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Abstract. This paper focuses on how to perform the unsupervised learn-
ing of tree structures in an information theoretic setting. The approach
is a purely structural one and is designed to work with representations
where the correspondences between nodes are not given, but must be
inferred from the structure. This is in contrast with other structural
learning algorithms where the node-correspondences are assumed to be
known. The learning process fits a mixture of structural models to a set
of samples using a minimum description length formulation. The method
extracts both a structural archetype that desribes the observed structural
variation, and the node-correspondences that map nodes from trees in
the sample set to nodes in the structural model. We use the algorithm
to classify a set of shapes based on their shock graphs.

1 Introduction

Graph-based representations [1] have been used with considerable success in
computer vision in the abstraction and recognition of object shape and scene
structure. Concrete examples include the use of shock graphs to represent shape-
skeletons [11, 19], the use of trees to represent articulated objects [13, 8, 24] and
the use of aspect graphs for 3D object representation [2]. The attractive fea-
ture of structural representations is that they concisely capture the relational
arrangement of object primitives, in a manner which can be invariant to changes
in object viewpoint. However, despite the many advantages and attractive fea-
tures of graph representations, the methodology available for learning structural
representations from sets of training examples is relatively limited. As a result,
the process of constructing shape-spaces which capture the modes of structural
variation for sets of graphs has proved to be elusive. Hence, geometric repre-
sentations of shape such as point distribution models [18, 7], have proved to be
more amenable when variable sets of shapes must be analyzed.

Recently there has been considerable interest in learning structural represen-
tations from samples of training data, in particular in the context of Bayesian
networks [6, 4], mixtures of tree-classifiers [15], or general relational models [5].
The idea is to associate random variables with the nodes of the structure and to
use a structural learning process infer the stochastic dependency between these



variables. Although these approaches provide a powerful way to infer the rela-
tions between the observable quantities of the model under examination, they
rely on the availability of correspondence information for the nodes of the differ-
ent structures used in learning. However, in many cases the identity of the nodes
and their correspondences across samples of training data are not to hand, In-
stead, the correspondences must be recovered using a graph matching technique
during the learning process. Hence, there is a chicken and egg problem in struc-
tural learning. Before the structural model can be learned, the correspondences
with it must be available, and yet the model itself must be to hand to locate
correspondences.

The aim in this paper is to develop a framework for the unsupervised learn-
ing of generative models of tree-structures from sets of examples. We pose the
problem as that of learning a union structure from the set of examples with hid-
den or unknown correspondences. The structure is constructed through a set of
edit operations. Associated with each node of the structure is a random variable
which represents the probability of the node. There are hence three quantities
that must be estimated. The first of these are the correspondences between the
nodes in training examples and the estimated union structure. Secondly, there
is the union structure itself. Finally, there are the node probabilities.

We cast the estimation of these three quantities in an information theoretic
setting. The problem is that of learning a mixture of trees to represent the
classes of tree present in the training data. We use as our information criterion
the description length for the union structure and its associated node probabili-
ties given correspondences with the set of training examples [16]. An important
contribution is to demonstrate that the description length is related to the edit
distance between the union structure and the training examples. From our analy-
sis it follows that the edit costs are directly related to the entropy associated with
the node probabilities. We perform three sets of updates. First, correspondences
are located so as to minimize the edit distance. Secondly, the union structure is
edited to minimize the description length. Thirdly, we make maximum likelihood
estimates of the node probabilities. It is important to note that the union model
underpinning our method assumes node independence on the training samples.
Using a mixture of unions we condition this independence on the class. This
conditional independence assumption, while often unrealistic, is at the basis of
the naive Bayes model [12] which has proven to be robust and effective for a
wide range of classification problems.

We apply the resulting framework to the problem of learning a generative
model for sets of shock trees. The shock tree is an abstraction of 2D shape which
is obtained by assigning labels to the branches of the Blum skeleton for the object
boundary. [20]. The shock labels are related to the differential structure of the
object boundary. They distinguish whether the radius of the bitangent circle
to the object boundary is increasing, decreasing, constant, locally maximum or
locally minimum. The shock-graph is hence a tree-like characterization of the
differential structure of the boundaries of 2D shapes, where nodes represent
sections of the morphological skeleton of the shape and edges represent their



adjacency relations. Changes in shape give rise to structural variations in the
shock tree. By fitting our mixture of tree-unions to sets of shock trees we are able
to construct a shape-space for the set of examples. We both learn shape classes
present in the training data, and construct a shape space for each class. To
construct the shape-space, we develop our previously published work where the
node frequencies are used as the components of a pattern-vector [23]. Here, we
construct a generative model and the node probabilities for each union-structure
are used as the components of the pattern vectors in shape-space. Moreover, we
can potentially sample example trees from the generative model learned in this
way.

