Efficiently Computing Weighted Tree Edit
Distance Using Relaxation Labeling

Andrea Torsello and Edwin R. Hancock

Department of Computer Science University of York
York, YO10 5DD, UK
atorsell@cs.york.ac.uk

Abstract. This paper investigates an approach to tree edit distance
problem with weighted nodes. We show that any tree obtained with
a sequence of cut and relabel operations is a subtree of the transitive
closure of the original tree. Furthermore, we show that the necessary
condition for any subtree to be a solution can be reduced to a clique
problem in a derived structure. Using this idea we transform the tree
edit distance problem into a series of maximum weight clique problems
and then we use relaxation labeling to find an approximate solution.

1 Introduction

The problem of how to measure the similarity of pictorial information which has
been abstracted using graph-structures has been the focus of sustained research
activity for over twenty years in the computer vision literature. Moreover, the
problem has recently acquired significant topicality with the need to develop
ways of retrieving images from large data-bases. Stated succinetly, the problem is
one of inexact or error-tolerant graph-matching. Early work on the topic included
Barrow and Burstall's idea [1] of locating matches by searching for maximum
common subgraphs using the association graph, and the extension of the concept
of string edit distance to graph-matching by Fu and his co-workers [6]. The
idea behind edit distance (18] is that it is possible to identify a set of basic
edit operations on nodes and edges of a structure, and to associate with these
operations a cost. The edit-distance is found by searching for the sequence of
edit operations that will make the two graphs isomorphic with one-another and
which has minimum cost. By making the evaluation of structural modification
explicit, edit distance provides a very effective way of measuring the similarity of
relational structures. Moreover, the method has considerable potential for error
tolerant object recognition and indexing problems.

Unfortunately, the task of calculating edit distance is a computationally hard
problem and most early efforts can be regarded as being goal-directed. However,
in an important series of recent papers, Bunke has demonstrated the intimate
relationship between the size of the maximum common subgraph and the edit
distance [4] . In particular, he showed that, under certain assumptions concerning
the edit-costs, computing the MCS and the graph edit distance are equivalent.
The restriction imposed on the edit-costs is that the deletions and re-insertions

M.A.T. Figueiredo, J. Zerubia, A.K. Jain (Eds.}): EMMCVPR 2001, LNCS 2134, pp. 438-453, 2001.
© Springer-Verlag Berlin Heidelberg 2001 .

Efliciently Computing Weighted Tree Edit Distance 439

of nodes and edges are not more expensive than the corresponding node or
edge relabeling operations. In other words, there is no incentive to use 1'elabe1?ng
operations, and as a result the edit operations can be reduced to those of insertion
and deletion.

The work reported in this paper builds on a simple observation which follows
from Bunke’s work. By re-casting the search for the maximum common subgraph
as a max clique problem [1], then we can efficiently compute the edit distance.
A diverse array of powerful heuristics and theoretical results are available for
solving the max clique problem. In particular the Motzkin-Straus theorem [10]
allows us to transform the max clique problem into a continuous quadratic pro-
gramming problem. An important recent development is reported by Pelillo [11]
who shows how probabilistic relaxation labeling can be used to find a (local)
optimum of this quadratic programming problem.

In this paper we are interested in measuring the similarity of tree structures
obtained from a skeletal representation of 2D shape. While trees are a special
case of graphs, because of the connectivity and partial order constraints wh%ch
apply to them, the methods used to compare and match them require sigmf.i-
cant specific adaptation. For instance, Bartoli et al. [2], use the graph theoref:lc
notion of a path string to transform the tree isomorphism problem into a sin-
gle max weighted clique problem. This work uses a refinement of the Motzkin
Strauss theorem to transform the max weighted clique problem into a quadratic
programming problem on the simplex [3], the quadratic problem is then solved
using relaxation labeling.

Because of the added connectivity and partial order constraints mentioned
above, Bunke’s result linking the computation of edit distance to the size of the
maximum common subgraph does not translate in a simple way to trees. Fur-
thermore, specific characteristics of trees suggest that posing the tree-matching
problem as a variant on graph-matching is not the best approach. In particular,
both the tree isomorphism and the subtree isomorphism problems have efficient
polynomial time solutions. Moreover, Tai [16] has proposed a generalization of
the string edit distance problem from the linear structure of a string to the non-
linear structure of a tree. The resulting tree edit distance differs from the general
graph edit distance in that edit operations are carried out only on nodes and
never directly on edges. The edit operations thus defined are node deletion, node
insertion and node relabeling, This simplified set of edit operations is guaranteed
to preserve the connectivity of the tree structure. Zhang and Shasha [22] have
investigated a special case which involves adding the constraint that the solu-
tion must maintain the order of the children of a node. With this order among
siblings, they showed that the tree-matching problem is still in P and gave an al-
gorithm to solve it. In subsequent work they showed that the unordered case was
indeed an NP hard problem [23]. The NP-completeness, though, can be elimi-
nated again by adding particular constraints to the edit operations. In particular,
it can be shown that the problem returns to P when we add the constraint of
strict hierarchy, that is when separate subtrees are constrained to be mapped to
separate subtrees [21].

