.)

Dominant set 73 277 279

Nyström extension 871 618∗ 572∗

Minimal-shift embedding 546 1236 1218
∗ Nyström extension could not handle more than 3 frames.

Table 1. Computation time required to cluster the video sequences.
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Fig. 6. Sensitivity of the clustering algorithms to the number of samples

non-optimized C++ code. The parameters defining the similarities/distances
were experimentally selected to provide the best results, and the number of
cluster to be extracted was set to be the same for all three algorithms.

Figures 1–5 show the segmentations obtained from the three sequences, while
Table 1 displays the time required to segment the videos.

In Figure 1 we can see the results on the “Hula” sequence. This sequence
consists of 8 frames of 160x128 pixels each and 100 samples were used to extract
the clusters. Lines 2 to 4 of Figure 1 show the segmentation obtained using the
dominant set approach, the Nyström extension and the minimal-shift embedding
approach respectively. In the segmentation images every grey-level represent a
different cluster. In the video there is a clear separation between figure and
ground and all three algorithms provide similar segmentations. Note however,
that there is a dramatic difference in computation time, with the dominant
set approach clearly outperforming the other two. Figures 2 and 3 display the
segmentation obtained from the “flight” sequence. This sequence consists of 12
frames of 160x128 pixels each and 300 samples were used to extract the clusters.
It is important to note that, already with this small example, the size of matrix
B of the similarities between out-of-sample points and sample points was too big
to fit in memory, rendering the Nyström method infeasible. In fact The approach
could not be applied to more than 3 frames. The other two approaches, on the
other hand, did not suffer from this limitation due to their ability to perform
the extension on-line. The sequence was much harder to segment, and all three



approaches provide rather poor, yet comparable, segmentations. However, in
this case as well the dominant set approach clearly outperforms both methods
in terms of execution time. Finally, Figures 4 and 5 present the segmentation
obtained from the “flower garden” sequence. This sequence consists of 12 frames
of 176x120 pixels each. 300 samples were used to extract the clusters, and in this
case as well the Nyström method could not go beyond the first 3 frames. In this
case the dominant set, not only proved much faster than the other approaches,
but also provided a better segmentation than those obtained with the other
algorithms. In fact it was the only method that proved to be able to separate
the tree in the foreground from the roofs of the houses in the background.

4.5 Sensitivity analysis

To complement these real world experiments we have performed some sensitiv-
ity analysis aimed at assessing the performance of the clustering algorithms as
the number of samples is reduced. To this end we have applied the segmenta-
tion approaches to an artificial image with 5 patches of different texture. The
segmentation were repeated using 10, 20, 40, 80, 160, 320, and 640 color and
texture samples. Figure 6 displays the image to be segmented and the rate of
misclassified points as the number of samples increases. Note that the Nyström
approach did not scale beyond 160 samples. The results show that both the
dominant set approach and the minimal-shift embedding method are insensitive
to the number of samples, with the dominant set approach having the edge in
terms of average misclassification rate. The Nyström method, however, shows a
clear dependency on the number of samples.

5 Conclusions

In this paper we have addressed the problem of applying the dominant set ap-
proach to spatio-temporal segmentation of video feeds. In order to do this we
proposed an efficient approach to assigning out-of-sample data to one of a set
of previously determined clusters. This allowed us to substantially reduce the
computational burden associated to the processing of the huge amount of data
involved in video segmentation. We compared the performance of the approach
to two state-of-the-art out-of-sample cluster-extension algorithms: the Nyström
extension applied to normalized cut and the minimal-shift embedding method.
The experiments show that, in terms of quality, the algorithm performs com-
parably to the minimal shift embedding and the Nyström extension. In terms
of computation time, the dominant set approach proved to be consistently the
fastest of the three algorithms.
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