Hence we make a number of contributions. There have been a previous at-
tempts to learn trees and mixtures of trees, and to apply these methods to vision
For instance Meilla [15] has developed a probabilistic framework for learning
mixtures of trees. Our work develops these theoretical ideas by establishing the
link between description length and tree edit distance. From an applications per-
spective, there have been several attempts to use tree representations in vision.
As a concrete example, Liu and Gieger [13] have used free trees to represent
articulated objects. The FORMS system of Zhu and Yuille [24] also uses tree
representations. Ioffe and Forsyth [8] have used related ideas of model walk-
ing people using mixtures of trees. Our work provides a means of learning tree
representations that can be used to construct shape-spaces for such applications.

Finally, from the perspective of shock-tree analysis we also provide a num-
ber of concrete contributions. Any attempt to learn the modes of structural
variation linked to a shape has to deal with the lack of prior knowledge about
the correspondences between skeletal components belonging to different sam-
ple training shapes. Graph-matching allows the explicit pairwise comparison of
graphical representations. For example [21, 22, 14] use edit distance to extract
the node correspondences and provide a measure of dissimilarity between struc-
tures. Furthermore, in [14] we use a pairwise clustering algorithm to classify the
shapes based on the edit distance between their shock-graphs. These approaches,
while effective, give no insight into the generative model which gives rise to the
observed distribution of shock-trees for a particular shape. Furthermore, the
notion of distance that pairwise comparison approaches rely on is purely ge-
ometrical and it does not differentiate between shape elements that present a
great variation among the training samples and elements that are virtually in-
variant. Recently there have been some attempts to extend the graph matching
approach to take into account a set of sample training structures. In [9] the au-
thors use the mean graph as a representative of the training samples, while [23]
introduces the tree-union as a model of the structural variability present in a set
of trees. An important advantage that the union approach has over the mean
graph is that it represents explicitly how the training samples vary as well as
what their common features. The generative tree model that we are proposing
is obtained using the tree-union as the structural archetype for every tree in the
distribution. Following this approach, we pose the shape classification problem
as one of unsupervised learning of a mixture model, where each element of the



mixture is a tree-union which represents the intrinsic structural variations in a
shape class.

The outline of this paper is as follows. In Section 2 we describe the gener-
ative tree model that underpins our graph-clustering method. This focuses on
details of the tree-union, and structure in terms of order-relations, and the maxi-
mum likelihood framework for node probability estimation. Section 3 extends the
framework to mixtures of tree-unions. Here we show how the problem of select-
ing the mixture of trees may be posed as a process of minimizing a description
length criterion. Section 4 turns to details of how the description length crite-
rion may be minimized. This is realized by commencing with an over-specific
model in which there is a mixture component per data sample. We then merge
pairs of trees so as to maximize the gain in description length advantage. In
Section 5, we explore the relationship between the change in description length
gained through tree merge operations and the corresponding tree edit distance.
Here we show that the edit costs are related to the node entropies (and hence
the node probabilities). This demonstrates that we effectively have a means by
which tree edit costs may be learned. In Section 6 we provide experiments which
demonstrates the utility of our method for the problem of clustering shock trees.
Finally, Section 7 offers some conclusions and directions for future work.

2 Generative Tree Model

Consider the set or sample of trees D = {t1, t2, . . . , tn}. Our aim in this paper is
to cluster these trees, i.e. to perform unsupervised learning of the class structure
of the sample. We pose this problem as that of learning a generative model
for the distribution of trees in a pattern space. The distribution of trees in the
pattern space is modeled using a mixture model. Each class or cluster of trees is
represented by a separate generative model. In other words, the components of
the mixture model must be capable of capturing the structural variations for the
sample trees which belong to a separate class using a probability distribution.

The set of tree-models constituting the mixture model is denoted by H =
{T1, T2, . . . , Tk}. Each tree model T is a structural archetype derived from the
tree-union over the set of trees constituting a class. Associated with the archetype
is a probability distribution which captures the variations in tree structure within
the class. Hence, the learning process involves estimating the union structure and
the parameters of the associated probability distribution for the class model T .
As a prerequisite, we require the set of node correspondences C between sample
trees and the union tree for each class.