440 Andrea Torsello and Edwin R. Hancock

In this paper we propose an energy minimization method for efficiently com-
puting the weighted tree edit distance. We follow Pelillo [11] by casting the
problem into the Motzkin-Straus framework. To achieve n this goal we use the
graph-theoretic notion of tree closure. We show that, given a tree T, then any
tree obtained by cutting nodes from T is a subtree of the closure of T. Further-
more, we can eliminate subtrees that can not be obtained from T by solving
a series of max-clique problems. In this way we provide a divide and conquer
method for finding the maximum edited common subtree by searching for max-
imal cliques of an association graph formed from the closure of the two trees.
With this representation to hand, we follow Bomze et al. [3] and use a variant
of the Motzkin Straus theorem to convert the maximum weighted clique prob-
lem into a quadratic programming problem which can be solved by relaxation
labeling. ;

2 Exact Tree Matching

In this section we describe a polynomial time algorithm for the subtree isomor-
phism problem. This allows us to formalize some concepts and give a starting
point to extend the approach to the minimum tree edit distance problem.

2.1 Association Graph

The phase space we use to represent the matching of nodes is the directed as-
sociation graph, a variant of the association graph. The association graph is
a structure that is frequently used in graph matching problems. The nodes of
the association graph are the Cartesian products of nodes of the graphs to be
matched. Hence, each node represents a possible association, or match, of a node
in one graph to a node in the other. The edges of the association graph represent
the pairwise constraints of the problem: they represent both connectivity on the
original graphs and the feasibility of a solution with the linked associations.
Hierarchical graphs have an or-
der relation induced by paths: given
two nodes a and b, (a,b) is in this
relation if and only if there is a
path from a to b. When the directed
graph is acyclical, this relation can

Transitive Closure

& £nah

. Edit operation Edit eperntion

be shown to be an (irreflexive) or- ® o ®
t.:ler relation,. T‘he use of directed arcs [E, ‘0\ &
in the association graph allows us to

® & © ® ©

make use of this order. We connect €@
nodes with directed arcs in a way
that preserves the ordering of the as-
sociated graph. The graph obtained
can be shown to be ordered still. Specifically, an association graph for the tree
isomorphism problem can be shown to be a forest.

Fig. 1. Terminology on directed graphs

;
3
5
£

Efficiently Computing Weighted Tree Edit Distance 441

For the exact isomorphism problem (maximum common subgraph) the edges
of the association graphs are:

(v,v') = (u,u') iff v = v and v' = o' (1)
where v and u are nodes on one graph and v’ and u are nodes on the other.

Proposition 1. The directed association graph of two directed acyclic graphs
(DAGs) G and G' is acyclic.

Proof. Let us assume that (u1,v1) = -+ — (un,vs) is a cycle. Then, since an
arc (v,v') = (u,u’) in the association graph exists only if the arcs v — u and
o' — o' exist in G and G’ respectively, we have that u; — -+ = u, is a cycle
in & and vy =+ -+- —+ vy is & cycle in G' against the hypothesis that they are
DAGs.

Proposition 2. The directed association graph of two trees t and t' is a forest.

Proof We already know that the association graph is a DAG, we have to show
that for each node (u,u’) there is at most one node (v,v’) such that (v,v) =
(u,w'). Due to the way the association graph is constructed this means that
either » or u' must have at most one incoming edge. But ¢ and ¢’ are trees, so
both u and v have at most one incoming edge, namely the one from the parent.

The directed association graph can be used to reduce a tree matching problem
into subproblems: the best match given the association of nodes v and v’ can be
found examining only descendents of v and v This gives us a divide and conquer
solution to the maximum common subtree problem: use the association graph
to divide the problem and transform it into maximum bipartite match subprob-
lems, the subproblems can then be efficiently conquered with known polynomial
time algorithms. We then extend the approach to the minimum unlabeled tree
edit problem and present an evolutionary method to conquer the subproblems.
Finally, we present a method to convert the divide and conquer approach into a
multi-population evolutionary approach.

2.2 Maximum Common Subtree

We present a divide and conquer approach to the exact maximum common sub-
tree problem. We call the maximum common subtree rooted at (v,v") a solution
to the maximum common subtree problem applied to two subtrees of ¢ and i
In particular, the solution is on the subtrees of ¢ and t' rooted at v and v re-
spectively. This solution is further constrained with the condition that v and v’
are roots of the matched subtrees.

With the maximum rooted isomorphism problem for each children of (v,v’)
at hand, the maximum isomorphism rooted at (v,v') can be reduced to a max-
imum bipartite match problem. The two partitions V" and V' of the bipartite
match consist of the children of v and v’ respectively. The weight of the match

442 Andrea Torsello and Edwin R. Hancock

between v € V and ' € V' is the sum of the matched weights of the maxi-
mum isomorphism rooted at (u,u’). In case of a non weighted tree this is the
cardinality of the isomorphism. With this structure we have a one-to-one rela-
tionship between matches in the bipartite graph and the children of (v,v’) in
the association graph. The solution of the bipartite matching problem identifies
a set of children of (v,v) that satisfy the constraint of matching one node of ¢
to no more than one node of /. Furthermore, among such sets is the one that
guarantees the maximum total weight of the isomorphism rooted at (v,).

The maximum isomorphism between t and t' is a maximum isomorphism
rooted at (v,v'), where either v or o' is the root of ¢ or # respectively. This
reduces the isomorphism problem to n+4m rooted isomorphism problems, where
n and m are the cardinality of ¢ and #. Furthermore, since there are nm nodes in
the association graph, the problem is reduced to nm maximum bipartite match
problems.

3 Inexact Tree Matching

We want to extend the algorithm to provide us with an error-tolerant tree iso-
morphism. There is a strong connection between the computation of maximum
common subtree and the tree edit distance. In [4] Bunke showed that, under
certain constraints applied to the edit-cost function, computing the maximum
common subgraph problem and the minimum graph edit distance are equivalent
to one-another.