The learning process is cast into an information theoretic setting and the esti-
mation of the required class models is effected using optimization methods. The
quantity to be optimized is the description length for the sample-data set D. The
parameters to be optimized include the structural archetype of the model T as
well as the node correspondences C between samples and the archetype. Hence,
the inter-sample node correspondences are not assumed to be known a priori.
Since the correspondences are uncertain, we must solve two interdependent opti-



mization problems. These are the optimization of the union structure given a set
of correspondences, and the optimization of the correspondences given the tree
structure. These dual optimization steps are approximated by greedily merging
similar tree-models.

The basic ingredients of our structural learning approach are:

1. A structural model of tree variation.
2. A probability distribution on the said model.
3. A structural optimization algorithm that allows us to merge two structural

models in a way that minimizes the description length.

In prior work, we have described how tree unions can be used as structural
models for samples of trees [23]. However, the union is constructed so as to min-
imize tree-edit distance. Here we intend to use the union structure as a class
model. However, we extend the idea in two important ways. First, we pose the
recovery of the union tree in an information theoretic setting. Second, we aim
to characterize uncertainties in the structure by assigning probabilities to nodes.
Hence, the structural model is provided by the tree-union of the set of samples
assigned to a mixture component, while the frequencies with which nodes from
the sample set are mapped to nodes in the model provide the probability distri-
bution. By adopting this information theoretic approach we demonstrate that
the tree-edit distance, and hence the costs for the edit operations used to merge
trees, are related to the entropies associated with the node probabilities. As a
result, we provide a framework in which tree edit distances are learned. This has
been a longstanding problem since Fu and his co-workers introduced the idea of
edit distance in the early 1980’s [17, 3].

The basis of the proposed structural learning approach is a generative model
of trees which allows us to assign a probability distribution to a sample of hierar-
chical trees. A hierarchical tree t is defined by a set of nodes N t and a tree-order
relation Ot ⊂ N t ×N t between the nodes. A tree-order relation Ot is an order
relation with the added constraint that if (x, y) ∈ Ot and (z, y) ∈ Ot, then either
(x, z) ∈ Ot or (z, x) ∈ Ot. A node b is said to be a descendent of a, or a Ã b, if
(a, b) ∈ Ot, furthermore, b descendent of a is also a child of a if there is no node
x such that a Ã x and x Ã b, that is there is non node between a and b in the
tree-order.

Given this definition, we can construct a generative model for a class of trees
Dc ⊂ D. This model T = T = (N ,O, Θ) is an instance of a set of nodes N .
Associated with the set of nodes is a tree order relation O ⊂ N ×N and a set
Θ = {θi, i ∈ N} of sampling probabilities θi for each node i ∈ N .

A sample from this model is a hierarchical tree t = (N t,Ot) with node set
N t ⊂ N and a node hierarchy Ot that is the restriction to N t of O.

The probability of observing the sample tree t given the model tree T is
P{t|T } =

∏
i∈N t θi

∏
j∈(N\N t)(1−θj). The model underpinning this probability

distribution is as follows. First, we assume that the set of nodes N for the union
structure T spans all the nodes that might be encountered in the set of sample
trees. Second, we assume that the sampling error acts only on nodes, while the
hierarchical relations are always sampled correctly. That is, if nodes i and j



satisfy the relation iOj, node i will be an anchestor of node j in each tree-
sample that has both nodes. This assumption implies that two nodes will always
satisfy the same hierarchical relation whenever they are both present in a sample
tree. A consequences of this assumptions is that the structure of a sample tree
is completely determined by restricting the order relation of the model O to
the nodes observed in the sample tree. Hence, the links in the sampled tree
can be seen as the minimal representation of the order relation between the
nodes. The sampling process is equivalent to the application of a set of node
removal operations to the archetypical structure T = (N ,O, Θ), which makes
the archetype a union of the set of all possible tree samples.

The definition of the structural distribution assumes that we know the cor-
respondences between the nodes in the sample tree t and the nodes in the class-
model T . When obtaining a sample from the generative model this assumption
obviously holds. However, given a tree t, the probability that this tree is a sample
from the class model T depends on the tree, the model, but also on the way we
map the nodes of the tree to the corresponding nodes of the model. To capture
this correspondence problem, we define a map C : N t → N from the set N t of
the nodes of t, to the nodes of the model.

The mapping induces a sample-correspondence for each node i ∈ N . The
correspondence probability for the node i is

φ(i|t, T , C) =

{
θi if ∃j ∈ N t|C(j) = i

1− θi otherwise.

while the probability of sampling the tree t from the model T given the set of
correspondences C is

Φ(t|T , C) =

{∏
i∈N φ(i|t, T , C) if ∀v, w ∈ N t, v Ã w ⇐⇒ C(v) Ã C(w)

0 otherwise.

Given a set D = {t1, t2, . . . , tn} of sample trees, we would like to estimate the
tree model T that generated the samples, and the mapping M from the nodes
of the sample trees to the nodes of the tree model. Here we use a maximum
likelihood method to estimate the parameters. The log-likelihood of the sample
data D given the tree-union model T and the correspondence mapping function C
is L(D|T , C) =

∑
t∈D log [Φ(t|T , C)] . Our aims is to optimize the log-likelihood

with respect to two variables: the correspondence map C and the tree union
model T . These variables, though, are not independent. The reason for this is
that they both depend on the node-set N . However, the dependency to the
node-set can be lifted. The value of the log-likelihood function does not depend
on the actual number of nodes because nodes with no associated samples will
have correspondence probability φ(i|t, T , C) = 1. Hence, the dependency to the
node-set can be lifted by simply assuming that the node set is Im(C), the image
of the correspondence map. With this simplification, the remaining variables are:
the order relation O, the set of sampling probabilities Θ, and the map C.

Given C, it is easy to maximize with respect to the remaining two sets of
variables. log-likelihood function is maximized by any order relation O that is



consistent with the hierarchies for the sample trees (if any exists). Let ni(C) be
the number of trees t ∈ D such that ∃j|C(j) = i, that is there is a node that
maps to i. Furthermore, let m = #D be the number of trees in the data set,
then the sampling probability θi for the node i that maximizes the likelihood
function is θ̂i = ni(C)

m . When the optimal sampling probabilities are substituted
into the log-likelihood, we have that

L̂(D|C) =
∑

i∈N
m

[
ni(C)

m
log

(
ni(C)

m

)
+

(
1− ni(C)

m

)
log

(
1− ni(C)

m

)]
=

−
∑

i∈N
mI(θ̂i), (1)

where I(θ̂i) = −
[
θ̂i log(θ̂i) + (1− θ̂i) log(1− θ̂i)

]
is the entropy of the sampling

distribution for node i. This equation holds assuming that there exists an order
relation that is respected by every hierarchical tree in the sample set D. If this
is not the case then the log-likelihood function takes on the value −∞.

The structural component of the model is a tree union constructed from the
trees in the sample D so as to maximize the likelihood function.In our previous
work [23]. we have shown how the union tree may be constructed so that every
tree in the sample set D may be obtained from it by using node removal oper-
ations alone. Hence every node in the tree sample is represented in the union
structure. Moreover, the order-relations in the union structure are all preserved
by pairs of nodes in the tree-samples in D.

3 Mixture Model

A single tree-union may be used to represent a distribution of trees that belong
to a single class Dc. Defining characteristic of the class is tha fact that the nodes
present in the sample trees satisfy a single order relation Oc. However, the sam-
ple set D may have a more complex class structure and it may be necessary to
describe it using multiple tree unions. Under these conditions the unsupervised
learning process must allow for the multiple classes, and we represent the dis-
tribution sample trees using a mixture model over separate union structures.
Let the set of union structures be denoted by H = {T1, T2, . . . , Tc, . . . , Tk},
and let the corresponding mixing proportions be represented by the vector
ᾱ = (α1, α2, . . . , αc, . . . , αk). The mixture model for the distribution of sample
trees is

P (t|H, C) =
k∑

c=1

αcΦ(t|Tc, C).

where zt
c is an indicator variable, that is 1 if tree t belongs to the mixture

component c, and 0 otherwise. The log-likelihood function for the mixture model
over the sample-set D is:

L(D|H, C, z̄) =
∑

t∈D

k∑
c=1

[
ln αc + zt

c ln Φ(t|Tc, C)
]
,



It is well known that the maximum likelihood criterion cannot be directly
used to estimate the number of mixture components, since the maximum of the
likelihood function is a monotonic function on the number of components. In
order to overcome this problem we use use the Minimum Description Length
(MDL) principle. The MDL principle [16] asserts that the model that best de-
scribes a set of data is that which minimizes the combined cost of encoding the
model and the error between the model and the data.