This is not directly true for trees, because of the added constraint that a
tree must be connected. But, extending the concept to the common edited sub-
tree, we can use common substructures to find the minimum cost edited tree
isomorphism. In particular, we want to match weighted trees. These are trees
with weight associated to the nodes and with the property that the cost of an
edit operation is a function of the weight of the nodes involved.

Following common use, we consider three fundamental operations:

— node removal: this operation removes a node and links the children to the
parent of said node.

— node insertion: the dual of node removal

— node relabel: this operation changes the weight of a node.

In our model the cost node removal and insertion is equal to the weight of the
node, while the cost of relabeling a node is equal to the difference in the weights.
This approach identifies node removal to relabel to 0 weight and is a natural
interpretation when the weight represents the “importance” of the node.

Since a node insertion on the data tree is dual to a node removal on the
model tree, we can reduce the number of operations to be performed to only
node removal, as long as we perform the operations on both trees.

At this point we introduce the concept of edited isomorphism. Assuming that
we have two trees T and T, and a tree 7 that can be obtained from both with
node removal and relabel operations, 7' will induce an isomorphism between

Efficiently Computing Weighted Tree Edit Distance 443

nodes in 7 and Th so that places two nodes in correspondence if and n:unl_y if
they get cut down to the same node in 7". We call such isomorphism an echtefl
isomorphism induced by 7. From the definition it is clear that there is a tree 1
obtained only with node removal and relabel operations, so that the sum of the
edit distance from this tree to T; and T is equal to the edit distance between T}
and T, i.e. a median tree. We say that the isomorphism induced by this tree is
a maximum edited isomorphism because it maximizes Wn, = >3, ; min(wg,wj},
where i and 4 are nodes matched by the isomorphism, and w; and w; are their
weights. In fact, if we W, and Wy be the weights in T and T respectively, the
edit distance between Ty and TV is W1 — W,y,, the distance between Ty and T} is
W1 -+ Wa —2W,,. Clearly, finding the maximum edited isomorphism is equivalent
to solving the tree edit distance problem.

3.1 Editing the Transitive Closure of a Tree

For each node v of ¢, we can define an edit operation E, on the tree and an edit
operation £, on the closure Ct of the tree ¢ (see Figure 1). In both cases 1.:he
edit operation removes the node v, all the incoming edges, and all the outgoing
edges. .

We show that the transitive closure operation and the node removal operation
commute, that is we have:

Lemma 1. £,(C(t)) = C(E,(t))

Proof. If a node is in &,(C(t)) it is clearly also in C(F,(t)). What is left is to
show is that an edge (a,b) is in &,(C(t)) if and only if it is in C(E,(t)).

If (a,b) is in C(E,(t)) then neither a nor b is v and there is a path fro‘m atob
in E,(t). Since the edit operation E, preserves connectedness and the hierarchy,
there must be a path from a to b in ¢ as well. This implies that (a,b) is in C(¢).
Since neither @ nor b is v, the operation &, will not delete (a,b). Thus (a,b) is
in &,(C(¢)). .

If (a,b) is in &,(C(t)), then it is also in C(t), because £,(C(t)) is obtained
from C(t) by simply removing a node and some edges. This implies that there
is a path from a to b in ¢ and, as long as neither a nor b are v, there is a path
from a to b in E, (t) as well. Thus (a, b) is in C(E,(%)). Since (a,b) is in £,(C(t)),
both a and b must be nodes in &,(C()) and, thus, neither can be v.

Furthermore, the transitive closure operation clearly commutes with node
relabeling as well, since one acts only on weights and the other acts only on
node connectivity.

We call a subtree s of Ct consistent if for each node v of s there cannot be
two children a and b so that (a,b) is in Ct. In other words, given two nodes a
and b, siblings in s, s is consistent if and only if there is no path from a to b in t.

We can, now, prove the following:

Theorem 1. A tree { can be obtained from a tree t with an edit sequence com-
posed of only node removal and node relabeling operations if and only if t is a
consistent subtree of the DAG Ct.

444 Andrea Torsello and Edwin R. Hancock

Proof. Let us assume that there is an edit sequence {E,, } that transforms ¢ into
t, then, by virtue of the above lemma, the dual edit sequence {&,,} transforms
Ct into Ct. 1§y construction we have that £ is a subtree of Cf and Cf is a subgraph
of Ct, thus £ is a subtree of Ct. Furthermore, since the node removal operations
respect the hierarchy, £ is a consistent subtree of Ct.

To prove the converse, assume that { is a consistent subtree of Ct. If (a,b) is
an edge of £, then it is an edge on Ct as well, i.e. there is a path from a to b in
t and we can define a sequence of edit operations {E,, } that removes any node
between e and b in such a path. Showing that the nodes {v;} deleted by the edit
sequence cannot be in £ we show that all the edit operations defined this way
are orthogonal. As a result they can be combined to form a single edit sequence
that solves the problem.

Let v in £ be a node in the edited path and let p be the minimum common
ancestor of v and a in {. Furthermore, let w be the only child of p in ¢ that is an
ancestor of v in ¢ and let g be the only child of p in { that is an ancestor of @ in
t. Since a is an ancestor of v in £, an ancestor of v can be a descendant of a, an
ancestor of a, or a itself, This means that w has to be in the edited path. Were
it not so, then w had to be a or an ancestor of a against the hypothesis that p is
the minimum common ancestor of v and a. Since ¢ is an ancestor of @ in ¢ and
a is an ancestor of w in ¢, ¢ is an ancestor of w in ¢, but g and w are siblings in
t against the hypothesis that £ is consistent.

Using this result, we can show that the minimum cost edited tree isomor-
phism between two trees t and ¢/ is a maximum common consistent subtree of
the two DAGs Ct and Ct’, provided that the cost of node removal and node
matching depends only on the weights.

The minimum cost edited tree isomorphism is a tree that can be obtained
from both model tree ¢ and data tree t’ with node removal and relabel operations.
By virtue of the theorem above, this tree is a consistent subtree of both Ct and
Ct'. The tree must be obtained with minimum combined edit cost. Since node
removal can be considered as matching to a node with 0 weight, the isomorphism
that grants the minimum combined edit cost is the one that gives the maximum
combined match, i.e. it must be the maximum common consistent subtree of the
two DAGs.

3.2 Cliques and Common Consistent Subtrees

In this section we show that the directed association graph induces a divide
and conquer approach to edited tree matching as well. Given two trees ¢ and
t' to be matched, we create the directed association graph of the transitive
closures Ct and Ct' and we look for a consistent matching tree in the graph.
That is we seek a tree in the graph that corresponds to two consistent trees in
the transitive closures Ct and Ct/. The maximum such tree corresponds to the
maximum common consistent subtree of Ct and Ct'.

In analogy to what we did for the exact matching case, we divide the prob-
lem into a maximum common consistent subtree rooted at (v, w), for each node

TS

S

Efficiently Computing Weighted Tree Edit Distance 445

(v,w) of the association graph. We show that, given the weight of the maxi-
mum common consistent subtree rooted at each child of (v, w) in the association
graph, then we can transform the rooted maximum common consistent subtree
problem into a max weighted clique problem. Solving this problem for each node
in the association graph and looking for the maximum weight rooted common
consistent subtree, we can find the solution to the minimum cost edited tree
isomorphism problem.

Let us assume that we know the weight of the isomorphism for every child
of (v,w) in the association graph. We want to find the consistent set of siblings
with greatest total weight. Let us construct an undirected graph whose nodes
consist of the children of (v,w) in the association graph. We connect two nodes
(p,q) and (r,s) if and only if there is no path connecting p and r in and there
is no path connecting ¢ and s in ¢'. This means that we connect two matches
(p,q) and (r,s) if and only if they match nodes that are consistent siblings in
each tree. Furthermore, we assign to each association node (a, b) a weight equal
to the weight of the maximum common consistent subtree rooted at (a,b). The
maximum weight clique of this graph will be the set of consistent siblings with
maximum total weight. The weight of the maximum common consistent subtree
rooted at (v,w) will be this weight plus the minimum of the weights of v and
w, i.e. the maximum weight that can be obtained by the match. Furthermore,
the nodes of the clique will be the children of (v,w) in the maximum common
consistent subtree.

3.3 Heuristics for the Maximum Weighted Clique

As we have seen, we have transformed an inexact tree matching problem into a
series of maximum weighted clique problems. That is, we transformed one NP-
complete problem into multiple NP-complete problems. The reason behind this
approach lies in the fact that the max clique problem is, on average, a relatively
easy problem. Furthermore, since the seminal paper of Barrow and Burstall [1], it
is a standard technique for structural matching and a large number of approaches
and very powerful heuristics exist to solve it or approximate if.

The approach we will adopt to solve each single instance of the max weight
clique problem is an evolutionary one introduced by Bomze, Pelillo and Stix
[3]. This approach is based on a continuous formulation of the combinatorial
problem and transforms it into a symmetric quadratic programming problem in
the simplex A. For more detail we refer to the appendix.

Relaxation labeling is a evidence combining process developed in the frame-
work of constraint satisfaction problems. Its goal is to find a classification p that
satisfies pairwise constraints and interactions between its elements. The process
is determined by the update rule '

41 _ FANHE!
PN = G @

where the compatibility component is g;(A) = E}Ll Z;T=1 (A)pi () -

446 Andrea Torsello and Edwin R. Hancock

In [12] Pelillo showed that the function A(p) = Y,y Pi(A)gi(A) is a Lyapunov
function for the process, i.e. A(p'*!) > A(p?), with equality if and only if p* is
stationary.

3.4 Putting It All Together

In the previous sections we proved that the maximum edited tree isomorphism
problem ‘can be reduced to nm maximum weight clique problem and we have
given an iterative process that is guaranteed to find maximal weight cliques. In
this section we will show how to use these ideas to develop a practical algorithm.
A direct way is to use the relaxation labeling dynamics starting from the
leaves of the directed association graph and propagate the result upwards in
the graph using the weight of the extracted clique to initialize the compat-
ibility matrix of every parent association. For a subproblem rooted at (u,v)
the compatibility coefficients can be calculated knowing the weight M of ev-
ery isomorphism rooted at the descendants of u and v. Specifically, the com-
patibility coefficients are initialized as Ry, .y = veel — C, or, equivalently,
’ {4 (u,v)
T(uw) (@, a'b, b)) = — Clara’) (bib') where

ot ‘ZM(ilﬂa} if (a! a") = (b: b!)
Claal)(bp) = CEZ::*))(a,a’) +CE;§J’))(5,E:’) if (a,a’) and (b,b’) are consistent
0 otherwise.