Our model is prescribed by the the vector of mixing proportions ᾱ and the
set of union structures H = {T1, . . . , Tc, . . . , Tk}. The union structure Tc =
{Nc,Oc, Θc} for the mixture component indexed c consists of a set of nodes
Nc, a set of order relations Oc and a set of node probabilities Θc = {θi

c, i ∈ Nc},
where θi

c is the probability for the node i in the union-tree indexed c. To de-
scribe or encode the fit of the model to the data, for each tree sample t we use
the indicator variables z̄t

c which indicates from which tree model the sample was
drawn. Additionally, for each node in the model, we need to describe or encode
whether or not the node was present in the sample.

By virtue of Shannon theorem, the cost incurred describing or encoding the
model H is − log [P (H)], while the cost of describing data D using that model
is − log [P (D|H)]. Making the dependence on the correspondences C explicit,
we have: LL(D|H) = −L(D|H, C). Asymptotically the cost of describing the
vector of mixing components ᾱ and the set of indicator variables z̄ = {zT

c , t ∈
D, c = 1, ..., k} is bounded by nI(ᾱ), where n is the number of samples in D
and I(ᾱ) = −∑k

c=1 αc log(αc) is the entropy of the mixture distribution ᾱ.
The cost of describing the structure of a union model is proportional to the
number of nodes contained within it, while the cost of describing the sampling
probability θi

c of node i for model c and the existence of this node in each of
the nαc samples generated by union c is asymptotically equal to nαcI(θi

c). Here
I(θi

c) = −θi
c log(θi

c)− (1− θi
c) log(1− θi

c) is the entropy associated with the node
sampling probability. Hence, given a model H consisting of k tree-unions, where
the component Tc has dc nodes and a mixing proportion αc, the description
length for the model, conditional on the set of correspondences is C is:

LL(D|H, C) = nI(ᾱ) +
k∑

c=1

dc∑

i=1

[
nαcI(θi

c) + l
]
. (2)

where l is the description length per node of the tree-union structure, which we
set to 1. Given that pi

c = {j ∈ N t|t ∈ D, C(j) = i} is the set of nodes from
sample trees in D mapped by C to node i of model c, the node probability θi

c is
estimated using θ̂i

c = #pi
c

dc
.

4 Learning the Mixture

Finding the global minimum of the description length is an intractable combi-
natorial problem. Hence, we resort to a local search technique. A widely used
method for minimizing the description length of a mixture model is to use the



Expectation-Maximization algorithm. Unfortunately, the complexity of the max-
imization step for our union-tree model grows dramatically with the number
of trees in the union. The problem arises from the fact that the membership
indicators admit the possibility that each union can potentially include every
sample-tree.

We have adopted a different approach which allows us to limit the complexity
of the maximization step. The approach we have used is as follows.

– Commence with an overly-specific model. We use a structural model per
sample-tree, where each model is equiprobable and structurally identical to
the respective sample-tree, and each node has sample probability 1.

– Iteratively generalize the model by merging pairs of tree-unions. The candi-
dates for merging are chosen so that they maximally decrease the description
length.

– The algorithm stops when there are no merges remaining that can decrease
the description length.

This algorithm bears some resemblance with the spanning tree clustering
algorithm [10]. Both algorithms iteratively merge samples or clusters that satisfy
a minimum distance or maximum similarity criterion. The main difference is
that, in our algorithm, the similarity matrix is cannot be assumed fixed as is
the case with the spanning tree algorithm. Rather, it changes after each merge
to reflect the changes in the joint model. This change in the distance matrix
will limit the amount of chaining allowed in the clusters. This is due to the fact
that the models describing the two clusters that are merged are substituted by a
single model. This new model must be able to describe the variation present in
both clusters, hence, its mean must be placed in model-space somewere between
the means of two models. This implies that the distance to the remaining cluster
must vary. Regardless of these differences, the algorithm is still guaranteed to
converge to a local minimum with at most a linear number of merges.

The main requirement of our description length minimization algorithm is
that we can optimally merge two tree models. That is that we can find a struc-
ture from which it is possible to sample every tree previously assigned to the two
models. From equation 2 we see that the description length is linear with respect
to the contribution from each component of the mixture. In fact, writing the de-
scription cost of component c as LLc(D|Tc, C) =

∑dc
j=1

[
nacI(θj

c) + l
]
, where

nac is the number of data samples assigned to the component indexed c, the de-
scription cost becomes: LL(D|T̂ , C) = nI(α)+

∑k
c=1 LLc(D|Tc, C). Furthermore,

the description length per component LLc(D|Tc, C) is linear in the number of
model nodes. This allows us to pose the minimization of the description length
as a linear optimization problem with a combinatorial constraint. In particular,
as will be shown in the next section, we can pose the model-merging problem as
an instance of a particular minimum edit-distance problem.