This approach imposes a sequentiality to an otherwise highly parallel algo-
rithm. An alternative can be obtained transforming the problem into a single
multi-object labeling process. With this approach we set up a labeling problem
with one object per node in the association graph, and at each iteration we up-
date the label distribution for each object. We, then, update the compatibility
matrices according to the new weight estimate.

This multi-object approach uses the fact that the compatibility matrix for
one rooted matching subproblem does not depend upon which nodes are matched
below the root, but only on the number of matches. That is, to solve one sub-
problem we need to know only the weight of the cliques rooted at the children,
not the nodes that form the clique.

Gibbons’ result [7] guarantees that the weight of the clique is equal to e,
where x is the characteristic vector of the clique and B is the weight matrix
defined in (3). This allows us to generate an estimate of the clique at each
iteration: given the current distribution of label probability p for the subproblem

rooted at (u, v), we estimate the number of nodes matched under (u,v) as 5 1Bp,
and thus we assign to (u,v) the weight M,) = Ele—p + min{wy, w,), that is

the weight of the maximum set of consistent descendants plus the the weight
that can be obtained matching node u with node v.

We obtain a two step update rule: at each iteration we update the label
probability distribution according to equation (2}, and then we use the updated
distributions to generate new compatibility coefficients according to the rule

Tuwla,a' b b)) =v— CE:Z?)(b,bf)! where

Efficiently Computing Weighted Tree Edit Distance 447

%pa,a‘B(a’ai)pa,a’ if (CL, a‘!) Niji (b! b’)
cE::,)) o) = cE;‘:))(i CE;’:)) wey if (a,0") and (b, b') are consistent

0 otherwise

Another possible variation to the algorithm can be obtained using different
initial assignments for the label distribution of each subproblem.

A common approach is to initialize the assignment with a uniform distribu-
tion so that we have an initial assignment close to the baricenter of the simplex.
A problem with this approach is that the dimension of the basin of attraction
of one maximal clique grows with the number of nodes in the clique.

With our problem decomposition the wider cliques are the ones that map
nodes at lower levels. As a result the solution will be biased towards matches
that are very low on the graph, even if these matches require cutting a lot of
nodes and are, thus, less likely to give an optimum solution.

A way around this problem is to choose an initialization that assigns a higher
initial likelihood to matches that are higher up on the subtree. In our experiments
we decided to initialize the probability of the association (a, b) for the subproblem
rooted at (u,v) as P,y (a,b) = e~(datdote) where d, is the depth of a with
respect to u, dp is the depth of b with respect to v, and € is a small perturbation.
Of course, we then renormalize p,) to ensure that it is still in the simplex.

4 Experimental Results

We evaluate the new tree-matching method on the problem of shock-tree match-
ing. The idea of characterizing boundary shape using the differential singularities
of the reaction equation was first introduced into the computer vision literature
by Kimia, Tannenbaum and Zucker [8]. The idea is to evolve the boundary of
an object to a canonical skeletal form using the reaction-diffusion ‘equation. The
skeleton represents the singularities in the curve evolution, where inward moving
boundaries collide. The reaction component of the boundary motion corresponds
to morphological erosion of the boundary, while the diffusion component intro-
duces curvature dependent boundary smoothing. In practice, the skeleton can
be computed in a number of ways, here we use a variant of the method Siddiqi,
Tannenbaum and Zucker, which solves the eikonal equation which underpins
the reaction-diffusion analysis using the Hamilton-Jacobi formalism of classical
mechanics [14). Once the skeleton is to hand, the next step is to devise ways
of using it to characterize the shape of the original boundary. Here we follow
Zucker, Siddiqi, and others, by labeling points on the skeleton using so-called
shock-labels [15]. According to this taxonomy of local differential structure, there
are different classes associated with behavior of the radius of the osculating circle
from the skeleton to the nearest pair of boundary points. The so-called shocks
distinguish between the cases where the local osculating circle has maximum
radius, minimum radius, constant radius or a radius which is strictly increasing
or decreasing. We abstract the skeletons as trees in which the level in the tree is
determined by their time of formation [13,15]. The later the time of formation,
and hence their proximity to the center of the shape, the higher the shock in the

448 Andrea Torsello and Edwin R. Hancock

hierarchy. While this temporal notion of relevance can work well with isolated
.shocks .(maxima and minima of the radius function), it fails on monotonically
increasing or decreasing shock groups. To give an example, a protrusion that
ends on a vertex will always have the earliest time of creation, regardless of its
relative relevance to the shape.

We generate two variants of this matching problem. In the first variant we
use aq purely symbolic approach: Here the shock trees have uniform weight and
we match only the structure. The second variant is weighted: we assign to each
shock group a weight proportional to the length of the border that generates the
shock; this value proves to be a good measure of skeletal similarity [17].

For our experiments we used a database consisting of 16 shapes. For each
shape in the database, we computed the maximum edited isomorphism with the
other shapes. In the unweighted version the “goodness” measure of the match

is the average fraction of nodes matched,that is, W(t;,t2) = % (_E_ + _ﬁ_‘)
1 2 o

where #t indicates the number of nodes in the tree . Conversely, to calculate
the goodness of the weighted match we weights so that the sum over all the
nodes of a tree is 1. The way we use the total weight of the maximum common
edited isomorphism as a measure for the match. In figure 2 we show the shapes
and the goodness measure of their match. The top value of each cell is the result
for the unweighted case, the bottom value is represents the weighted match.

To illustrate the usefullness of the set of similarity measures, we have used
them as input to a pairwise clustering algorithm [9]. The aim here is see whether
the clusters extracted from the weighted or the unweighted tree edit distance
correspond more closely to the different perceptual shape categories in the data-
base. In the unweighted case the process yielded six clusters (brush (1) + brush
(2). + wrench (4); spanner (3) + horse (13} ; pliers (5) + pliers (6) + hammer (9)
;pliers (7) +hammer (8) + horse (12); fish (10) + fish (12); hand (14) + hand (15)
+ hand (16). Clearly there is merging and leakage between the different shape
categories. Clustering on the weighted tree edit distances gives better results
yielding seven clusters: brush (1) + brush (2) ; spanner (3) + spanner (4); pliers
(5) + pliers (6) + plicers (7); hammer (8) + hammer (9); fish (10) + fish (11);
horse (12) + horse (13); hand (14) + hand (15) + hand (16)). These correspond
exactly to the shape categories in the data-base.

5 Sensitivity Study

To augment these real world experiments, we have performed a sensitivity anal-
ysis. The aim here is to characterise the effects measurement errors resulting
from noise or jitter on the weights and the structural errors resulting from node
removal.

. Node removal tests the capability of the method to cope with structural mod-
ification. To do this we remove an increasing fraction of nodes from a randomly
generated tree. We then we match the modified tree against its unedited version.
Since we remove nodes only from one tree, the edited tree will have an exact
match against the unedited version. Hence, we know the optimum value of the

Efficiently Computing Weighted Tree Edit Distance 449

ANVARIFARSAS ARSI 2 1) %

1,000[1.000{0.774[1.000{0.889]0.889 0.850|0.818|0.889|0.635[0.640(0.706{|0.6940.684

0.981|0.844]0.434|0.604|0.562]0.600 0.422|0,511|0.557|0.484|0.4270.428|0.415(0.402
1.000|1.000(0.774|1.000|0.889(0.889{0. 0.850|0.818(0.880|0,635/0.640|0.706(0.694|0.684

0.844|0.981|0.548|0.685|0.683|0.720(0.559(0.509(0.381]|0.621|0.629/0.534/0.447)0.474/0.517 0.434
0.774|0.774|1,000]0.774|0.833|0.833|0.676|0.714|0,800(0.773[0.694| 0.6 15[0.620|0.676/0.667 0.658,

0.4460.543]1.000{0.569(0.554]0.643|0.637|0.4750.651|0.436{0.559]0.428|0.395)0.406{0.414 0.373
1,000(1.000]0.774|1.000|0.888(0.889)0.706|0.643|0.850/0.818|0.889(0.635(0.640|0.706/0.694 0.684

0.604|0.685(0.809|1.000|0.663(0.731|0.713(0.592|0.496/|0.507|0.624|0.404{0.418)0.443 0.449|0.404]
09.880|0.880|0.694|0.689|1.000|1.000|0,765[0.730(0.950(0.808(0,778(0.673|0.680/0.765 0.750(0.737
0.562|0.684|0.531|0.666|1.000|0.857|0.714{0.458|0.385|0.588|0.622|0.456)|0.497]0.524 0.5410.521
0.589 0.880(1.000|1.000]0.765(0.730|0.950{0.808(0.778|0.673[0.680|0.765/0.750 0.737

0.571 0.750|0.857|1.000/0.793|0.584|0.505|0.580(0.670|0.456|0.515|0.514/0.480 0.503
0.706(0.706 0.706|0.765|0.765| 1.000|0.782|0.794|0.674|0.680|0.730[0.692|0.765/0.801 0.669

0.502{0.559(0. o.727l0.703|0.796| 1.000|0.533|0.503{0.4380.5662|0.433|0.457|0.467]0,606]0.482
0.643|0.643|0.714]0.643|0.730(0.730|0.847|1.000]0.771|0.649|0.6390.7690.724]0.651 0.698|0.682

0.554|0.606/0.475(0.592|0.459(0.531{0.554]1.000(0.415(0.434/0.405|0.4430.459 0.4189|0.400|0.408
0.850/0,860|0.8000.850|0.950|0.050|0.794|0.857| 1.000|0.764/0.735[0.692|0.700{0.794 0.778]0.763

0.441|0.356|0.676|0.506]0.388|0.472|0.530{0.394|0.981|0.384]|0.438]0.396]0.386|0.310 0.353|0.310
0.818(0.818(0.773|0.818]0.808]0, 0.509|0.731|0.764|1.000|0.909|0.647(0.720{0.749(0.806|0.789

0.516|0.626|0.479|0.507|0.593 0.4870.434(0.379]1.000(0.825|0.556|0.520(0.634|0.630|0.555
0.849|0.880|0.694|0.889|0.778|0.778|0.680|0.548(0.739(0.909(0.778|0.5980,680 0.595|0.667|0.737|

0.556|0.636]0.550|0.626|0.622|0.670{0.5780.405|0.428|0.820|1.000|0.449|0.590{0.542)0.532 0.518]
0.635/0.635]0.615(0.635|0.673|0.673|0.778|0.769|0.692|0.647|0.598]1.000|0.785/0.730 0.752[0.729

0.496|0.449(0.417|0.388|0.462|0.429|0.475/0.397|0.403|0.492|0.449|1.000/0.627|0.496 0.519(0.560
0.640|0.640|0,620|0.640|0.680|0.680{0.741|0.724/0.700|0.655 G.680(0.824{1.000(0.840[0.764{0.834

0.395(0.447|0,395/0.441|0.495(0.488/|0.445(0.497|0.371 0.602[0.573 0.693l0.992 0.711]0.687|0.699]
0.706|0.706|0.676|0.706|0.765(0.765|0.706|0.651(0.715|0.624|0.765(0.730]0.840 1.000 0.972]0.947