Given two tree models T1 and T2, we wish to construct a union T̂ whose
structure respects the hierarchical constraints present in both T1 and T2, and
that also minimizes the quantity LL(T̂ ). Since the trees T1 and T2 already assign
node correspondences C1 and C2 from the data samples to the model, we can



simply find a map M from the nodes in T1 and T2 to T̂ and transitively extend
the correspondences from the samples to the final model T̂ in such a way that
Ĉ(v) = Ĉ(w) ⇔ w = M(v).
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Fig. 1. Merging
two trees.

Reduced to the merge of two structures, the corre-
spondence problem is reduced to finding the set of nodes
in T1 and T2 that are in common. Starting with the two
structures, we merge the sets of nodes that would reduce
the description length by the largest amount while still
satisfying the hierarchical constraint. That is we merge
nodes v and w of T1 with node v′ and w′ of T2 respec-
tively if and only if v Ã w ⇔ v′ Ã w′, where a Ã b
indicates that a is an ancestor of b.

Let n1 and n2 be the number of tree samples from D
that are respectively assigned to T1 and T2. Further let
pv and pv′ be the number of times the nodes v and v′ in
T1 and T2 are respectively in correspondence with nodes
of trees in the data sample D. The sampling probabilities for the two nodes, if
they are not merged, are θv = pv

n1+n2
and θv′ = p′v

n1+n2
respectively, while the

sampling probability of the merged node is θvv′ = pv+pv′
n1+n2

. Hence, the description
length advantage obtained by merging the nodes v and v′ is:

A(v, v′) = (n1 + n2) [I(θv) + I(θv′)− I(θvv′)] + l. (3)

This implies that the set of merges M that minimizes the description length of
the combined model maximizes the advantage function

A(M) =
∑

(v,v′)∈M
A(v, v′) =

∑

(v,v′)∈M
[(n1 + n2) [I(θv) + I(θv′)− I(θvv′)] + l].

(4)
Assuming that the class archetypes T1 and T2 are trees, finding the set of

nodes to be merged can be transformed into a tree-edit distance problem. That
is, assigning particular costs to node removal and matching operations, the set
of correspondences that minimize the edit distance between the archetypes of T1

and T2 also maximizes the advantage of the merged model. The costs that allowed
the problem to be posed as an edit distance problem are rv = (n1 +n2)I(θv)+ l
for the removal of node v, and mvv′ = (n1 + n2)I(θvv′) + l for matching node v
with node v′. In the next section, we will discuss this relationship in more detail.

At the end of the node merging operation we are left with a set of nodes that
respects the original partial order defined by all the hierarchies in the sample-
trees. We initialize our algorithm by calculating the description length of a
model in which there is a mixing component per tree-sample in D. The descrip-
tion length is given by − log(n) + l

∑
t∈D #N t, where n = #D is the number of

samples and #N t is the number of nodes in the tree-sample t. For each pair of
initial mixture components we calculate the union and the description length of
the merged structure. From the set of potential merges, we can identify the one
which reduces the description cost by the greatest amount. The mixing propor-
tion for this optimal merge is equal to the sum of the proportions of the individual



unions. At this point we calculate the union and description cost obtained merg-
ing the newly obtained model with each of the remaining components, and we
iterate the algorithm until no more merges that reduce the description length
can be found.

5 Tree Edit-Distance

As noted in earlier, the description length advantage is related to the edit dis-
tance between tree structures. This is an important observation. One of the
difficulties with graph edit distance [17, 3] is that there is no methodology for
assigning costs to edit operations. By contrast, in the work reported in this
paper the description length change associated with tree merge operations are
determined by the node probabilities, and these in turn may be estimated from
the available sample of trees. Hence by establishing a link between tree edit dis-
tance and description length, we provide a means by which edit costs may be
estimated.

Hence, in this section we review the computation of tree edit-distance devel-
oped in our previous work [22]. In particular, we describe how tree edit distance
may be used to estimate node-correspondences, and give an overview of the
algorithm we use to approximate the computation of tree edit distance.

The idea behind edit distance is that it is possible to identify a set of basic
edit operations on nodes and edges of a structure, and to associate with these
operations a cost. The edit-distance is found by searching for the sequence of edit
operations that will make the two graphs isomorphic with one-another and which
have minimum cost. The optimal sequence can be found using only structure
reducing operations. This can be explained by the fact that we can transform
node insertions in one tree into node removals in the other. This means that
the edit distance between two trees is completely determined by the subset of
residual nodes left after the optimal removal sequence, or, equivalently, by the
nodes that are in correspondence. This means that the constraints posed by the
edit-distance framework on the set of matching nodes are equivalent to those
required to merge nodes on the model archetypes. Namely, that they preserve
the hierarchy present in the two original structures.