0.443|0.620{0.334]0.436(0.570|0.536{0.465|0.422(0.335(0.6320.554]0.494|0.696]0.976 0.895|0.840
0.694[0.604|0.667|0.694[0.750{0.750|0.801|0.698|0. 0.650|0.583|0.752(0.812[0.915|1.000{0.920

0.431|0.450]0.409(0.425|0.520{0.520|0.480|0.445{0.3780.629(0.543|0.572/0.719]0.847 0.982{0.771
0.68410‘684 U.658|0.684|0.737|0.737|0.660|0.682|0.763|0.718(0.573(D.725[0.741]0.947]0.920 0.947
4

el€/ew[3aA[42\ 2N 27|~ 1>

0.441|0.447|0.380|0.447|0.560[0.520{0.493]0.434/0.346|0.563|0.5580.541|0.765{0.864|0.817 1.000

Fig. 2. Matching result for unweighted (top) and weighted (bottom) shock trees

weight that should be attained by the maximum edited isomorphism. This is
equalt to the total weight of the edited tree.

By adding measurement errors or jitter to the weights, we test how the
method copes with a modification in the weight distribution. The measurement
errors are normally distributed with zero mean and controlled variance. Here we
match the tree of noisy or jittered weights against its noise-free version. In this
case we have no easy way to determine the optimal weight of the isomorphism,
but we do expect a smooth drop in total weight with increasing noise variance.

We performed the experiments on trees with 10, 15, 20, 25, and 30 nodes. For
each experimental run we used 11 randomly generated trees. The procedure for
generating the random trees was as follows: we commence with an empty tree
(i.e. one with no nodes) and we iteratively add the required number of nodes.
At each iteration nodes are added as children of one of the existing nodes. The

450 Andrea Torsello and Edwin R. Hancock

i

o8

om

oa b

o7 - o . "
L) 0% e a0 4 = o £ [o E v s 3

Fig. 3. Sensitivity analysis: top-left node removal, top-right node removal without out-
liers, bottom-left weight jitter, bottom-right weight jitter without outliers.

parents are randomly selected with uniform probability from among the existing
nodes. The weight of the newly added nodes are selected at random from an
exponential distribution with mean 1. This procedure will tend to generate trees
in which the branch ratio is highest closest to the root. This is quite realistic of
real-world situations, since shock trees tend to have the same characteristic.
The fraction of nodes removed was varied from 0% to 60%. In figure 3 top left
we show the ratio of the computed weighted edit distance to the optimal value of
the maximum isomorphism. Interestingly, for certain trees the relaxation algo-
rithm failed to converge within the allotted number of iterations. Furthermore,
the algorithm also failed to converge on the noise corrupted variants of these
trees. In other cases, the algorithm exhibited particularly rapid convergence.
Again, the variants of these trees also showed rapid algorithm convergence. When
the method fails to converge in an allocated number of iterations, we can still
give a lower bound to the weight. However, this bound is substantially lower
than the average value obtained when the algorithm does converge. The top
right-hand graph of figure 3 shows the ratio of weight matched when we elim-
inate these convergence failures. The main conclusion that can be drawn from
these two plots are as follows. First, the effect of increasing structural error is to
cause a systematic underestimation of the weighted edit distance. The different
curves all exhibit a minimum value of the ratio. The reason for this is that the
matching problem becomes trivial as the trees are decimated to extinction,

Efficiently Computing Weighted Tree Edit Distance 451

The bottom row of figure 3 shows the results obtained when we have added
measurement errors or jitter to the weights. We noise corrupted weights were
obtained with randomly added Gaussian noise with standard deviation ranging
from O to 0.6. The bottom left-hand graph shows the result of this test. It is clear
that the matched weight decreases almost linearly with the noise standard de-
viation. In these experiments, we encountered similar problems with algorithm
non-convergence. Furthermore, the problematic instances were identical. This
further supports the observation that the problem strongly depends on the in-
stance. The bottom right-hand plot shows the results of the jitter test with the
convergence failures removed.

6 Conclusions

In this paper we have investigated a optimization approach to tree matching.
We based the work on to tree edit distance framework. We show that any tree
obtained with a sequence of cut operation is a subtree of the transitive closure
of the original tree. Furthermore we show that the necessary condition for any
subtree to be a solution can be reduced a clique problem in a derived structure.
Using this idea we transform the tree edit distance problem into a series of
maximum weight cliques problems and then we use relaxation labeling to find
an approximate solution.

In a set of experiments we apply this algorithm to match shock graphs, a
graph representation of the morphological skeleton. The results of these experi-
ments are very encouraging, showing that the algorithm is able to match similar
shapes together. Furthermore we provide some sensitivity analysis of the method.

A Motzkin-Strauss Heuristic

In 1965, Motzkin and Strauss [10] showed that the (unweighted) maximum
clique problem can be reduced to a quadratic programming problem on the
n-dimensional simplex A = {x e R*|z; > 0 foralli=1...n, S @i = 1}, here
z; are the components of vector x. More precisely, let G = (V, E) be a graph
where V is the node set and E is the edge set, and let C C V be a maximum
clique of G, then the vector x* = {@j = 1/#C if i € C, 0 otherwise}, maxi-
mizes in A the function g(x) = xT Ax, where A is the adjacency matrix of G.
Furthermore, given a set S C V, we define the characteristic vector x5

5 {1/#3 ifieS

* 0 otherwise,

S is a maximum (maximal) clique if and only if g(x5) is a global (local)
maximum for the function g.