The edit-distance between two trees t and t′ can be defined in terms of the
matching nodes:

D(t, t′) =
∑

i 6∈Dom(M)

ri +
∑

j 6∈Im(M)

rj +
∑

<i,j>∈M
mij . (5)

Here ri and rj are the costs of removing i and j respectively, M is the set of
pairs of nodes from t and t′ that match, mi,j is the cost of matching i to j, and
Dom(M) and Im(M) are the domain and image of the relation M. Letting N t

be the set of nodes of tree t, the distance can be rewritten as

D(t, t′) =
∑

u∈N t

ru +
∑

v∈N t′
rv +

∑

(u,v)∈M
(muv − ru − rv).



Hence the distance is minimized by the set of correspondences that maximizes
the utility U(M) =

∑
(u,v)∈M(ru + rv −muv).

Setting ru = (n1 + n2)I(θu) + l, rv = (n1 + n2)I(θv) + l, and muv = (n1 +
n2)I(θuv) + l, we have

U(M) =
∑

(u,v)∈M
[(n1 + n2)(I(θu) + I(θv)− I(θuv)) + l], (6)

which is equal to the advantage in description length in (4). Since the combina-
torial problem underlying both edit-distance and model merge share the same
hierarchical constraints and objective function, the solution to one problem can
be derived from the solution to the other. In particular the set of common nodes
obtained through the edit-distance approach is equal to the set of nodes to be
merged to optimally merge the tree-models.

To find the set correspondences that minimizes the edit distance between
two trees we make use of two results presented in [22]. We call Ω(t) the closure
of tree t, Ei(t) the edit operation that removes node i from t and Ei(Ω(t)) the
equivalent edit operation that removes i from the closure. The first result is that
edit and closure operations commute: Ei(Ω(t)) = Ω(Ei(t)). For the second result
we need some more definitions: We call a subtree s of Ω(t) obtainable if for each
node i of s if there cannot be two children a and b so that (a, b) is in Ω(t). In
other words, for s to be obtainable, there cannot be a path in t connecting two
nodes that are siblings in s. We can, now, introduce the following:

Theorem 1. A tree t̂ can be generated from a tree t with a sequence of node
removal operations if and only if t̂ is an obtainable subtree of the directed acyclic
graph Ω(t).

By virtue of the theorem above, the node correspondences yielding the min-
imum edit distance between trees t and t′ form an obtainable subtree of both
Ω(t) and Ω(t′), hence we reduce the problem to the search for a common sub-
structure that maximizes the utility: the maximum common obtainable sub-
tree (MCOS). That is, Let O be the set of matches that satisfy the obtain-
ability constraint, the node correspondence that minimized the edit distance is
M∗ = argmaxM∈O U(M).

The solution to this problem is obtained by looking for the best matches
at the leaves of the two trees, and by then propagating them upwards towards
the roots. Let us assume that we know the utility of the best match rooted at
every descendent of nodes i and j of t and t′ respectively. To propagate the
matches to i and j we need to find the set of siblings with greatest total utility.
This problem can be transformed into a maximum weighted clique problem on
a derived structure and then approximated using a heuristical algorithm. When
the matches have been propagated to all the pairs of nodes drawn from t and t′,
the set of matches associated with the maximum utility give the solution to the
maximum common obtainable subtree problem, and hence the edit-distance. We
refer to [22] for a detailed explanation of the approach.



6 Experimental results

We evaluate the approach on the problem of shock tree matching. The idea
behind the shock formulation of shape is to evolve the boundary of an object to
a canonical skeletal form using the eikonal equation. The skeleton represents the
singularities (shocks) in the curve evolution, where inward moving boundaries
collide. Once the skeleton is to hand, the next step is to devise ways of using it to
characterize the shape of the original boundary. Here we follow Zucker, Siddiqi,
and others, by labeling points on the skeleton using so-called shock-classes [20].
According to this taxonomy of local differential structure, there are different
classes associated with behavior of the radius of the maximal circle bitangent
to the boundary. The so-called shocks distinguish between the cases where the
local maximal circle has maximum radius, minimum radius, constant radius or
a radius which is strictly increasing or decreasing. We abstract the skeletons as
trees in which the level in the tree is determined by their time of formation [20].
The later the time of formation, and hence their proximity to the center of the
shape, the higher the shock in the hierarchy.
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a) Mixture of
unattributed tree models

b) Weighted Edit-
Distance

c) Union of attributed
trees

Fig. 2. Clusters extracted with a purely-structural mixture of trees approach versus
pairwise clustering of attributed distances obtained with edit distance and tree union.

In order to asses the quality of the method we compare clusters defined by the
components of the mixture with those obtained with other two graph-clustering
algorithms. The first graph-clustering method we compare to, is the one de-
scribed in [22, 14]. This method extracts the clusters by applying a pairwise
clustering algorithm to the matrix of edit-distances between the graphs. The
second method extracts the clusters by applying the same pairwise clustering
algorithm to a different distance matrix, namely the distance obtained from the
embedding space defined by a single tree-union that encompasses every shape
[23]. In our experiments the data clustered with the mixture of tree-unions ap-
proach use only structural information to characterize the shapes. On the other
hand the cluster extracted using edit-distance and tree-union are based on data
enhanced with geometrical information linked to the nodes of the trees.
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Fig. 3. Clusters obtained from non-attributed
edit-distance and mixture of trees.

Figure 2 shows the clusters
extracted on a database of 25
shapes. The first column shows
the clusters extracted through
the mixture of trees approach
on purely structural represen-
tation of shape. The second
column displays the cluster ex-
tracted from the weighted edit-
distances of shock-trees en-
hanced with geometrical infor-
mation. The geometric infor-
mation added to the nodes is
the proportion of the border length that genetated the skeletal branch associ-
ated with the node. The third and last column shows the clusters extracted from
the distances obtained by embedding the the geometrically-enhanced shock-trees
in a single tree-union. While there is some merge and leakage, the cluster ex-
tracted with the mixture of trees method compare favorably with those obtained
using the other two clustering algorithm, even where these are based on data
enhanced with geometrical information. The second to last cluster extracted by
the mixture of trees approach deserves some explanation: the structure of the
shock-trees of the tools in the cluster is identical. Hence the model, which uses
only structural infoprmation, correctly clusters the shock-trees toghether. To
overcome this problem we need to provide more information than just the shock
structure. The geometrical information allows the other methods to distinguish
between wrenches, brushes and pliers.

Figure 3 compares the results of graph clustering performed on purely struc-
tural information only. Here the clusters obtained through the mixture of tree-
unions approach (left)is compared with those extracted by pairwise clustering of
unweighted edit-distance (right)[22]. No geometrical information used to aid the
edit-distance-based clustering process. These results suggest that the mixture of
tree-unions method outperforms pairwise clustering of edit-distance on purely
structural data.

6.1 Synthetic Data

To augment these real world experiments, we have fitted the model on synthetic
data. The aim of the experiments is to characterize the sensitivity of the classi-
fication approach to class merge. To meet this goal we have randomly generated
some prototype trees and, from each tree, we generated structurally perturbed
copies. The procedure for generating the random trees was as follows: we com-
mence with an empty tree (i.e. one with no nodes) and we iteratively add the
required number of nodes. At each iteration nodes are added as children of one of
the existing nodes. The parents are randomly selected with uniform probability
from among the existing nodes. The trees are perturbed by randomly adding
the required amount of nodes.
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Fig. 4. Percentage of correct classifications under increasing structural noise.

In our experiments we fit samples generated from an increasing number of
prototypes and subject to an increasing amount of structural perturbation. We
tested the classification performance on samples dawn from 2, 3, and 4 prototypes
of 10 nodes each. The amount of noise is increased from an initial 10% of the
total number of nodes to a maximum of 50%. Figure 4 plots the fraction of
pairs of trees that are correctly classified as belonging to the same or different
clusters as the noise is increased. From these experiment we can see that the
approach works well with compact and well separated classes. The algorithm
presents a sudden drop in performance when the structural variability of the
class reaches 40% of the total number of nodes of the prototypes. Furthermore,
when more prototypes are used, the distance between the clusters is smaller and,
consequently the classes are harder to separate.

7 Conclusions

This paper presented a novel algorithm to learn a generative model of tree struc-
tures. The approach uses the the Tree-Union as the structural archetype for
every tree in the distribution and fits a mixture of these structural models us-
ing a minimal description length formulation. In a set of experiments we apply
the algorithm to the problem of unsupervised classification of shape using the
shock-graphs. The results of these experiments are very encouraging, showing
that the algorithm,although purely structural, compares favorably with pairwise
classification approaches on attributed shock-graph. We are convinced that the
results can be further improved by extending the model to take into account
node-attributes.
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