Gibbons et al. [7] generalized this result to the weighted clique case. In their
formulation the association graph is substituted with a matrix B = (bij)i,jev 18
related to the weights and connectivity of the graph by the relation

452 Andrea Torsello and Edwin R. Hancock

bij = < ki = E‘““;—b”“ if(i,7) ¢ E (3)
0 otherwise.

Let us consider a weighted graph G = (V, E,w), where V is the set of nodes,
E the set of edges, and w : V — R a weight function that assigns a weight to
each node. Gibbons et al. proved that, given a set S C V and its characteristic

vector x° defined as
- {Erwmi ifies,

g
13
0 otherwise,

o

S is a maximum (maximal) weight clique if and only if x¥ is a global (local)
miniimizer for equation xT Bx. Furthermore, the weight of the clique S is w(S) =
x5T Bx®

Unfortunately, under this formulation, the minima are not necessarily iso-
lated: when we have more than one clique with the same maximal weight, any
convex linear combinations of their characteristic vectors will give the same max-
imal value. What this implies is that, if we find a minimizer x* we can derive the
weight of the clique, but we might not be able to tell the nodes that constitute
it.

Bomaze, Pelillo and Stix [3] introduce a regularization factor to the quadratic
programming method that generates an equivalent problem with isolated solu-
tions. The new quadratic program minimizes x” Cx in the simplex, where the
matrix C = (e;;); jev is defined as

o ifi=j
ciy = ky > citey i (id) ¢ EiA] (4)
0 otherwise.

Once again, S is a maximum (maximal) weighted clique if and only if x5 is a
global (local) minimizer for the quadratic program.

To solve the quadratic problem we transform it into the equivalent problem
of maximizing x7 (yee” — C)x, where e = (1,---, I)T is the vector with every
component equal to 1 and is a positive scaling constant.

References

1. H. G. Barrow and R. M. Burstall, Subgraph isomorphism, matching relational
structures and maximal cliques, Inf. Proc. Letter, Vol. 4, pp.83, 84, 1976.

2. M. Bartoli et al.,, Attributed tree homomorphism using association graphs, In
ICPR, 2000.

3. I. M. Bomze, M. Pelillo, and V. Stix, Approximating the maximum weight clique
using replicator dynamics, [EEE Trans. on Neural Networks, Vol. 11, 2000,

4. H. Bunke and A. Kandel, Mean and maximum common subgraph of two graphs,
Pattern Recognition Letters, Vol. 21, pp. 163-168, 2000.

e

11.

12.

13.

14.

15.

16.

17,

18.

19.

20.

21.

22,

23.

Efficiently Computing Weighted Tree Edit Distance 453

W. J. Christmas and J. Kittler, Structural matching in computer vision using
probabilistic relaxation, PAMI, Vol. 17, pp. 749-764, 1995.

M. A. Eshera and K-S Fu, An image understanding system using attributed sym-
bolic representation and inexact graph-matching, PAMI, Vol 8, pp. 604-618, 1986.

. L. E. Gibbons et al., Continuous characterizations of the maximum clique problem,

Math. Oper. Res., Vol. 22, pp. 754-768, 1997

. B. B. Kimia, A. R. Tannenbaum, and 8. W. Zucker, Shapes, shocks, and deforam-

tions [, International Journal of Computer Vision, Vol. 15, pp. 189-224, 1995.

. B. Luo, et al., Clustering shock trees, submitted 2001.
. T. 8. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem

of Turdn, Canadian Journal of Mathematics, Vol. 17, pp. 533-540, 1965.

M. Pelillo, Replicator equations, maximal cliques, and graph isomorphism, Neural
Computation, Vol. 11, pp.1935-1955, 1999.

M. Pelillo, The dynamics of relaxation labeling process, J. Math. Imaging Vision,
Vol. 7, pp. 309-323, 1997.

A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and 8. W. Zucker, Indexing using a
spectral encoding of topological structure, In CVPR, 1999.

K. Siddigi, S. Bouix, A. Tannenbaum, and S. W. Zucker, The hamilton-jacobi
skeleton, In JCCV, pp. 828-834, 1999.

K. Siddiqi et al., Shock graphs and shape matching, Int. J. of Comp. Vision, Vol.
35, pp. 13-32, 1999.

K-C Tai, The tree-to-tree correction problem, J. of the ACM, Vol. 26, pp. 422-433,
1979.

A. Torsello and E.R. Hancock, A skeletal measure of 2D shape similarity, Int.
Workshop on Visual Form, 2001.

W. H. Tsai and K. S. Fu, Error-correcting isomarphism of attributed relational
graphs for pattern analysis, Sys., Man, and Cyber., Vol. 9, pp. 757-768, 1979.

J. T. L. Wang, K. Zhang, and G. Chirn, The approximate graph matching problem,
In ICPR, pp. 284-288, 1994.

R. C. Wilson and E. R. Hancock, Structural matching by discrete relaxation,
PAMI, 1997.

K. Zhang, A constrained edit distance between unordered labeled trees, Algorith-
mica, Vol. 15, pp. 205-222, 1996.

K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between
trees and related problems, STAM J. of Comp., Vol. 18, pp. 1245-1262, 1989.

K. Zhang, R. Statman, and D. Shasha, On the editing distance between unorderes
labeled trees, Inf. Proc. Letters, Vol. 42, pp. 133-139, 1992.

